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Abstract: We consider a general metric Steiner problem, which involves finding a set S with the
minimal length, such that S ∪ A is connected, where A is a given compact subset of a given complete
metric space X; a solution is called the Steiner tree. Paolini, Stepanov, and Teplitskaya in 2015
provided an example of a planar Steiner tree with an infinite number of branching points connecting
an uncountable set of points. We prove that such a set can have a positive Hausdorff dimension,
which was an open question (the corresponding tree exhibits self-similar fractal properties).
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1. Introduction

The Steiner problem, which has various (but more or less equivalent) formulations,
involves finding a set S with a minimal length (a one-dimensional Hausdorff measureH1),
such that S ∪ A is connected, where A is a given compact subset of a given complete metric
space X.

In [1], it is shown that under rather mild assumptions in the ambient space X (which
are true in the Euclidean plane setting), a solution to the Steiner problem exists. Moreover,
every solution S having a finite length has the following properties:

• S ∪ A is compact.
• S \ A has, at most, a finite number of connected components, and each component

has a strictly positive length.
• S contains no loops (homeomorphic images of the circle S1).
• The closure of every connected component of S is a topological tree, which is a

connected and locally connected compact set without loops. It has endpoints on A
and, at most, many branching points. Each connected component of A has, at most,
one endpoint on the tree, and all of the branching points have a finite number of
branches leaving them.

• If A has a finite number of connected components, then S \ A has a finite number of
connected components, the closure of each of which is a finite geodesic embedded
graph with endpoints on A, and with, at most, one endpoint on each connected
component of A.

• For every open set U ⊂ X, such that A ⊂ U, one has that the set S ′ := S \ U is
a subset of a finite geodesic embedded graph. Moreover, for a.e. ε > 0, one has
that for U = {x : dist(x, A) < ε}, the set S ′ is a finite geodesic embedded graph (in
particular, it has a finite number of connected components and a finite number of
branching points).
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A solution to the Steiner problem is called the Steiner tree; the above properties explain
such naming in the case of A being a totally disconnected set. We denote by M(A) the set of
Steiner trees for A. >From now, we will focus on X = R2 (but the following properties also
hold for Rd) and assume that A is a totally disconnected set; we will refer to the points from
A as terminals. In this case, ’geodesic’ is just a straight-line segment. A combination of the
last enlisted property from [1] with well-known facts on Euclidean Steiner trees (see [2,3])
gives the following properties. The maximal degree (in a graph-theoretic sense) of a vertex
in a Steiner tree is, at most, 3. Moreover, only terminals can have degrees 1 or 2, all of the
other vertices have degrees of 3 and are referred to as Steiner points. Vertices with a degree
of 3 are referred to as branching points, and the angle between any two adjacent edges of a
Steiner tree is at least 2π/3.

Note that a Steiner tree may be not unique, see the left-hand side of Figure 1.
Branching, particularly triple-branching points, is a well-known phenomenon in

one-dimensional shape optimization problems. There have been several papers in the
last decade that focused on the case of an infinite number of branching points for various
variations of the irrigation problem [4–6]. The corresponding results for the Steiner problem
were proven in [7] (see Theorem 1).

y0 y1

y2

y3

y4
y5

y6

y7

Figure 1. The left part contains two Steiner trees connecting the vertices of a square; the right part
provides an example of Σ(Λ).

If every terminal point in a Steiner tree has degree one, then it is called full. In the
Steiner tree problem, it is reasonable to focus on full trees since every non-full tree can be
easily cut into full components. Conversely, it is relatively easy to glue several regular
tripods (using terminals) and create a trivial example of a tree with an infinite number of
branching points (note that a regular tripod is a union of three segments with a common end
and pairwise angles equal to 2π/3).

A Universal Steiner Tree

In this subsection, we provide the construction of a unique Steiner tree with an infinite
number of Steiner points from [7].

Let S∞ be an infinite tree with vertices y0, y1, y2, . . . and edges given by y0y1 and yky2k,
yky2k+1, k ≥ 1. Thus, S∞ is an infinite binary tree with an additional vertex y0 attached to
the common parent y1 of all other vertices yk, k ≥ 2. The goal of [7] is to embed S∞ in the
plane in such a way that the image of each finite subtree of S∞ will be a unique Steiner
tree for the set of vertices having degrees of 1 or 2. We define the embedding below by
specifying the positions of y0, y1, y2, . . . in the plane.

Let Λ = {λi}∞
i=0 be a sequence of positive real numbers. An embedding Σ(Λ) of S∞ is

defined as a rooted binary tree where the root is denoted as y0 = (0, 0), the first descendant
as y1 = (1, 0), and the ratio between the edges at the (i + 1)-th and i-th levels is given by
λi. For a small enough {λi}, the set Σ(Λ) is a tree; see the right-hand side of Figure 1.
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Let A∞(Λ) be the union of the set of all leaves (limit points) of Σ(Λ) and {y0}.

Theorem 1 (Paolini–Stepanov–Teplitskaya, [7]). A binary tree Σ(Λ) is a unique Steiner tree
for A∞(Λ), provided by λi < 1/5000 and ∑∞

i=1 λi < π/5040.

The following corollary explains why a full binary Steiner tree is universal, i.e., it
contains a subtree with a given combinatorial structure.

Corollary 1. In the conditions of Theorem 1, each connected closed subset S of Σ(Λ) has a natural
tree structure. Moreover, every S is the unique Steiner tree for the set P of the vertices with the
degrees 1 and 2 of S.

Proof. Let S ⊂ Σ(Λ) and P ⊂ S satisfy the conditions of the corollary. The fact that
S is a tree is straightforward. Let S′ 6= S be any Steiner tree for S and assume that
H1(S′) ≤ H1(S). Then it is clear that H1((Σ(Λ) \ S) ∪ S′) ≤ H1(Σ(Λ)), but on the other
hand, {y0} ∪ A∞ ⊂ (Σ(Λ) \ S) ∪ S′, which contradicts the minimality or the uniqueness in
Theorem 1.

After proving Theorem 1, the authors of [7] observed the following:

“Our proof requires that the sequence {λj} vanish rather quickly (in fact, at least
be summable). It is an open question if in the case of a constant sequence λj = λ
(with λ > 0 small enough) the same construction still provides a Steiner tree.
This seems to be quite interesting since the resulting tree would be, in that case, a
self-similar fractal.”

The result of this paper is an affirmative answer.

Theorem 2. A binary tree Σ(Λ) is a Steiner tree for A∞(Λ) provided by a constant sequence
λi = λ < 1

300 .

Clearly, in the conditions of Theorem 2, the set Σ(Λ) is a self-similar fractal, such that

H1(Σ(Λ)) =
∞

∑
i=0

(2λ)i =
1

1− 2λ

and the Hausdorff dimension of A∞ is − ln 2
ln λ . More about fractals and self-similarity in

metric geometry can be found in [8].
The set of descendants of every vertex yk of Σ(Λ) has an axis of symmetry containing

yk. The idea of the proof of Theorem 2 is to progressively show that there is a Steiner tree
for A∞, which has more of such symmetries, and then to take a limit.

In fact, the proof uses a soft analysis in contrast to the previous one, which used a hard
analysis. The proof uses symmetry arguments instead of stability arguments (the proof
of Theorem 1 is based on a general estimation of a difference after a small perturbation).
In fact, the proof of Theorem 1 allows us to use different λi for different branches, which
completely breaks the symmetries used in the proof of Theorem 2.

Another weakness in comparison with Theorem 1 is that we are not able to show the
uniqueness of a Steiner tree.

2. Results

Proof of Theorem 2. Let λ < 1
300 , ε = λ2

1−λ be fixed during the proof. The following auxil-
iary constructions are drawn in Figure 2. Let Y1B1C1 be an isosceles triangle with the Fermat–
Torricelli point T1, such that |Y1T1| = 1, |T1B1| = |T1C1| = λ; then, by the cosine rule
|Y1B1| = |Y1C1| =

√
1 + λ + λ2 and |B1C1| =

√
3λ. Analogously, let Y2B2C2 be an isosceles

triangle with the Fermat–Torricelli point T2, such that |Y2T2| = 1/4, |T2B2| = |T2C2| = λ;
then |Y2B2| = |Y2C2| =

√
1/16 + λ/4 + λ2 and |B2C2| =

√
3λ.
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√
3λ

√
1

16 + λ
4 + λ2

λ
1
4

Figure 2. The construction of triangles in lemmas.

Let bi ⊂ Bε(Bi) and ci ⊂ Bε(Ci) be symmetric sets with respect to the axis of symmetry
li of YiBiCi, where i = 1, 2. Finally, let Yup, Ydown be such points that YupYdown ‖ B2C2,
Y2 ∈ [YupYdown] and |Y2Yup| = |Y2Ydown| = 1/2.

The following proposition is more-or-less known (see, for instance, Lemma A.6 in [7]),
so we prove it in Appendix A. Recall that a regular tripod is a union of three segments with
a common end and pairwise angles equal to 2π/3.

Proposition 1. (i) For every S ∈ M({Y1} ∪ b1 ∪ c1), the set S \ B10ε(B1) \ B10ε(C1) is a
regular tripod.

(ii) Every S ∈M([YupYdown] ∪ b2 ∪ c2) is a regular tripod outside of B10ε(B2) ∪ B10ε(C2).

Lemma 1. There exists S ∈M({Y1} ∪ b1 ∪ c1), which is symmetric with respect to l1.

Proof. Let F be a point at the ray [Y1T1), such that |Y1F| = 1 + 3
2 λ (see Figure 3), and

denote by DEF the equilateral triangle, such that Y1 is the middle of the segment [DE]
and B1C1 is parallel to DE. Consider segments [ZlZr] ⊂ [DF] and [VlVr] ⊂ [EF], such that
|ZlZr| = [VlVr] = λ and Z := DF∩ T1B1, V := EF∩ T1C1 are centers of the segments. Note
that l1 is a symmetry axis of DEF, and [ZlZr] and [VlVr] are also symmetric with respect to
l1.

By Proposition 1(i), every minimal set S is a regular tripod Y1B′1C′1 out of B10ε(B1) ∪
B10ε(C1). We claim that the tripod Y1B′1C′1 intersects segments [ZlZr] and [VlVr]. Indeed,
consider Cartesian coordinates in which Y1 = (0, 0), B1 = (1 + λ/2,

√
3λ/2) and C1 =

(1 + λ/2,−
√

3λ/2). Then Z = (1 + 3λ/8, 3
√

3λ/8), Zl = (1 + 3λ/8−
√

3λ/4, 3
√

3λ/8 +
λ/4), and Zr = (1 + 3λ/8 +

√
3λ/4, 3

√
3λ/8− λ/4). Since the center T′1 of Y1B′1C′1 lies

inside triangle Y1B′1C′1, it has an x-coordinate smaller than the x-coordinate of B′1 and a
y-coordinate smaller than the y-coordinate of B′1.

We consider the following auxiliary data for the Steiner problem: Amid = [ZlZr] ∪
[VlVr] ∪ {Y1}, Aup = [ZlZr] ∪ b1, Adown = [VlVr] ∪ c1. By the results from [1], as mentioned
in the introduction, every M(Ai) is not empty. Segments [ZlZr] and [VlVr] split every
S ∈M({Y1} ∪ b1 ∪ c1) into three parts, connecting Amid, Aup, and Adown, so

H1(S) ≥ H1(Smid) +H1(Sup) +H1(Sdown), (1)

where Si ∈M(Ai). We claim that the equality in (1) holds.
It is known (see the barycentric coordinate system) that the sum of distances from a

point inside a closed equilateral triangle to the sides does not depend on a point. Thus,
M(Amid) is a set of regular tripods, and each tripod is symmetric with respect to l1. More-
over, for every point x ∈ [ZlZr], there is a unique regular tripod Sx ∈M(Amid), and Sx is
orthogonal to [ZlZr] at x.

Now consider any Sdown ∈ M(Adown). Let Sup be a set that is symmetric to Sdown
with respect to l1; clearly, Sup ∈ M(Aup). For x ∈ Sdown ∩ [VlVr], the set Sx ∪ Sup ∪ Sdown
connects {Y1} ∪ b1 ∪ c1, and reaches the equality in (1), so Sx ∪ Sup ∪ Sdown is a Steiner tree
for {Y1} ∪ b1 ∪ c1. By the construction, it is symmetric with respect to l1.
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Figure 3. Picture of the proof of Lemma 1.

Lemma 2. There exists S ∈M([YupYdown] ∪ b2 ∪ c2), which is symmetric with respect to l2.

Proof. By Proposition 1(ii), every Steiner tree S coincides with a regular tripod outside of
B10ε(B2)∪ B10ε(C2). Clearly, its longest segment is perpendicular to YupYdown (see Figure 4).
We want to show that it touches YupYdown in Y2, i.e., one of the three segments is a subset of
l2. Assuming the contrary, suppose that l2 ∩ S is a point, denote it by L, and let n ‖ B2C2 be
the line containing L. Then n divides S into three connected components; denote them by
SY, Sb, and Sc, respectively.

Y2

b2

c2

B2

C2

T2

Yup

Ydown

SY

Sb

Sc

S ′c

S ′b

n

l2

Figure 4. Picture of the proof of Lemma 2.
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Without the loss of generality, L belongs to Sc.
Let us construct competitors S1 and S2, connecting [YupYdown], b2, and c2. Let S1 =

[Y2L] ∪ Sc ∪ S ′c, where S ′c is a reflection of Sc with respect to l2. Put h := dist(Y2,SY ∩
[YupYdown]). Thus

H1(S1) = H1(SY)−
√

3h + 2H1(Sc).

Let S2 := T ∪ Sb ∪ S ′b, where S ′b is a reflection of Sb, with respect to l2, and T is a
regular tripod connecting Y2 with n ∩ Sb and n ∩ Sb′ . Thus,

H1(S2) = H1(SY) +
√

3h + 2H1(Sb).

Since S is a Steiner tree, one has H1(S) ≤ H1(S1), H1(S) ≤ H1(S2) and clearly

H1(S) = H1(S1)+H1(S2)
2 . Then H1(S) = H1(S1) = H1(S2), and so S1,S2 belong to

M([YupYdown] ∪ b2 ∪ c2). As S1 and S2 are symmetric with respect to l2, the statement
is proven.

Now we are ready to prove Theorem 2, i.e., to show that for λj = λ < 1
300 , the set

Σ(Λ) is a Steiner tree for the set of terminals A∞.
Let b1 and c1 be the subsets of terminals that are descendants of y2 and y3, respectively.

Since ε = λ2 + λ3 + · · ·+ λk + . . . , we have bi ⊂ Bε(Bi), ci ⊂ Bε(Ci). Applying Lemma 1
to Y1 = y0, B1 = y2, C1 = y3, b1, and c1, we show that there is a Steiner tree for A∞, which
is symmetric with respect to the line (y0y1).

Let [ZlZr] and [VlVr] be the segments from the previous application of Lemma 1. Now
define b2 and c2 as descendants of y4 and y5, respectively. Then, applying Lemma 2 to
[YupYdown] = [ZlZr], B2 = y4, C2 = y5, b2, and c2 (these data are similar to those required
with the scale factor λ), we show that there is a Steiner tree containing [y0y1] and branching
at y1 (because y1 belongs to the axis of the symmetries of b and c).

Since λi is constant, the upper and lower components of Σ(Λ) \ [y0y1] are similar
(with the scale factor λ) to Σ(Λ). Thus, the second application of Lemmas 1 and 2 shows
that there is a Steiner tree containing [y0y1] ∪ [y1y2] ∪ [y1y3]. This procedure recovers Σ(Λ)
step by step; so after the k-th step, we know that the length of every Steiner tree for A∞ is
at least

k−1

∑
i=0

(2λ)i.

Thus, the length of every Steiner tree for A∞ is at least the length of Σ(Λ), which
implies Σ(Λ) ∈M(A∞).

3. Conclusions
3.1. Recent Progress

Recall that our proof has two gaps; the first one is the absence of uniqueness and the
second one is the crucial dependence on the symmetries of A. A few weeks before the
revision, Paolini and Stepanov combined our arguments with an error estimation argument
and obviated both gaps.

Theorem 3 (Paolini–Stepanov [9]). A binary tree Σ(Λ) is the unique Steiner tree for A∞(Λ)
provided by a constant sequence λi = λ < 1

25 .

3.2. Open Problems

Recall that the Steiner problem has a solution for a compact A ⊂ Rd. Suppose that we
omit the assumption that A ⊂ Rd is closed. The following arises.

Question 1 ([10]). Is it possible to find a bounded set A in X = Rd, such that the problem: “find
S ⊂ X such that H1(S) is minimal among all sets for which S ∪ A is connected” does not have
a solution?
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The second issue concerns another possible construction of a full Steiner tree with an
infinite number of branching points. Consider λ ∈ (0, 1) and an angle of size α in the plane.
Let y0 be the vertex of the angle and y1, y2 be points on distinct sides of the angle. For k ≥ 1,
define y2k+2 ∈ [y2ky0] and y2k+1 ∈ [y2k−1y0] recurrently by |y2k+2y0| = λ · |y2ky0| and
|y2k+1y0| = λ · |y2k−1y0| (see Figure 5). Let A be the union of yi for i from 0 to ∞. Clearly,
A is compact (as a bounded countable set), so the Steiner problem admits a solution.

y0

y2k

y2k+1

y2k+2

y2k+3

Figure 5. A picture of Question 2. A possible structure of the Steiner tree.

Question 2. Is the solution to the Steiner problem for A unique and full for an appropriate choice
of α, λ, y1, and y2?

A computer simulation for small α, λ = 1/2, |y1y0| = |y2y0| = 1 and Ak := {y0, y1, . . . yk}
shows that the structure of a Steiner tree depends on k in a mysterious way. Thus, Ques-
tion 2 requires quite a delicate analysis.
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Appendix A

Proof of Proposition 1. In this proof, i ∈ {1, 2}. Suppose that S intersects with every circle
∂Bρ(Bi) in at least 2 points for ε ≤ ρ ≤ 10ε (see Figure A1). Then, we may replace S with
a shorter competitor, as follows. Put Sb = S ∩ Bε(Bi). By the definition and the co-area
inequality,

H1(S) ≥ H1(Sb) + 2 · 9ε +H1(Si),

where S1 ∈ M({Y1} ∪ ∂B10ε(B1) ∪ c1), S2 ∈ M([YupYdown] ∪ ∂B10ε(B2) ∪ c2). Now, take
Si ∪ Sb ∪ ∂Bε(Bi) ∪RB, whereRB is the radius connecting Si with ∂Bε(Bi). The length of
this competitor is

H1(Sb) + 2πε + 9ε +H1(Si),
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which gives a contradiction since 2π < 9. The symmetric construction shows that the
situation where S intersects with every circle ∂Bρ(Ci) in at least 2 points for ε ≤ ρ ≤ 10ε is
also impossible.

Y1

b1B1

B′1

Rb

Sb

T1 l1

Figure A1. Picture of the proof of Proposition 1.

Thus, there are ρb, ρc ∈ [ε, 10ε], such that S ∩ ∂Bρb(Bi) is a point B′i and S ∩ ∂Bρc(Ci)
is a point C′i . Clearly, S = Si ∪ Sb ∪ Sc, where Sb = S ∩ Bρb(Bi), Sc = S ∩ Bρc(Ci) and
S1 ∈ M({Y1} ∪ {B′i} ∪ {C′i}), S2 ∈ M([YupYdown] ∪ {B′i} ∪ {C′i}). Clearly Si is a tripod or
the union of two segments. We claim that Si is a tripod. By the triangle inequality:

|H1([TiBi] ∪ [TiCi])−H1([TiB′i ] ∪ [TiC′i ])| < 20ε. (A1)

Now, let us prove item (i). By (A1), the length of the (non-regular) tripod [T1Y1] ∪
[T1C′1] ∪ [T1B′1] connecting Y1, B′1 and C′1 is, at most, 1 + 2λ + 20ε. For the same reason, the
length of two segments is at least

√
1 + λ + λ2 +

√
3λ− 30ε > 1 +

(
1
2
+
√

3
)

λ− 30ε.

Recall that ε = λ2

1−λ ; it is straightforward to check that

1 +
(

1
2
+
√

3
)

λ− 30ε > 1 + 2λ + 20ε

for λ < 1/300. Thus, we show that S1 contains a tripod connecting Y1, B′1 and C′1; by the
minimality argument, it is regular.

Let us deal with item (ii). By (A1), the length of the (non-regular) tripod [T2Y2] ∪
[T2C′2]∪ [T2B′2] connecting Y2, B′2 and C′2 is, at most, 1/4+ 2λ+ 20ε. Again, the two-segment
construction has a length of at least

1/4 + λ/2 +
√

3λ− 30ε.

The rest of the calculations coincide with the first item.
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