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Abstract: This work aims to address the P-bifurcation of a stochastic nonlinear system with fractional
damping driven by Gaussian white noise. Based on a stochastic averaging method, a fractional
damping stochastic nonlinear equation has been studied. Furthermore, the expressions of drift and
diffusion coefficients of the Fokker–Planck equation (FPKE) have been obtained. The probability
density function (PDF), the steady solution of FPKE, has also been derived. Then, PDFs of two
fractional damping Morse oscillators have been obtained. One can note that the analytical results
coincide with the results of numerical simulation. Importantly, stochastic P-bifurcation of a fractional
damping stochastic nonlinear Morse oscillator has been further addressed and analyzed.

Keywords: stochastic averaging procedure; fractional derivative; P-bifurcation; Morse oscillator;
Gaussian white noise

1. Introduction and Background

Fractional calculus (FC) has proven to have a wide range of applications. As early
as early the days of the establishment of integral calculus, some mathematicians began to
consider the significance of FC, including Fourier, Abel, Riemann and Liouville, who made
many contributions to the FC theory and formed a relatively complete FC definition [1–5].

With long-term unremitting efforts, FC theory has been established to a certain extent.
Unfortunately, for a long time, FC was only a pure theoretical problem in the field of
mathematics. Until recent decades, many scholars were surprised to find that the fractional
order model is more suitable than the integer order model in solving some problems. Since
then, fractional order models have been widely used in many fields [6–11].

In the natural, engineering and social fields, there are inevitable random excitations,
such as atmospheric turbulence, ocean waves, earthquakes, jet noise and fluctuations of bio-
logical groups. The stochastic dynamics of systems with fractional derivatives attract many
scholars to study them. There have been some effective methods to study the equations of
nonlinear dynamic systems expressed by fractional differential equations, such as stochas-
tic averaging method [12], path integral method [13], eigenvector expansion method [14],
multi-scale method [15,16], Laplace transform [17], and Fourier transform [18,19]. These
methods are of great significance to the study of nonlinear dynamic systems.

Stochastic analysis draws great attention due to its application in quantum physics,
statistical physics, hydrodynamics, biology, economics, and mechanics [20]. The results
obtained by applying the method of stochastic averaging to random vibration problems
are discussed in [21]. The response and stability for a single-degree-of-freedom stochastic
system has been studied by the stochastic averaging method [22]. The analytical solution
of fractional nonlinear system has been addressed in [23]. As a unique nonlinear com-
plex phenomenon in the field of dynamic systems, stochastic bifurcation is dedicated to
evaluating the qualitative change of system response when the critical parameters change
within a given time interval. Therefore, the study of stochastic bifurcation is helpful to
understand the current state of system response and judge its change direction or range [24].
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At present, there are two kinds of research methods to analyze stochastic bifurcation: one is
to determine stochastic bifurcation by studying the change of the curve shape of probability
density function, which is called phenomenological bifurcation (P-bifurcation); and the
second is to determine the stochastic bifurcation of the system through the variation of the
maximum Lyapunov exponent sign. That is called dynamic bifurcation (D-bifurcation).

In recent decades, stochastic bifurcation has been extensively used in engineering,
physics, chemistry, economics, biology and other fields, and many achievements have
been made so far. In 1984, Horsthemke and Lefever [25] published the first mono-
graph on stochastic bifurcation. Zhu [26] studied stochastic Hopf bifurcation of a quasi-
nonintegrable-Hamiltonian system using the stochastic averaging method. Yang [27]
addressed P-bifurcation of a fractional-order vibration energy harvester under colored
noise excitation. Schenk-Hoppé [28,29] investigated Hopf bifurcation based on the theory of
stochastic dynamics together with a numerical method. Using the stochastic averaging and
Khasminskii’s procedures, Zhu [30] investigated linear and nonlinear stochastic systems.

In the research of stochastic dynamic behavior, most of it is based on a Duffing
oscillator. Based on the original van del Pol–Duffing oscillator mathematical model, this
article introduces the Morse potential energy function instead of the original Duffing
oscillator potential model to explore the stochastic P-bifurcation behavior of the Morse
oscillator.

One knows that the Morse oscillator is widely used to describe the diatomic molecule
in an electromagnetic field [31,32]. For instance, the motions of polyatomic molecules or
diatomic molecules under an infrared laser environment can be modeled by the Morse
oscillator [31,32]. Recently, fisher information [33] and vibrational resonance [34] of Morse
oscillators have been investigated. The main difference between a Morse oscillator and
harmonic oscillator is that it describes the non-bonding state, and the introduction of Morse
potential energy can more accurately describe the molecular vibration.

In the present paper, based on the original mathematical model of the harmonic os-
cillator, the Morse potential energy function is introduced to replace the original simple
harmonic oscillator potential model, and with the procedure of stochastic averaging, the ap-
proximation solution of a class fractional damping stochastic nonlinear equation governed
by a general potential will be studied. Furthermore, the PDFs of two fractional damping
stochastic Morse oscillators will be addressed in detail. Moreover, stochastic P-bifurcation
of will also be discussed.

2. PDF for a Class Fractional Damping Stochastic Nonlinear Equation

One knows that mechanics models can be established by fractional differential equa-
tion due to viscoelastic bodies described by power-law kernels [35]. Additionally, the
Hamiltonian system is often immersed in weak noise. Thus, a nonlinear conservative
oscillator with small scale fractional derivative damping driven by white noise can be
given by

Ẍ(t) + εc1Dα
CX(t) + εc2h(X, Ẋ) + g(X) = W(t), 0 < α < 1, (1)

in which ε presents a small positive constant. c1, c2 are two constant coefficients. g(X)
stands for a nonlinear continuous function of X. h(X, Ẋ) denotes a continuous function of
X and Ẋ. W(t) presents a Gaussian white noise, which meets

E[W(t)W(t + τ)] = 2Dδ(τ). (2)

Dα
CX(t) in Equation (1) indicates the Caputo fractional derivative defined by

Dα
CX(t) =

1
Γ(1− α)

t∫
0

Ẋ(µ)

(t− µ)α dµ, (3)

in which Γ(·) denotes a gamma function. It should be noted that Dα
CX(t) in Equation (1)

can be modeled as a damping force [36] and Stokes force [35].
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In the absence of damping and forcing, the potential is given by

V(X) =

X∫
0

g(µ)dµ. (4)

Based on the procedure of stochastic averaging [26–30], one can take the following
procedures:

X = X(t) = A cos Θ(t), (5)
Y = Ẋ(t) = −Aω sin Θ(t), (6)

Θ(t) = ωt + Ψ(t), (7)

in which A, Θ and Ψ denote three random processes. A(t) and Ψ(t) indicate two slowly
varying processes, while Θ(t) denotes a quickly varying process. Differentiating Equation (5)
and equating the resulting equation to Equation (6), one could obtain

Ȧ cos Θ− Ψ̇A sin Θ = 0. (8)

Differentiating Equation (6), using Equations (1), (5) and (6), one can also yield

Ψ̇
g(A cos Θ)

ω
+ Ȧ

g(A)− g(A cos Θ) cos Θ
Aω sin Θ

= εc1Dα(A cos Θ) + εc2h(A cos Θ,−Aω sin Θ)−W(t). (9)

Thus, Ȧ and Ψ̇ could be solved by Equations (8) and (9). Then, one yields
dA
dt

= F11(A, Θ) + F12(A, Θ) + G1(A, Θ)W(t), (10)
dΨ
dt

= F2(A, Θ) + G2(A, Θ)W(t), (11)

where
F1 = F11 + F12, (12)

F11 =
Aω sin Θ

g(A)
c1Dα

C(A cos Θ), (13)

F12 =
Aω sin Θ

g(A)
c2h(A cos Θ,−Aω sin Θ), (14)

F2 =
ω cos Θ

g(A)
c1Dα

C(A cos Θ) +
ω cos Θ

g(A)
c2h(A cos Θ,−Aω sin Θ), (15)

G1 = −Aω sin Θ
g(A)

, G2 = −ω cos Θ
g(A)

. (16)

Using Stratonovich–Khasminskii theorem [37], the averaged Itô equation of A(t) is
written as

dA = m(A)dt + σ(A)dB(t), (17)

in which the drift coefficient and diffusion coefficient are given by

m(A) = ε

〈
F11 + F12 + D

∂G1

∂A
G1 + D

∂G1

∂Γ
G2

〉
Θ

,

σ2(A) = ε
〈

2DG2
1

〉
Θ

, (18)
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where averaging operation, 〈·〉Θ, is given by

〈·〉Θ = lim
T→∞

1
T

T∫
0

〈·〉dt =
1

2π

2π∫
0

〈·〉dΘ. (19)

Because A and Ψ vary slow with time, we can obtain

Θ(µ) = Θ(t− s) = Θ(t)−ωs. (20)

Using the definition of fractional calculus, the averaging term of Equation (18) could
be derived by

〈F11〉Θ =

〈
Aω sin Θ

g(A)
c1Dα

C(A cos Θ)

〉
Θ

=
c1

g(A)
lim

T→∞

1
T

T∫
0

Dα
C(A cos Θ)× Aω sin Θdt

=
c1

Γ(1− α)g(A)
lim

T→∞

1
T

T∫
0

{[
t∫

0

Ẋ(µ)

(t− µ)α dµ]× Aω sin(ωt + Ψ)}dt

=
−c1

Γ(1− α)g(A)
lim

T→∞

1
T

T∫
0

{[
t∫

0

Aω sin(ωt + Ψ−ωs)
sα

ds]× Aω sin(ωt + Ψ)}dt

=
−c1 A2ω2

Γ(1− α)g(A)
lim

T→∞

1
T
{

T∫
0

{[
t∫

0

cos(ωs)
sα

ds]× sin2(ωt + Ψ)}dt

+

T∫
0

{[
t∫

0

sin(ωs)
sα

ds]× cos(ωt + Ψ) sin(ωt + Ψ)}dt} , M1 + M2. (21)

The first term in Equation (21) can be obtained

M1 =
−c1 A2ω2

Γ(1− α)g(A)
lim

T→∞

1
T

T∫
0

[

t∫
0

cos(ωs)
sα

ds]d(
2ωt− sin 2(ωt + Ψ)

4
)

=
−c1 A2ω2

4Γ(1− α)g(A)
[ lim
T→∞

(
2ωt− sin 2(ωt + Ψ)

T
)(

t∫
0

cos(ωs)
sα

ds)|T0

+ lim
T→∞

1
T

T∫
0

(

t∫
0

2ωt− sin 2(ωt + Ψ)

tα
cos(ωt))dt] , M11 + M12. (22)

Before going on, the following two relations will be used,

lim
T→∞

T∫
0

sin(ωs)
sα

ds =ωα−1Γ(1− α) cos
απ

2
, (23)

lim
T→∞

T∫
0

cos(ωs)
sα

ds =ωα−1Γ(1− α) sin
απ

2
. (24)

Substituting Equations (23) and (24) into Equation (22), one has



Fractal Fract. 2023, 7, 408 5 of 14

M11 =
−c1 A2ω2

4Γ(1− α)g(A)
lim

T→∞
[2ωαΓ(1− α) sin

απ

2
−

sin 2(ωt + Ψ)ωα−1Γ(1− α) sin απ
2

T
]

=
−c1 A2

2Γ(1− α)g(A)
ωα+1Γ(1− α) sin

απ

2
, (25)

M12 =
−c1 A2ω2

4Γ(1− α)g(A)
lim

T→∞

1
T

T∫
0

2ωt− sin 2(ωt + Ψ)

tα
cos(ωt)dt

=
−c1 A2ω2

4Γ(1− α)g(A)
[lim
T→∞

1
T

T∫
0

2ωt cos(ωt)
tα

dt− lim
T→∞

1
T

T∫
0

sin 2(ωt + Ψ)

tα
cos(ωt)dt]

= 0, (26)

M2 =
−c1 A2ω2

4g(A)Γ(1− α)
lim

T→∞

1
T

T∫
0

{[
t∫

0

sin(ωs)
sα

ds] cos(ωt + Ψ) sin(ωt + Ψ)}dt

= 0, (27)

Thus,

〈F11〉Θ = M11 + M12 + M2 =
−c1 A2

2g(A)
ωα+1 sin

απ

2
. (28)

Therefore, the drift coefficient and diffusion coefficient in Equation (18) can be given by

m(A) = ε〈F11〉Θ +
εc2 A

2πg(A)

2π∫
0

ω sin Θh(A cos Θ,−Aω sin Θ)dΘ + εD
〈

∂G1

∂A
G1 +

∂G1

∂Γ
G2

〉
Θ

,

σ2(A) = ε
〈

2DG2
1

〉
Θ

. (29)

FPKE associated with Equation (17) is given by

∂p
∂t

= − ∂

∂A
[m(A)p] +

1
2

∂2

∂A2 [σ
2(A)p]. (30)

The boundary conditions for Equation (30) are

p = c, A = 0;

P, ∂p/∂A→ 0, A→ ∞. (31)

Considering the boundary conditions in Equation (31), one can follow the normaliza-
tion condition, ∫ ∞

0
p(A)dA = 1. (32)

The stationary solution of Equation (30) is given by

p(A) =
C

σ2(A)
exp[

A∫
0

2m(u)
σ2(u)

du], (33)

where C denotes a normalization constant given by

C = [
∫ ∞

0
(

1
σ2(A)

exp[
∫ A

0

2m(µ)

σ2(µ)
dµ])dA]−1. (34)
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Thus, using Equation (33), the stationary PDF of Hamiltonian H = V(A) can be
given by

p(H) = p(A)

∣∣∣∣dA
dH

∣∣∣∣ = p(A)

g(A)
|A=V−1(H), (35)

in which V−1 means the inverse function of H. Thus, the joint stationary PDF of the
displacement and velocity could be given by

p(x, y) =
p(H)

T(H)
|H= 1

2 y2+V(x), (36)

where
T(H) =

2π

ω(A)
|A=V−1(H). (37)

3. Two Fractional Order Stochastic Morse Oscillators
3.1. Fractional Order Stochastic Morse Oscillator with Constant Damping

In this subsection, we will consider a Caputo fractional damping stochastic Morse
oscillator with Gaussian white noise given by

Ẍ(t) + b1Dα
CX(t) + b2XẊ + β(e−X − e−2X) = W(t). (38)

in which W(t) presents a zero mean Gaussian white noise meeting Equation (2), b1 denotes
damping coefficient, b2 and β are constant coefficients. Based on the results in Section 2,
the following transformations are adopted:

X = X(t) = A cos Φ(t),

Y = Ẋ(t) = −Aω sin Φ(t),

Φ(t) = ωt + Γ, (39)

V(X) =
1
2

βe−X(e−X − 2).

Using transformation (39), from Equation (38), one can follow two parts,

dA
dt

= εF11(A, Θ) + εF12(A, Θ) + G1(A, Θ)W(t), (40)

dΓ
dt

= εF2(A, Θ) + G2(A, Θ)W(t). (41)

where

h11(A, Γ) =
b1

ω
sin ΦDα

C(A cos Φ),

h12(A, Γ) = −b2 A2sin2Φ cos Φ +
β

ω
sin Φ(e−A cos Φ − e−2A cos Φ)− Aω sin Φ cos Φ,

h21(A, Γ) = − b1

ωA
cos ΦDα

C(A cos Φ),

h22(A, Γ) = b2 Acos2Φ sin Φ +
β

ωA
cos Φ(e−A cos Φ − e−2A cos Φ)−ωcos2Φ,

g1(A, Γ) = − sin Φ
ω

, g2(A, Γ) = −cos Φ
ωA

. (42)

Utilizing the procedure in the Section 2, Itô differential Equation (17) with the drift
coefficient and diffusion coefficient given by

m(A) = − Ab1
2 ωα−1 sin απ

2 + D
2ω2 A ,

σ2(A) = D
ω2 . (43)
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Thus, stationary PDF of the system (38) could be given by

p(A) =
b1 Aωα+1 sin απ

2
D

exp(−
b1ωα+1 sin απ

2 A2

2D
). (44)

From Equations (33) and (35), the joint stationary PDF of X and Y could be written as

pst(X, Y) =
b1ωα+2 sin απ

2
2πD

exp[−
b1ωα+1 sin απ

2
2D

(X2 +
Y2

ω2 )]. (45)

Correspondingly, stationary PDF of displacement and stationary PDF of velocity could
be, respectively, obtained as follows:

pst(X) =
b1ωα+3√π sin απ

2

2πD
√

b1ωα+1 sin απ
2

2D

exp[−
b1ωα+1 sin απ

2
2D

X2], (46)

pst(Y) =
b1ωα+2√π sin απ

2

2πD
√

b1ωα+1 sin απ
2

2D

exp[−
b1ωα+1 sin απ

2
2ω2D

Y2]. (47)

The stationary PDF versus displacement for a different fractional derivative order
is plotted in Figure 1. To testify the precision of the analytical results, one can apply the
stochastic Euler method (Equation (A1) in the Appendix A) , and the results of Monte Carlo
simulation for system (38) are also demonstrated in Figure 1.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X

0

0.5

1

1.5

2

2.5

3

3.5(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X

0

0.5

1

1.5

2

2.5

3

3.5

4(b)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
X

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5(c)

Figure 1. Stationary PDF of displacement X of system (38) for b1 = 0.13, D = 0.001, ω = 1.0.
signifies analysis results, while ◦ represents numerical simulation results. (a) α = 0.3; (b) α = 0.5;

(c) α = 0.7.

It can be observed, from Figure 1, that the analytical results using the stochastic aver-
aging procedure coincide with numerical simulation of a stochastic Morse oscillator (38).
Meanwhile, it can be concluded that fractional order α greatly impacts PDF of stochastic
Morse oscillator (38). Under the same noise intensity, the higher fractional order results in
PDF lifting while the peak of PDF declines with the decline of fractional order α. The sta-
tionary PDF versus displacement for different noise intensities D is plotted in Figure 2. One
can figure out that the peak of PDF decreases with the rise of noise intensity D.
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2.5(c)

Figure 2. Stationary PDF of amplitude A of system (38) for b1 = 0.13, α = 0.5, ω = 1.0. signifies
analysis results, while ◦ represents numerical simulation results. (a) D = 0.001; (b) D = 0.002;
(c) D = 0.001.

The stationary PDF versus amplitude for different b1 is plotted in Figure 3. One can
find that the peak of PDF lifts with the rising of b1. Figure 4 displays the stationary PDF
versus amplitude for different ω. One can see that the peak of PDF lifts with the rising of
ω. Thus, both b1 and ω can lift the response of PDF.

Figure 5 exhibits the stationary joint PDF of displacement and velocity, respectively,
derived by using procedure of stochastic averaging and by using numerical simulation of
system (49) with α = 0.3. It can be found out that the analysis results of PDF agree with the
PDF of numerical simulation.

0 0.2 0.4 0.6 0.8 1
A

0

0.2

0.4

0.6

0.8

1

1.2
b1=0.05
b1=0.1
b1=0.2

Figure 3. Stationary PDF of system (38) versus amplitude A with D = 0.001, α = 0.5, ω = 1.0.
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0 0.2 0.4 0.6 0.8 1
A

0

0.5

1

1.5

2
=1.0
=1.5
=2.0

Figure 4. Stationary PDF of system (38) versus amplitude A with b1 = 0.05, D = 0.001, α = 0.5.

Figure 5. Stationary joint PDF of system (38) versus displacement and velocity with b1 = 0.05,
D = 0.01, ω = 3.0. (a) Analysis results; (b) numerical simulation results.

3.2. Fractional Order Stochastic Morse Oscillator with Nonlinear Damping

In this subsection, we will focus on a fractional order stochastic Morse oscillator with
nonlinear damping subjected to a Gaussian white noise given by

Ẍ + (a1X4 − a2X2 + a0)Dα
CX + (b1 + b2X2)Ẋ + β(e−X − e−2X) = W(t). (48)

in which W(t) presents a zero mean Gaussian white noise meeting Equation (2).
a1X4 − a2X2 + a0 denotes a nonlinear damping function, where a1, a2, a0 in Equation (48)
are constant coefficients. b1, b2 are constant coefficients.

Using the procedure in Section 2, Itô differential Equation (17) with the drift coefficient
and diffusion coefficient written as

m(A) = (− a1 A5

16
+

a2 A3

8
− a0 A

2
)ωα−1 sin

απ

2
− (

b1 A
2

+
b2 A3

8
) +

D
2ω2 A

,

σ(A) =
D
ω2 . (49)

Thus, one can easily derive the stationary PDF of the system (48) given by

p(A) =
Cω2 A

D
exp[

ωα+1 sin απ
2

D
(− a1

48
A6 +

a2

16
A4 − a0

2
A2)− b1ω2

2D
A2 − b2ω2

16D
A4], (50)

in which C denotes a normalization constant.
Stochastic P-bifurcation is related to the peak number of the steady-state PDF curve.

Stochastic P-bifurcation occurs with the variation of peak number of the stationary PDF
curve. For convenience, one can record p(A) as

p(A) = C1R(A, D, ω, α, a0, a1, a2, b1, b2) exp(A, D, ω, α, a0, a1, a2, b1, b2). (51)
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Based on singularity theory [38], the stationary PDF satisfies the conditions given by

∂p(A)

∂A
= 0,

∂2 p(A)

∂A2 = 0. (52)

From Equations (50)–(52), one can obtain the critical condition of P-bifurcation for
system (48) with noise density D and fractional order α

a1ωα−1 sin
απ

2
A6 − 2(a2ωα−1 sin

απ

2
− b2)A4 + 8(a0ωα−1 sin

απ

2
+ b1)A2 − 8D

ω2 = 0, (53)

where amplitude A satisfies:

3a1ωα−1 sin
απ

2
A4 − 4(a2ωα−1 sin

απ

2
− b2)A2 + 8(a0ωα−1 sin

απ

2
+ b1) = 0. (54)

In order to address stochastic P-bifurcation with fractional order α and noise density
D, for convenience, one can take ω = 2, a0 = 0.12, a1 = 1, a2 = 1, b1 = 0.05, b2 =
0.05. Figure 6 exhibits P-bifurcation diagram, (α, D) plane, which was obtained from
Equations (53) and (54). In Figure 6a,c, the solid line L1 is the critical curve dividing
the parameter plane into domain B1, domain B2 and B3. Figure 6b exhibits PDF for
three sets of parameters. For instance, in Figure 6a, in (α, D) plane, one can take the
first point (0.25, 0.01) ∈ B1, the second point (0.55, 0.01) ∈ B2, and the third point
(0.75, 0.01) ∈ B3. The corresponding stationary PDF for each parameter point is plotted in
Figure 6b. From Figure 6b, it can be discovered that the stationary PDF curve is unimodal
in domain B1, while the stationary PDF is bimodal in domain B2, and the stationary PDF is
unimodal in domain B3. Figure 6b implies that stationary PDF shifts from a single peak
to double peaks with the rise of α from 0.25 to 0.55. The variation of peak number in the
stationary PDF reveals the occurrence of stochastic P-bifurcation. Additionally, in Figure 6c,
one can take α = 0.55, and take D as 0.001, 0.006. The corresponding stationary PDF for
each parameter point is shown in Figure 6d, which reveals the variation of the peak number
in PDF. With thde rise of noise intensity D from 0.001 to 0.006, PDF varies from a single
peak to double peaks. Apparently, stochastic P-bifurcation occurs.

Figure 7 plots a P-bifurcation diagram, (ω, D) plane, which was obtained from
Equations (53) and (54). Here, the other parameters are taken as α = 0.55, a0 = 0.12, a1 = 1,
a2 = 1, b1 = 0.05, b2 = 0.05. The solid line L in Figure 7a,c divides the (ω, D) plane into
domain S1 and domain S2. Similarly, one can take one point (1.5, 0.004) ∈ S1 and another
point (1.5, 0.007) ∈ S2, and the corresponding stationary PDF for each parameter point
is demonstrated in Figure 7b. From Figure 7b, one can discover the stationary PDF curve
is unimodal in domain S2, while the stationary PDF is bimodal in domain S1. This phe-
nomenon implies the stationary PDF shifts from single peak to double peak as D decreases
from 0.007 to 0.004. The variation of peak number of the stationary PDF also reveals the
occurrence of P-bifurcation. Additionally, in Figure 7c, one can take D = 0.004 and take
ω as 0.5, 1.5, 2.5. The corresponding stationary PDF for each parameter point is shown in
Figure 7d, which reveals the variation of the peak number in PDF. Obviously, stochastic
P-bifurcation occurs.

Figure 8 demonstrates a P-bifurcation diagram, (b1, D) plane, which was obtained
from Equations (53) and (54). Here, one can take α = 0.5, a0 = 0.12, a1 = 1, a2 =
1, b2 = 0.05. The solid line L in Figure 8a,c divides the (b1, D) plane into domain C1
and domain C2. The PDFs for three set of parameters are plotted in Figure 8b. Similarly,
take points (0.02, 0.01) ∈ C2, (0.04, 0.01) ∈ C1 and (0.06, 0.01) ∈ C2, and we obtain
the corresponding stationary PDF for each parameter point. One can figure out from
Figure 8b that the stationary PDF curve is unimodal in domain C2, while the stationary
PDF is bimodal in domain C1. For b1 = 0.02, b1 = 0.04, and b1 = 0.06, one can find that
the stationary PDF shifts from a single peak to double peaks, and then PDF eventually
turns to a single peak. The variation of the peak number in the stationary PDF reveals
the occurrence of P-bifurcation. Additionally, one can take b1 = 0.045 and take D as
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0.015, 0.025. The corresponding stationary PDF for each parameter point is depicted in
Figure 8d, which exhibits the variation of the peak number in PDF. Apparently, stochastic
P-bifurcation occurs.
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Figure 6. P-bifurcation with ω = 2, a0 = 0.12, a1 = 1, a2 = 1, b1 = 0.05, b2 = 0.05. (a) P-bifurcation
diagram, (α, D) plane, with three marked points. (b) PDF versus amplitude A for various α with
D = 0.01. (c) P-bifurcation diagram, (α, D) plane, with two marked points. (d) PDF versus amplitude
A for various D with α = 0.55.
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Figure 7. P-bifurcation with α = 0.55, a0 = 0.12, a1 = 1, a2 = 1, b1 = 0.05, b2 = 0.05. (a) P-
bifurcation, (ω, D) plane, with two marked points. (b) PDF versus amplitude A for various D with
ω = 1.5. (c) P-bifurcation, (ω, D) plane, with three marked points. (d) PDF versus amplitude A for
various ω with D = 0.004.
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Figure 8. P-bifurcation with α = 0.5, a0 = 0.12, a1 = 1, a2 = 1, b2 = 0.05. (a) P-bifurcation,
(b1, D) plane, with three marked points. (b) PDF versus amplitude A for various b1 with D = 0.01.
(c) P-bifurcation, (b1, D) plane, with two marked points. (d) PDF versus amplitude A for various D
with b1 = 0.045.

4. Conclusions

Due to the application of stochastic analysis, this work focuses on the approximate
solution of a fractional damping stochastic nonlinear equation with Gaussian white noise.
To begin with, the analytic solution of a stochastic nonlinear equation is derived by the
procedure of stochastic averaging. Moreover, FPKE associated withthe Itô equation has
been obtained. Correspondingly, the analytic expression of stationary PDF of a fractional
damping stochastic nonlinear equation has been derived. Considering the description of the
diatomic molecule in electromagnetic fields, the stochastic analyses of two fractional order
stochastic Morse oscillators have been addressed. One can figure out that the stationary
PDF of a Morse oscillator versus the displacement amplitude and velocity obtained by
using the stochastic averaging method identified with simulation results. Furthermore,
the critical condition of stochastic P-bifurcation has been derived. Stochastic P-bifurcations
are explored via the critical condition. Additionally, P-bifurcation diagrams, (α, D) plane,
(ω, D) plane and (b1, D) plane have been addressed in detail. We conclude that the P-
bifurcation behavior of the fractional order stochastic Morse oscillator with nonlinear
damping could be caused by α,D, ω and b1.
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Appendix A. Numerical Simulation

A numerical simulation of Equation (38) is used by the stochastic Euler method given
by the following approximation:

x(tn) =

2x(tn−1)− x(tn−2)− b1∆t2−α
n−1
∑

j=1
(−1)j

(
α
j

)
x(tn−j) + b2x(tn−1)∆tx(tn−2)

1 + b2x(tn−1)∆t + b1∆t2−α

+
−∆t2β{exp[−x(tn−1)]− exp[−2x(tn−1)]}+ ∆t2W(tn−1)

1 + b2x(tn−1)∆t + b1∆t2−α
, (A1)

where
(

α
j

)
= α(α−1)(α−2)...(α−j+1)

j! .

References
1. Oldham, K.B. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12. [CrossRef]
2. Khan, I.; Abrob, K.A.; Mirbharb, M.N.; Tlili, I. Thermal analysis in Stokes’ second problem of nanofluid: Applications in thermal

engineering. Case Stud. Therm. Eng. 2018, 12, 271–275. [CrossRef]
3. Riewe, F. Mechanics with fractional derivatives. Phys. Rev. E 1997, 55, 3581. [CrossRef]
4. Mbodje, B.; Montseny, G. Boundary fractional derivative control of the wave equation. IIEEE Trans. Autom. Control 1995, 40,

378–382. [CrossRef]
5. Rogers, L. Operators and fractional derivatives for viscoelastic constitutive equations. J. Rheol. 1983, 27, 351–372. [CrossRef]
6. Heymans, N.; Bauwens, J.C. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta

1994, 33, 210–219. [CrossRef]
7. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.
8. Anderson, D.R.; Ulness, D.J. Properties of the Katugampola fractional derivative with potential application in quantum mechanics.

J. Math. Phys. 2015, 56, 063502. [CrossRef]
9. Bagley, R.L.; Torvik, P.J. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27, 201–210.

[CrossRef]
10. Qiu, L.; He, G.; Peng, Y.; Cheng, H.; Tang, Y. Noise Spectral of GML Noise and GSR Behaviors for FGLE with Random Mass and

Random Frequency. Fractal Fract. 2023, 7, 177. [CrossRef]
11. Cajo, R.; Zhao, S.; Birs, I.; Espinoza, V.; Fernández, E.; Plaza, D.; Salcan-Reyes, G. An Advanced Fractional Order Method for

Temperature Control. Fractal Fract. 2023, 7, 172. [CrossRef]
12. Assadi, I.; Charef, A.; Copot, D.; De Keyser, R.; Bensouici, T.; Ionescu, C. Evaluation of respiratory properties by means of

fractional order models. Biomed. Signal Process. Control 2017, 34, 206–213. [CrossRef]
13. Khandekar, D.C.; Bhagwat, D.K.S.L.K.; Lawande, S.V.; Bhagwat, K.V. Path Integral Methods and Their Applications; Allied Publishers:

New Delhi, India, 2002.
14. Suarez, L.E.; Shokooh, A. An eigenvector expansion method for the solution of motion containing fractional derivatives. J. Appl.

Mech. 1997, 64, 629–635. [CrossRef]
15. Rossikhin, Y.A.; Shitikova, M.V. Analysis of free non-linear vibrations of a viscoelastic plate under the conditions of different

internal resonances. Int. J. Non-Linear Mech. 2006, 41, 313–325. [CrossRef]
16. Li, J.; Zhang, J.; Ge, W.; Liu, X. Multi-scale methodology for complex systems. Chem. Eng. Sci. 2004, 59, 1687–1700. [CrossRef]
17. Podlubny, I. The Laplace transform method for linear differential equations of the fractional order. arXiv 1997, arXiv:funct-

an/9710005.
18. Singh, K.; Saxena, R.; Kumar, S. Caputo-based fractional derivative in fractional Fourier transform domain. IEEE J. Emerg. Sel.

Top. Circuits Syst. 2013, 3, 330–337. [CrossRef]
19. Gaul, L.; Klein, P.; Kempfle, S. Impulse response function of an oscillator with fractional derivative in damping description. Mech.

Res. Commun. 1989, 16, 297–305. [CrossRef]
20. Gliklikh, Y.E. Global and Stochastic Analysis with Applications to Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 2011.
21. Roberts, J.B.; Spanos, P.D. Stochastic averaging: An approximate method of solving random vibration problems. Int. J. Non-Linear

Mech. 1986, 21, 111–134. [CrossRef]
22. Huang, Z.L.; Jin, X.L. Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a

fractional derivative. J. Sound Vib. 2009, 319, 1121–1135. [CrossRef]
23. Yang, Y.; Xu, W.; Jia, W.; Han, Q. Stationary response of nonlinear system with Caputo-type fractional derivative damping under

Gaussian white noise excitation. Nonlinear Dyn. 2015, 79, 139–146. [CrossRef]
24. Jin, C.; Sun, Z.; Xu, W. A novel stochastic bifurcation and its discrimination. Commun. Nonlinear Sci. Numer. Simul. 2022,

110, 106364. [CrossRef]

http://doi.org/10.1016/j.advengsoft.2008.12.012
http://dx.doi.org/10.1016/j.csite.2018.04.005
http://dx.doi.org/10.1103/PhysRevE.55.3581
http://dx.doi.org/10.1109/9.341815
http://dx.doi.org/10.1122/1.549710
http://dx.doi.org/10.1007/BF00437306
http://dx.doi.org/10.1063/1.4922018
http://dx.doi.org/10.1122/1.549724
http://dx.doi.org/10.3390/fractalfract7020177
http://dx.doi.org/10.3390/fractalfract7020172
http://dx.doi.org/10.1016/j.bspc.2017.02.006
http://dx.doi.org/10.1115/1.2788939
http://dx.doi.org/10.1016/j.ijnonlinmec.2005.08.002
http://dx.doi.org/10.1016/j.ces.2004.01.025
http://dx.doi.org/10.1109/JETCAS.2013.2272837
http://dx.doi.org/10.1016/0093-6413(89)90067-0
http://dx.doi.org/10.1016/0020-7462(86)90025-9
http://dx.doi.org/10.1016/j.jsv.2008.06.026
http://dx.doi.org/10.1007/s11071-014-1651-3
http://dx.doi.org/10.1016/j.cnsns.2022.106364


Fractal Fract. 2023, 7, 408 14 of 14

25. Horsthemke, W. Noise Induced Transitions: Non-Equilibrium Dynamics in Chemical Systems; Springer: Berlin/Heidelberg, Germany,
1984; pp. 150–160.

26. Zhu, W.Q.; Huang, Z.L. Stochastic Hopf bifurcation of quasi-nonintegrable-Hamiltonian systems. Int. J. Non-Linear Mech. 1999,
34, 437–447. [CrossRef]

27. Yang, Y.G.; Sun, Y.H.; Xu, W. Bifurcation Analysis of an Energy Harvesting System with Fractional Order Damping Driven by
Colored Noise. Int. J. Bifurc. Chaos 2021, 31, 2150223. [CrossRef]

28. Schenk-Hoppé, K.R. Bifurcation scenarios of the noisy Duffing-van der Pol oscillator. Nonlinear Dyn. 1996, 11, 255–274. [CrossRef]
29. Schenk-Hoppé, K.R. Stochastic Hopf bifurcation: An example. Int. J. Non-Linear Mech. 1996, 31, 685–692. [CrossRef]
30. Zhu, W.Q.; Huang, Z.L. Lyapunov exponents and stochastic stability of quasi-integrable-Hamiltonian systems. J. Appl. Mech.

1999, 66, 211–217. [CrossRef]
31. Beigie, D.; Wiggins, S. Dynamics associated with a quasiperiodically forced Morse oscillator: Application to molecular dissociation.

Phys. Rev. A 1992, 45, 4803. [CrossRef]
32. Knop, W.; Lauterborn, W. Bifurcation structure of the classical Morse oscillator. J. Chem. Phys. 1990, 93, 3950–3957. [CrossRef]
33. Chatterjee, S.; Sekh, G. A.; Talukdar, B. Fisher information for the Morse oscillator. Rep. Math. Phys. 2020, 85, 281–291. [CrossRef]
34. Abirami, K.; Rajasekar, S.; Sanjuan, M.A.F. Vibrational resonance in the Morse oscillator. Pramana 2013, 81, 127–141. [CrossRef]
35. Rossikhin, Y.A.; Shitikova, M.V. Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single

mass systems. Acta Mech. 1997, 120, 109–125. [CrossRef]
36. Shen, Y.; Yang, S.; Sui, C. Analysis on limit cycle of fractional-order van der Pol oscillator. Chaos Solitons Fractals 2014, 67, 94–102.

[CrossRef]
37. Khasminskij, R.Z. On the principle of averaging the Itov’s stochastic differential equations. Kybernetika 1968, 4, 260–279.
38. Golubitsky, M.; Schaeffer, D. A Theory for Imperfect Bifurcation via Singularity Theory; Wisconsin Univ-Madison Mathematics

Research Center: Madison, WI, USA, 1978.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0020-7462(98)00026-2
http://dx.doi.org/10.1142/S0218127421502230
http://dx.doi.org/10.1007/BF00120720
http://dx.doi.org/10.1016/0020-7462(96)00030-3
http://dx.doi.org/10.1115/1.2789148
http://dx.doi.org/10.1103/PhysRevA.45.4803
http://dx.doi.org/10.1063/1.458780
http://dx.doi.org/10.1016/S0034-4877(20)30030-6
http://dx.doi.org/10.1007/s12043-013-0546-z
http://dx.doi.org/10.1007/BF01174319
http://dx.doi.org/10.1016/j.chaos.2014.07.001

	Introduction and Background
	 PDF for a Class Fractional Damping Stochastic Nonlinear Equation
	Two Fractional Order Stochastic Morse Oscillators 
	Fractional Order Stochastic Morse Oscillator with Constant Damping
	Fractional Order Stochastic Morse Oscillator with Nonlinear Damping

	Conclusions
	Appendix A
	References

