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Abstract: Infectious diseases can have a significant economic impact, both in terms of healthcare
costs and lost productivity. This can be particularly significant in developing countries, where
infectious diseases are more prevalent, and healthcare systems may be less equipped to handle them.
It is recognized that the hepatitis B virus (HBV) infection remains a critical global public health
issue. In this study, we develop a comprehensive model for HBV infection that includes vaccination
and hospitalization through a fractional framework. It has been shown that the solutions of the
recommended system of HBV infection are positive and bounded. We examine the steady states of the
model and determine the basic reproduction number; denoted byR0. The qualitative and quantitative
behavior of the model is demonstrated using mathematical skills and numerical techniques. It has
been proved that the infection-free steady state of the system is locally asymptotically stable ifR0 < 1
and unstable otherwise. Furthermore, the Ulam–Hyers stability (UHS) of the recommended fractional
models is investigated and the significant conditions are provided. We present an iterative technique
to visualize the dynamical behavior of the system. We perform different simulations to illustrate
the effect of different input factors on the solution pathways of the system of HBV infection to
conceptualize the role of parameters in the control and prevention of the infection.

Keywords: infectious diseases; fractional dynamics; HBV infection; stability analysis; dynamical
behavior; control measures

1. Introduction

Infectious diseases are infections brought on by organisms, often microscopic in size,
such as bacteria, viruses, fungi, or parasites that are transferred from host to host either
indirectly or directly. Hepatitis B is a dangerous liver disease among infectious diseases
which results in cancer, scarring of the organ, and liver failure. This disease affects the
entire world and is one of the dominant causes of mortality. A vaccination for this illness
has been available since 1982 and is 95% effective [1]. About 80% of primary liver cancer
cases are caused by this illness. About a quarter of all paediatric illnesses progress to
chronic infections. In China, approximately 93 million individuals are affected by the
infection of HBV [2]. This infection transmits from one person to another when they use
infectious blood, infectious body fluids of infected individuals, and through contaminated
tools including syringes and in operations, etc. [1,3]. A vertical sort of transmission occurs
when a newborn infant becomes infected from their infected mother. Sometimes a person
infected by the HBV has no symptoms, which leads them to a severe unstable status or
even death. However, after two to five months, the HBV infection reveals its symptoms,
moreover, liver cancer and cirrhosis are the main causes of HBV infection.

Mathematical models are very important tools for effective investigation of the trans-
mission and management of any infectious disease. Many mathematicians and biologists
have created different epidemic models to represent the transmission dynamics of HBV.
Medley et al. [4] explored catastrophic behavior in the dynamics of HBV for the first time.
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The authors [5] proposed an important technique for controlling the infection. Pang et al.
investigated a model with immunized class and some other controls to eradicate the HBV
disease [3]. The occurrence of the HBV infection was modelled and investigated by re-
searchers in China [6]. In [7], the authors studied and explored the CTL immunological
responses using a mathematical model. In [8,9], the researchers constructed and investi-
gated diffusion models for HBV infection with a time delay. Zhao et al. established a model
for calculating the vaccination’s long-term effectiveness [10], while Khan et al. considered
the consequences of migrants on the dynamics of the infection [11]. In [12], the authors
formulated a model to investigate the dynamics of the infection in Xinjiang. In addition
to this, several studies have been presented in the literature to provide effective control
interventions for this infectious disease [13,14]. The authors in [15] introduced a model
of HBV with the effect of heroin and provided some control measures through control
theory. This viral infection is the leading cause of liver cancer and is responsible for over
780,000 deaths each year. In addition to this, HBV infection also imposes a significant
economic burden, with the costs associated with treating HBV-related liver diseases and
lost productivity estimated to be in the billions of dollars each year. Therefore, we aim to
develop an epidemic model for the intricate transmission phenomena of the HBV infection
that includes vaccination and medication administered during hospitalization, to explore
how these strategies affect the transmission and prevalence of HBV, and how they can be
optimized to achieve the greatest reduction in the disease burden.

Fractional calculus involves the use of non-integer derivatives and integrals. The
application of fractional derivatives is becoming increasingly important in many fields,
including physics, engineering, finance, and biology [16,17]. In physics and engineering,
fractional derivatives are used to model and analyze complex systems that exhibit non-
linear behavior, such as viscoelastic materials, signal processing, and control systems [18].
Fractional calculus provides a more accurate description of these systems compared to
traditional integer-order calculus. It has been presented in the literature [19,20] that non-
integer derivatives can accurately depict biological processes because of their inherent
characteristics and non-local behavior. In this study, our objective is to construct an
epidemic model that accurately represents the intricate transmission dynamics of HBV
infection with the effect of vaccination and medication administered during hospitalization
through a fractional framework. Furthermore, we aim to demonstrate how the dynamical
behavior of the system is affected by various input factors and memory index. The purpose
of this work is to highlight the most effective scenario for the prevention of HBV infection
and to illustrate whether the fractional parameter may be utilized as a control parameter
or not.

The remaining part of this paper is structured as follows: In Section 2, we provide
the rudimentary theory and concepts of the Caputo fractional derivative. We construct an
epidemic model of HBV infection with vaccination and medication through hospitalization
in Section 3. The suggested dynamics of HBV infection is represented in a fractional frame-
work for accurate outcomes. We investigate the epidemic model for its basic properties
and determine the reproduction parameter R0. The local and global stability results are
established in Section 4 of this work. We investigate the solution of the system and demon-
strated the Ulam–Hyers stability in Section 5. The tracking path behavior of the model is
illustrated in Section 6 through an iterative method. We also conceptualize the impact of
different input factors on the dynamics of HBV infection. Finally, the ending remarks of the
overall work are given in Section 7.

2. Theory of Fractional Calculus

Here, we will introduce the rudimentary ideas and terminology of fractional theory,
which will be utilized for the analysis of the system. Additionally, it has several beneficial
uses across a variety of scientific areas. The essential concepts of the fractional derivative
(FD) of Liouville and Caputo, introduced in [21–23], are as follows:
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Definition 1. Let us take a function g(r) such that g(r) ∈ L1([c, d], R), then, the fractional
integral of Liouville–Caputo (LC) is denoted by I and is given by

ξ Ic
c+(g(r)) =

1
Γ(ξ)

∫ r

0
(r− s)ξ−1g(s)ds, (1)

where 0 < ξ ≤ 1 is the order of the fractional derivative and r is assumed for time.

Definition 2. Consider g(r) in a manner that g(r) ∈ Cn[c, d]; then, the fractional derivative of
g(r) in the LC form is denoted by LCDξ

0+ g(r) and is

LCDξ
0+ g(r) =

1
Γ(n− ξ)

∫ r

0
(r− s)n−ξ−1gn(s)ds, (2)

subject to the constraint that n− 1 < ξ ≤ n.

Lemma 1. Let us take the setup described below{
LCDξ

0+ g(r) = w(r), r ∈ [0, τ], n− 1 < ξ < n,
g(0) = w0

(3)

the above system has a solution given by

g(r) =
n−1

∑
j=0

djrj, where dj ∈ R, j = 0, 1, . . . , n− 1. (4)

Theorem 1 ([23]). Select X to be a Banach space and T : X → X to be compact and continuous.
Then, T has a fixed point if

G = {L ∈ X : L = ηTL, η ∈ (0, 1)},

is bounded.

3. Evaluation of the Model

To construct the dynamics of HBV, we indicate the total human population by N(t),
which is further distributed in seven different classes: susceptible, vaccinated, exposed,
acutely infected, chronic HBV case, hospitalized, and recovered individuals, expressed by
S(t), V(t), E(t), A(t), C(t), H(t), and R(t), respectively.

The birth rate of newborn babies (Π) generates the susceptible population of humans,
and successfully immunized newborns (Πv, where 0 < v < 1) transfer to V(t) while
the un-immunized newborn babies are expressed, with a factor q, as carriers of the HBV
infection. In addition to this, the fraction of newborns (Π(q − qv)C) joins the chronic
class, members of which are not fully immunized. This population is decreased due to the
effective contact of the susceptible individuals with the population that are infected with
HBV at a rate ( f1 A+ f2C+ f3H)

N , where f1, f2, and f3 are the different rates of transmission due
to A(t) , C(t), and H(t); moreover, the said portion moves to (E(t)) to generate the exposed
class. The vaccinated people leave this class and join the vaccinated class at the rate g1. In
addition, those vaccinated individuals who lost their immunity join the S(t) class at the rate
g2. The rate of death which occurs naturally, is considered to be d in all epidemiological
classes. The number of individuals in E(t) decreases by the transfer of exposed people to
the acutely infected class at the rate ε and also the rate d. Similarly, the acutely infected A(t)
population is decreased at the rate d and treatment rate δ1. Furthermore, this class is also
decreased by αh1 to C(t) and a portion (1− α)h1, where 0 < α < 1, to the recovered class.
The C(t) class is also joined by the hospitalized at a rate σ, which expresses medication
failure in the hospitalized class. It is also reduced by the rate d and the rate of recovery h2,
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as well as by medication at δ2. The hospitalized class H(t) is reduced by the rate d and
recovery of individuals at the rate φ, as well as the incomplete rate of medication σ. Finally,
the remaining two classes, of vaccination V(t) and recovered R(t), are decreased by the
death rate d. By utilizing all of this above-mentioned information about the dynamics of a
life threatening infection, we have the following system of differential equations for the
vaccinated and hospitalized classes. Consequently, all of the equations may be expressed
as the nonlinear ODE system:

dS
dt = Π(1− v)(1− qC)− ( f1A + f2C + f3H) S

N − (g1 + d)S + g2V,
dV
dt = Πv + g1S− (d + g2)V,
dE
dt = ( f1A + f2C + f3H) S

N − (d + ε)E,
dA
dt = εE− (d + h1 + δ1)A,
dC
dt = h1αA + Π(1− v)qC− (d + h2 + δ2)C + σH,

dH
dt = δ1A + δ2C− (d + φ + σ)H,
dR
dt = h1(1− α)A + h2C + φH− dR,

(5)

with
S(0) = S0 ≥ 0, V(0) = V0 ≥ 0, E(0) = E0 ≥ 0, A(0) = A0 ≥ 0,

and
C(0) = C0 ≥ 0, H(0) = H0 ≥ 0, R(0) = R0 ≥ 0.

A fractional derivative is a generalization of an ordinary derivative that can capture
the memory effects and long-range correlations present in complex biological phenomena
and epidemics. One of the most important aspects of epidemic modeling is to accurately
capture the dynamics of the spread of the disease over time. Fractional derivatives allow
us to incorporate memory and non-local effects that are not accounted for in classical
models. For example, the fractional derivative can model the non-exponential decay of
infectiousness of a disease over time, which is a common characteristic of many epidemics.

Moreover, fractional derivatives have the capability to account for heterogeneity within
populations, encompassing variations in susceptibility and contact rates among individuals.
This becomes especially crucial when modeling the spread of diseases in populations
characterized by diverse demographics. When it comes to data fitting and analysis, the
fractional framework offers an additional parameter that enhances the flexibility of the
epidemic system. For our study on HBV infection dynamics, we have opted to employ
fractional derivatives to depict the intricacies of the system. Our objective is to investigate
the impact of different input factors of HBV on the system and to examine whether the
fractional derivative order can be utilized as a viable control parameter or not. Therefore,
we represent our model through Caputo FD as

LC
0 Dβ

t S = Π(1− v)(1− qC)− ( f1A + f2C + f3H) S
N − (g1 + d)S + g2V,

LC
0 Dβ

t V = Πv + g1S− (d + g2)V,
LC
0 Dβ

t E = ( f1A + f2C + f3H) S
N − (d + ε)E,

LC
0 Dβ

t A = εE− (d + h1 + δ1)A,
LC
0 Dβ

t C = h1αA + Π(1− v)qC− (d + h2 + δ2)C + σH,
LC
0 Dβ

t H = δ1A + δ2C− (d + φ + σ)H,
LC
0 Dβ

t R = h1(1− α)A + h2C + φH− dR,

(6)

where β is the order of the LC derivative and 0 < β ≤ 1, moreover, system (6) becomes
system (5) for β = 1. The theory of fractional calculus offers a wide range of practical
applications and provides a more precise representation of the dynamics of biological
phenomena compared to integer-order derivatives. In the recent literature, several new
fractional operators have been introduced. Our future work aims to explore the dynamics
of HBV infection with the help of these novel operators, and we will further investigate and
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compare the outcomes produced by these fractional operators. The results presented below
are on the non-negativity of the solution of the above-mentioned HBV infection model (5).

Theorem 2. The solutions (S, V, E, A, C, H, R) of the recommended system (6) of HBV infection
are non-negative and bounded for positive initial values of state variables.

Proof of Theorem 2. To prove the non-negativity and boundedness of the solutions of the
recommended fractional system (6) of HBV infection, we proceed as follows:

LC
0 Dβ

t S |S=0 = Π(1− v)(1− qC) + g2V ≥ 0,
LC
0 Dβ

t V |V=0 = Πv + g1S ≥ 0,
LC
0 Dβ

t E |E=0 = ( f1A + f2C + f3H) S
N ≥ 0,

LC
0 Dβ

t A |A=0 = εE ≥ 0,
LC
0 Dβ

t C |C=0 = h1αA + σH ≥ 0,
LC
0 Dβ

t H |H=0 = δ1A + δ2C ≥ 0,
LC
0 Dβ

t R |R=0 = h1(1− α)A + h2C + φH ≥ 0,

(7)

thus, the solutions of our fractional model of HBV infection are non-negative. To determine
the boundedness of the solutions, we add all the equations of the system and obtain
the following

LC
0 Dβ

t (S + V + E + A + C + H + R) ≤ Π− d(S + V + E + A + C + H + R).

From the above, we have(
S(t) + V(t) + E(t) + A(t) + C(t) + H(t) + R(t)

)
≤ (S(0) + V(0) + E(0) + A(0) + C(0) + H(0) + R(0)− Π

d
)

×Eβ(−dtβ) +
Π
d

,

Further, we obtain the following through the properties of the Mittag–Leffler function [21]:(
S(t) + V(t) + E(t) + A(t) + C(t) + H(t) + R(t)

)
≤ Π

d
.
= M,

this implies that
(

S(t)+V(t)+E(t)+A(t)+C(t)+H(t)+R(t)
)
≤ M. Thus, the solutions

of the recommended fractional model (6) of HBV infection are non-negative and bounded.

Model Analysis

The steady states, reproduction number, and stability of the steady states of our model
will be investigated in this subsection of the paper. Epidemic models have two meaningful
steady states, namely, disease-free equilibrium (DFE) and endemic equilibrium (EE). The
DFE is denoted by E0 and is given by

E0(S, V, E, A, C, H, R) =
(

Π(d(1− v) + g2)

d(d + g1 + g2)
,

Π(dv + g1)

d(d + g1 + g2)
, 0, 0, 0, 0, 0

)
.
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Here, we determine the expressions for the basic reproduction number, symbolized by
R0, with the help of the next generation method [24]. In our system of HBV infection, we
have four infected compartments E, A, C, and H, thus m = 4, then we have

F =


0 S0 f1

S0+V0
S0 f2

S0+V0
S0 f3

S0+V0

0 0 0 0
0 0 0 0
0 0 0 0

 and V =


q1 0 0 0
−ε q2 0 0
0 −αh1 q3 −σ
0 −δ1 −δ2 q4

.

The spectral radius of FV−1 is the reproduction number, given by

R0 =
ε{d(1− v) + g2} f1

q1q2(d + g1 + g2)
+

ε{d(1− v) + g2}(αh1q4 + σδ1) f2

q1q2(d + g1 + g2)(q3q4 − σδ2)
+

ε{d(1− v) + g2}(αh1δ2 + q3δ1) f3

q1q2(d + g1 + g2)(q3q4 − σδ2)
.

in which q1 = d + ε, q2 = d + h1 + δ1, q3 = d + h2 + δ2 −Π(1− v)q, and q4 = d + φ + σ.
We represent

R01 =
ε{d(1− v) + g2} f1

q1q2(d + g1 + g2)
,

R02 =
ε{d(1− v) + g2}(αh1q4 + σδ1) f2

q1q2(d + g1 + g2)(q3q4 − σδ2)
,

and

R03 =
ε{d(1− v) + g2}(αh1δ2 + q3δ1) f3

q1q2(d + g1 + g2)(q3q4 − σδ2)
.

The EE of (5) is indicated by

D? = (S?(t), V?(t), E?(t), A?(t), C?(t), H?(t), R?(t)),

where S?(t), V?(t), E?(t), A?(t), C?(t), H?(t), and R?(t) represent the endemic states of the
state variables and are calculated as

S? = (d(1−v)+g2)N?

R0
,

E? = q2
ε A?,

V? = (Πv+g1)(d(1−v)+g2)N?

(d+g2)R0
,

C? = (αh1q4+σδ1)A?

q3q4−σδ2
,

H? = (αh1δ2+q3δ1)A?

q3q4−σδ2
,

R? =
{

(1−α)v1
d + (αh1q4+σδ1)h2

d(q3q4−σδ2)
+ (αh1δ2+q3δ1)φ

d(q3q4−σδ2

}
A?.

From system (6), we calculate the below

A? =
Π(q3q4 − σδ2)

2q1q2(d + g1 + g2)(R0 − 1)ε
(L1 + L2 + L3 + L4 + L5 + L6 + L7)

,

in which

L1 = ε2Π(1− v)q(d + g2){(q3q4 − σδ2)σδ1h1 + α2h2
1q4(q4 f2 + δ2 f3) + σδ2

1(σ f2 + q3 f3)},
L2 = αh1ε2Π(1− v)q(d + g2){q4((q3q4 − σδ2) f1 + 2σδ1 f2) + δ1(q3q4 − σδ2) f2},
L3 = h1εq1q2q4(q3q4 − σδ2){(α(d + h2 −Π(1− v)q) + (1− α)q3)(d + γ1 + γ2) + α f2(d + γ2)},
L4 = q1q2(q3q4 − σδ2)δ2{α f3(d + g2) + (d + g1 + g2)(αq4 − σ)},
L5 = q1q2(q3q4 − σδ2)

2{ε( f1(d + g2) + (d + g1 + g2)(d(ε + q2)− q1q2)},
L6 = q1q2(q3q4 − σδ2)εσδ1{(d + h2 −Π(1− v)q)(d + g1 + g2) + (d + g2) f2},
L7 = q1q2(q3q4 − σδ2)εq3δ1{(d + φ)g1 + (d + g2)(d + φ + f3)}.

In the next step, we determine the local stability of the DFE of our system of HBV infection.
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Theorem 3. If R0 < 1, then E0 of the recommended HBV model presented in (5) is locally
asymptotically stable (LAS).

Proof of Theorem 3. The Jacobian matrix associated with the model, denoted by JE0 , eval-
uated around the FDE of system (6) is as follows:

JD0 =



−d− γ1 0 − (d−vd+γ2) f1
d1

− (d−vd+g2) f2
d1

−Π(q− vq) − (d−vd+g2) f3
d1

g2 0

0 −q1
(d(1−v)+g2) f1

d+g1+g2

(d(1−v)+g2) f2
d+g1+g2

(d(1−v)+g2) f3
d+g1+g2

0 0
0 ε −q2 0 0 0 0
0 0 αh1 −q3 σ 0 0
0 0 δ1 δ2 −q4 0 0
g1 0 0 0 0 −d− g2 0
0 0 (1− α)h1 h2 φ 0 −d


,

where d1 = d + g1 + g2 and the associated characteristic equation of JE0 is constructed as

(λ + d)(λ6 + C1λ5 + C2λ4 + C3λ3 + C4λ2 + C5λ + C6) = 0. (8)

Obviously, one of the eigenvalues is−d, which is a negative real number and obviously
has a negative real part. The coefficients involved in the above Equation (8) are calculated
as follows:

C1 = q1 + q2 + q3 + q4 + 2d + g1 + g2,
C2 = d2 + 2d(q3 + q4) + (d + q3 + q4)(g1 + g2) + (2d + q3 + q4 + g1 + g2)(q1 + q2)

+(q3q4 − σδ2) + q1q2(1−R01),
C3 = d(d + g1 + g2)(q1 + q2 + q3 + q4) + (2d + g1 + g2)(q1q3 + q1q4 + q2q3 + q2q4)

+(2d + q1 + q2 + g1 + g2)(q3q4 − σδ2) + q1q2(2d + q3 + q4 + g1 + g2)(1−R01)

− ε(d(1−v)+g2)(αh1 f2+δ1 f3)
d+g1+g2

,
C4 = q1q2q3g1 + d(d + g1 + g2)(q1q3 + q1q4 + q2q3 + q2q4) + (d2 + 2d(q1 + q2)

+(d + q1 + q2)(g1 + g2))(q3q4 − σδ2) + {(d2 + 2d(q3 + q4) + (d + q4)g1 + (d + q3 + q4)g2)

+q1q2(q3q4 − σδ2)}(1−R01)− ε(d(1−v)+g2)(αh1 f2+δ1 f3)(d+d1)
d1

,
C5 = dq1q2{(q3 + q4)d1 + (q3q4 − σδ2)}(1−R01) + dq1q2(q3q4 − σδ2)(1−R0)

+d{(q1 + q2)(d + g1 + g2) + q1q2(g1 + g2)}(q3q4 − σδ2) +
ε(d(1−v)+g2)(σδ2(g1+g2)−q3q4) f1

d+g1+g2

−ε(d(1− v) + g2){(αh1(q4 + 1) + σδ1) f2 + (αh1δ2 + (q3 + d)δ1) f3},
C6 = dq1q2(d + g1 + g2)(q3q4 − σδ2)(1−R0).

Clearly, if R0 < 1, then Ci ∈ R∗+, i = 1, 2, . . . , 6. Furthermore, the other will have
a negative real part if Equation (8) follows the associated Routh–Hurtwiz criterion [25].
Hence, it can be concluded from the above calculations that the DFE is LAS forR0 < 1 if
the associated Routh–Hurtwiz criterion holds.

4. Existence Theory

Here, the qualitative analysis of the recommended system (6) of HBV infection will
be presented. We assumed the following:

Y1(r, S, V, E, A, C, H, R) = Π(1− v)(1− qC)− ( f1A + f2C + f3H) S
N − (g1 + d)S + g2V,

Y2(r, S, V, E, A, C, H, R) = Πv + g1S− (d + g2)V,
Y3(r, S, V, E, A, C, H, R) = ( f1A + f2C + f3H) S

N − (d + ε)E,
Y4(r, S, V, E, A, C, H, R) = εE− (d + h1 + δ1)A,
Y5(r, S, V, E, A, C, H, R) = h1αA + Π(1− v)qC− (d + h2 + δ2)C + σH,
Y6(r, S, V, E, A, C, H, R) = δ1A + δ2C− (d + φ + σ)H,
Y7(r, S, V, E, A, C, H, R) = h1(1− α)A + h2C + φH− dR,

(9)
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then, system (6) of HBV infection, in view of the above, can be expressed as:{
LCDβ

0+Y(r) = P(r,Y(r)), r ∈ [0, τ], 0 < β ≤ 1,
Y(0) = Y0,

(10)

in which [0, τ] is the bounded time interval and

Y(r) = S,
V,
E,
A,
C,
H,
R.



,Y0(r) = S0,
V0,
E0,
A0,
C0,
H0,
R0.



P(r,Y(r)) = Y1(r, S, V, E, A, C, H, R),
Y2(r, S, V, E, A, C, H, R),
Y3(r, S, V, E, A, C, H, R),
Y4(r, S, V, E, A, C, H, R),
Y5(r, S, V, E, A, C, H, R),
Y6(r, S, V, E, A, C, H, R),
Y7(r, S, V, E, A, C, H, R),

(11)

the aforementioned (10) comparable integral converts into:

Y(r) = Y0(r) +
1

Γ(β)

∫ r

0
(r− x)β−1P(x,Y(x))dx. (12)

The key steps for analyzing our suggested system are the following hypotheses:
(A1) Constants VP ,NP , and q ∈ [0, 1) are considered such that

|P(r,Y(r))| ≤ VP |Y|q +NP . (13)

(A2) Constants LP > 0, and Y , Ȳ ∈ X are assumed in a way that

|P(r,Y)−P(r, Ȳ)| ≤ LP |Y − Ȳ|. (14)

In this case, we define a map T on X as follows:

TY(r) = Y0(r) +
1

Γ(β)

∫ r

0
(r− x)β−1P(x,Y(x))dx. (15)

If the above A1 and A2 hold true, then there is at least one solution of (10). In the next
step, we will examine the solution of our recommended system.

Theorem 4. If A1 and A2 are satisfied, then the recommended system (6) of HBV infection has at
least one solution.

Proof of Theorem 4. We will apply Schaefer’s fixed-point theorem to demonstrate the
result. The following steps are taken to prove the theorem.
S1: We shall demonstrate the continuity of T in the first step. For this, we assume that Yj is
continuous for j = 1, 2, . . . , 9, which also means that P(r,Y(r)) is continuous. Here, take
Yi, Y ∈ X in a way that TYi → TY . Further, take the following:

||TYi − TY|| = max
r∈[0,τ]

∣∣∣∣ 1
Γ(β)

∫ r

0
(r− x)β−1Pi(x,Yi(x))dx− 1

Γ(β)

∫ r

0
(r− x)β−1P(x,Y(x))dx

∣∣∣∣
≤ max

r∈[0,τ]

∫ r

0

∣∣∣∣ (r− x)β−1

Γ(β)

∣∣∣∣|Pi(x,Yi(x))−P(x,Y(x))|dx

≤ τβLP
Γ(β + 1)

||Yi −Y|| → 0 as i→ ∞. (16)

This implies that the operator T is continuous, because TYi → TY is true as long as P
is continuous.
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S2: The boundedness of the operator T will be investigated in the second step. If we select
any Y ∈ X, then, we have

||TY|| = max
r∈[0,τ]

∣∣∣∣Yo(r) +
1

Γ(β)

∫ r

0
(r− x)β−1P(x,Y(x))dx

∣∣∣∣
≤ |Y0| max

r∈[0,τ]

1
Γ(β)

∫ r

0
|(r− x)β−1||P(x,Y(x))|dx

≤ |Y0|+
τβ

Γ(β + 1)
[LP ||Y||q + NP ]. (17)

Here, we will prove the boundedness of T(S), where S is a bounded subset of X. Then,
for any Y ∈ S, we have V ≥ 0 such that

||Y|| ≤ V, ∀Y ∈ S. (18)

Consequently, if we use the aforementioned condition to any Y ∈ S, we obtain
the following:

||TY|| ≤ |Y0|+
τβ

Γ(β + 1)
[VP ||Y||q + NP ] ≤ |Y0|+

τβ

Γ(β + 1)
[VPVq + NP ]. (19)

This implies that T(S) is bounded.
S3: In the third stage, we select that r1, r2 ∈ [0, τ] to demonstrate the equi-continuity, and
that r1 ≥ r2, otherwise, the following:

|TY(r1)− TY(r2)| =

∣∣∣∣ 1
Γ(β)

∫ r1
0 |(r1 − x)β−1||P(x,Y(x))|dx

− 1
Γ(β)

∫ r2
0 |(r2 − x)β−1||P(x,Y(x))|dx

∣∣∣∣
≤

∣∣∣∣ 1
Γ(β)

∫ r1
0 |(r1 − x)β−1| − 1

Γ(β)

∫ r2
0 |(r2 − x)β−1|

∣∣∣∣|P(x,Y(x))|dx

≤ τβ

Γ(β+1) [VP ||Y||
q + NP ][r

β
1 − rβ

2 ]→ 0 as r1 → r2.

(20)

Therefore, the relative compactness of T(S) is proved by the Arzela–Ascoli theorem.
S4: In the final step of the theorem, we take the following:

D = {Y ∈ X : Y = λTY , λ ∈ (0, 1)}.

Here, we take Y ∈ I to demonstrate the boundedness of D. Then, for each r in the
range of r ∈ [0, τ], the following holds true:

||Y|| = λ||TY|| ≤ λ

[
|Y0|

τβ

Γ(β + 1)
[VP ||Y||q + NP ]

]
. (21)

This suggests that the set D is bounded. Schaefer’s theorem shows that the operator
T has a fixed point as a result, and consequently, our recommended model (6) of HBV
infection has at least one solution.

Remark 1. In case (A1) holds for q = 1, the result of Theorem (4) is fulfilled for τβVP
Γ(β+1) < 1.
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Theorem 5. The recommended fractional system (10) of HBV infection has a unique solution if
τβ LP

Γ(β+1) < 1 is satisfied.

Proof of Theorem 5. Applying Banach’s contraction theorem, and assuming Y , Ȳ to obtain
the desired result, we have

||TY − TȲ || ≤ max
r∈[0,τ]

1
Γ(β)

∫ r

0
|(r− x)β−1||P(x,Y(x))−P(x, Ȳ(x))|dx, (22)

also

max
r∈[0,τ]

1
Γ(β)

∫ r

0
|(r− x)β−1||P(x,Y(x))−P(x, Ȳ(x))|dx ≤ τβLP

Γ(β + 1)
||Y − Ȳ||,

this implies that

||TY − TȲ || ≤ τβLP
Γ(β + 1)

||Y − Ȳ||.

Thus, T has a fixed point. This implies that our system (10) of HBV has a unique solution.

5. Ulam–Hyers Stability

Here, the Ulam–Hyers stability for the recommended fractional system of HBV infec-
tion will be examined. The idea of this stability was initially presented by Ulam in 1940;
Hyers developed it [26,27]. Many researchers have embraced the Ulam–Hyers stability
hypothesis in a variety of disciplines of study [28,29]. Its basic ideas and definitions include
the following.

Assume that the operatorH : X → X behaves in a way that

HY = Y f or Y ∈ X. (23)

Definition 3. The above (23) is Ulam–Hyers stable (UHS) if for ε > 0, and takes any solution
Y ∈ X of

||Y −HY|| ≤ ε, f or r ∈ [0, τ]. (24)

Then, there exists a unique solution Ȳ of (23), with Cq > 0 fulfilling the following

||Ȳ − Y|| ≤ Cqε, r ∈ [0, τ]. (25)

Definition 4. The aforementioned (23) is a generalized Ulam–Hyers stable (GUHS), if every
solution Y of (24) and any other Ȳ of (23) satisfies

||Ȳ − Y|| ≤ U (ε), (26)

where zero is the image of zero, i.e., U (0) = 0 and U ∈ C(R, R).

Remark 2. The solution Ȳ ∈ X fulfills (24) if
(1) |Υ(r)| ≤ ε, ∀ r ∈ [0, τ] and Υ ∈ C([0, τ]; R),
(2) LCDβ

0+ Ȳ(r) = P(r, Ȳ(r)) + Υ(r).

After a minor perturbation, system (10) can be expressed as follows:{
LCDβ

0+Y(r) = P(r,Y(r)) + Υ(r),
Y(0) = Y0.

(27)
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Lemma 2. The above system (27) satisfies the condition

|Y(r)− TY(r)| ≤ cΩ(t)ε, where c =
τβ

Γ(β + 1)
. (28)

Proof. From the second part of Remark 2 for Y ∈ X , we have

LCDβ
0+Y(r) = P(r,Y(r)) + Υ(r),

applying fractional theory [21], we have

Y(r) = Y0 +
1

Γ(β)

∫ r

0
(r− τ)β−1P(τ,Y(τ))dτ

+
1

Γ(β)

∫ r

0
(r− τ)β−1Υ(τ)dτ,

simplifying, we have

|Y(r) − Y0 −
1

Γ(β)

∫ r

0
(r− τ)β−1P(τ,Y(τ))dτ|

≤ 1
Γ(β)

∫ r

0
(r− τ)β−1|Υ(τ)|dτ.

Using the definition of TY(r) and the first part of the above Remark 2, we have

|Y(r)− TY(r)| ≤ cΩ(t)ε, where c =
τβ

Γ(β + 1)
.

Thus, the required result is proved.

Theorem 6. The solution of system (10) of HBV infection is UHS and GUHS on Lemma 2 if
τβ LP

Γ(β+1) < 1 holds true.

Proof of Theorem 6. To prove that the solution of system (10) of HBV infection is UHS and
GUHS, we assume that Y ∈ X is any solution and Ȳ ∈ X is a unique solution of system
(10), then

|Y(r)− Ȳ(r)| = |Y(r)− TȲ(r)|

≤ |Y(r)− TY(r)|+ |TY(r)− TȲ(r)|.

Applying Lemma 2, we have

|Y(r)− Ȳ(r)| ≤ cε +
τβLP

Γ(β + 1)
|Y(r)− Ȳ(r)|

≤ cε

1− τβ LP
Γ(β+1)

. (29)

This implies that the solution of system (10) of HBV infection is both UHS and GUHS.

Definition 5. Assume that Ω ∈ C([0, τ], R), then (23) is Ulam–Hyers–Rassias stable (UHRS) if
and only if any solution Y ∈ X satisfies the below

||Y −HY|| ≤ Ω(r)ε, f or r ∈ [0, τ] and ε > 0. (30)
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Then, system (23) has a unique solution Ȳ with Cq > 0 and fulfilling

||Ȳ − Y|| ≤ CqΩ(r)ε, ∀ r ∈ [0, τ]. (31)

Definition 6. Let Y be any solution and Ȳ be a unique solution of (23), moreover, if there exists
Cq,Ω for Ω ∈ C([0, τ], R) with ε > 0 in a manner that

||Ȳ − Y|| ≤ Cq,ΩΩ(r)ε, ∀ r ∈ [0, τ]. (32)

Then, the above (23) is generalized Ulam–Hyers–Rassias stable (GUHRS).

Remark 3. The solution Ȳ ∈ X satisfies (24) and the below
(a) |Υ(r)| ≤ εΩ(r), ∀ r ∈ [0, τ], in which Υ(r) ∈ C([0, τ]; R),
(b)HȲ(r) = Ȳ + Υ(r), ∀ r ∈ [0, τ].

Lemma 3. The perturbed system (10) satisfies the inequality below

|Y(r)− TY(r)| ≤ cΩ(r)ε, where c =
τβ

Γ(β + 1)
. (33)

The use of Lemma (1) and Remark (3) makes it simple to demonstrate the above result.

Theorem 7. The system solution (10) is UHR stable and GUHR stable on Lemma (3) if τβ LP
Γ(β+1) < 1.

Proof of Theorem 7. To prove the result, let Ȳ ∈ X be a unique solution and Y ∈ X be any
other solution of system (10), then we have

|Y(r)− Ȳ(r)| = |Y(r)− TȲ(r)|

≤ |Y(r)− TY(r)|+ |TY(r)− TȲ(r)|

≤ aΩ(r)ε +
τβLP

Γ(β + 1)
|Y(r)− Ȳ(r)|

≤ cΩ(r)ε

1− τβ LP
Γ(β+1)

, (34)

where a is a positive constant. Thus, the solution of system (10) is therefore both GUHRS
and UHRS.

6. Numerical Results and Discussions

In this section of the paper, we will find numerical results to illustrate the dynamical
behavior of the recommended fractional model (6) of HBV infection. In the literature,
several numerical methods have been introduced for the analysis of an LC fractional
derivative. We will use the recently developed numerical scheme presented below

LC
0 Dβ

t x(t) = h̄(t, x(t)). (35)

The above implies that

x(t)− x(0) =
1

Γ(β)

∫ t

0
h̄(ρ, x(ρ))(t− ρ)β−1dρ, (36)

for t = tn+1 with n = 0, 1, . . . , we have

x(tn+1)− x(0) =
1

Γ(β)

∫ tn+1

0
(tn+1 − t)β−1h̄(t, x(t))dt, (37)



Fractal Fract. 2023, 7, 400 13 of 21

and

x(tn)− x(0) =
1

Γ(β)

∫ tn

0
(tn − t)β−1h̄(t, x(t))dt. (38)

The above (38) and (37) implies that

x(tn+1) = x(tn) +
1

Γ(β)

∫ tn+1

0
(tn+1 − t)β−1h̄(t, x(t))dt︸ ︷︷ ︸

Bβ,1

− 1
Γ(β)

∫ tn

0
(tn − t)β−1h̄(t, x(t))dt︸ ︷︷ ︸

Bβ,2

. (39)

in which

Bβ,1 =
1

Γ(β)

∫ tn+1

0
(tn+1 − t)β−1h̄(t, x(t))dt, (40)

and

Bβ,2 =
1

Γ(β)

∫ tn

0
(tn − t)β−1h̄(t, x(t))dt. (41)

Here, we apply the well-known Lagrange approximation for h̄(t, x(t)) as follows:

L(t) ' h̄(tn, xn)
t− tn−1

tn − tn−1
+ h̄(tn−1, xn−1)

t− tn

tn−1 − tn

=
h̄(tn, xn)

h
(t− tn−1)−

h̄(tn−1, xn−1)

h
(t− tn). (42)

The following is obtained with the help of above

Bβ,1 =
h̄(tn, xn)

hΓ(β)

∫ tn+1

0
(tn+1 − t)β−1(t− tn−1)dt

− h̄(tn−1, xn−1)

hΓ(β)

∫ tn+1

0
(tn+1 − t)β−1(t− tn)dt, (43)

further, we have

Bβ,1 =
h̄(tn, xn)

hΓ(β)

[2h
β

tβ
n+1 −

tβ+1
n+1

β + 1

]
− h̄(tn−1, xn−1)

hΓ(β)

[ h
β

tβ
n+1 −

1
β + 1

tβ+1
n+1

]
. (44)

Following the same steps, we obtain

Bβ,2 =
1

Γ(β)

∫ tn

0
(tn − t)β−1

[ h̄(tn, xn)

h
(t− tn−1)

− h̄(tn−1, xn−1)

h
(t− tn)

]
dt. (45)

The following is obtained through simplification

Bβ,2 =
h̄(tn, xn)

hΓ(β)

[ h
β

tβ
n −

tβ+1
n

β + 1

]
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+
h̄(tn−1, xn−1)

hΓ(β)

[ 1
β + 1

tβ+1
n

]
. (46)

By substituting Equations (45) and (46) into (39), we have obtained the ultimate
approximate solution for the fractional system

x(tn+1) = x(tn) +
h̄(tn, xn)

hΓ(β)

[2htβ
n+1
β
−

tβ+1
n+1

β + 1
+

h
β

tβ
n −

tβ+1
n+1

β + 1

]
+

h̄(tn−1, xn−1)

hΓ(β)

[
− h

β
tβ
n+1 +

tβ+1
n+1

β + 1
+

tβ+1
n

β + 1

]
. (47)

This method has been recently introduced in the literature [30] and has been effectively
utilized in different research work. In this work, our main concern is to represent the dy-
namical behavior of the recommended system of HBV infection with this numerical scheme.
However, other aspects of the method will be discussed in future work. Understanding
the dynamical behavior of an epidemic model is crucial for predicting the course of an
outbreak, evaluating the effectiveness of interventions, and informing public health policies.
By analyzing the model, conducting simulations, and fitting the model to real-world data,
researchers can gain insights into the key factors driving the epidemic’s dynamics and
make informed decisions to mitigate its impact. For simulation purposes, the state variables
are assumed to be S(0) = 0.8, V(0) = 0.3, E(0) = 0.3, A(0) = 0.3, C(0) = 0.3, H(0) = 0.3,
and R(0) = 0.3.

In Figure 1, we illustrate the impact of the fractional parameter β on the solution
pathways of the system of HBV infection to check whether this parameter of the system
can be used as a preventive measure or not. The values of β are chosen to be 0.7, 0.8, 0.9,
and 1.0 in the first simulation. It can be seen that the infection level can be decreased by
decreasing the value of the input parameter β. We noticed that this input factor contributes
significantly and can be used as a control parameter, therefore, suggested this to the
policymakers. In Figure 1, a comparative analysis of integer and non-integer derivatives
are also illustrated. The curve for β = 1 represents the integer case, while curves with other
values of β demonstrate non-integer cases. The effect of vaccination on the dynamics of
HBV infection is shown in Figure 2. In this simulation, we assumed different values of the
vaccination factor v, i.e., v = 0.45, 0.55, 0.65, and 0.75. We observed that an increase in v
decreases the exposed and chronically infected individuals of the system. We recommended
increasing the efficiency of vaccination for better control of the disease. In Figure 3, the
effect of the loss rate of immunity due to vaccination is illustrated on the vaccinated and
exposed individuals of the system. It can be seen that this factor is dangerous and can
increase the risk of infection in society.

To visualize the impact of h1 and h2 on the system, we performed two different
simulations, shown in Figures 4 and 5. In Figure 4, we take h1 = 0.019, 0.039, 0.059, and
0.079 while the values of h2 are assumed to be 0.025, 0.050, 0.075, and 0.100 in Figure 5. It
is clear from the figures how the infected individuals behave with the variation of these
parameters. In the final simulation, presented in Figure 6, the solution pathways of the
system are highlighted with the variation in transmission rate f1. In Figure 6, we assumed
the values of f1 to be 0.033, 0.063, 0.093, and 0.123 to identify the role of f1 on the dynamics
of HBV infection. We noticed that this parameter is critical and highly increases the endemic
level of the infection in society. This implies that the transmission rate f1 is sensitive and
needs to be controlled.

It is evident that HBV is a dangerous infectious disease, therefore, effective interven-
tions are needed to eradicate and eliminate this viral infection from society. The control
of the transmission rate and fractional parameter will reduce the intensity of the infec-
tion. Therefore, the control of these factors is recommended to officials. We also suggest
increasing the efficiency of vaccination and medication through hospitalization for better
prevention of the infection.
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Figure 1. Illustration of the solution pathways of (a) vaccinated individuals, (b) exposed individuals,
(c) acutely infected, (d) chronically infected and (e) hospitalized individuals of the recommended
system (6) of HBV infection with different values of β, i.e., β = 0.7, 0.8, 0.9, 1.0.
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Figure 2. Illustration of the solution pathways of (a) vaccinated individuals, (b) exposed individuals,
(c) acutely infected, (d) chronically infected and (e) hospitalized individuals of the recommended
system (6) of HBV infection with different values of v, i.e., v = 0.45, 0.55, 0.65, 0.75.
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Figure 3. Time series analysis of (a) vaccinated individuals and (b) exposed individuals of the
recommended system (6) of HBV infection with different values of the input parameter g2, i.e.,
g2 = 0.053, 0.063, 0.073, 0.083.
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Figure 4. Time-series analysis of (a) vaccinated individuals, (b) exposed individuals, (c) acutely
infected, (d) chronically infected and (e) hospitalized individuals of the recommended system (6) of
HBV infection with different values of the input parameter h1, i.e., h1 = 0.019, 0.039, 0.059, 0.079.
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Figure 5. Graphical view analysis of (a) vaccinated individuals, (b) exposed individuals, (c) acutely
infected, (d) chronically infected and (e) hospitalized individuals of the recommended system (6) of
HBV infection with different values of the input parameter h2, i.e., h2 = 0.025, 0.050, 0.075, 0.100.

Time in days

0 5 10 15 20 25 30 35 40 45

V
a
c
c
in

a
te

d
 i
n
d
iv

id
u
a
ls

0.3

0.35

0.4

0.45

0.5

0.55

f
1
= 0.033

f
1
=0.063

f
1
= 0.093

f
1
 = 0.123

(a)
Time in days

0 5 10 15 20 25 30 35 40 45

E
x
p
o
s
e
d
 i
n
d
iv

id
u
a
ls

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f
1
= 0.033

f
1
=0.063

f
1
= 0.093

f
1
 = 0.123

(b)

Time in days

0 5 10 15 20 25 30 35 40 45

A
c
u
te

ly
 i
n
fe

c
te

d

0.2

0.25

0.3

0.35

0.4

0.45

0.5

f
1
= 0.033

f
1
=0.063

f
1
= 0.093

f
1
 = 0.123

(c)
Time in days

0 5 10 15 20 25 30 35 40 45

C
h
ro

n
ic

a
lly

 i
n
fe

c
te

d

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

f
1
= 0.033

f
1
=0.063

f
1
= 0.093

f
1
 = 0.123

(d)

Figure 6. Cont.
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Figure 6. Representation of the solution pathways of (a) vaccinated individuals, (b) exposed individu-
als, (c) acutely infected, (d) chronically infected and (e) hospitalized individuals of the recommended
system (6) of HBV infection with different values of the input parameter f1, i.e., f1 = 0.033, 0.063,
0.093, 0.123.

7. Conclusions

In this work, we constructed an epidemic model for HBV infection with vaccination
and medication through hospitalization. The model is structured in a fractional frame-
work for more accurate outcomes. We examined the steady states and determined the
threshold parameter, indicated byR0. The stability result of the infection-free steady state
was established. The existence and uniqueness of the hypothesized system’s solution
are investigated using the fixed-point theorem in the context of Banach’s and Schaefer’s
theorems. In our HBV system, we established the essential conditions for Ulam–Hyers
stability. A time-series analysis of the system is presented through a numerical method.
We have shown the impact of different parameters on the solution pathways of the system
and recommended the most critical scenario of the system for the prevention and control of
the infection. This model can assist in saving lives and prevent the spread of the infection
by offering valuable information on the transmission dynamics of HBV and the efficacy of
diverse intervention strategies. HBV infection is often associated with other comorbidities,
such as HIV, hepatitis C, and liver cancer. These comorbidities can affect the course of
HBV infection and complicate the design of effective control strategies. In future work, we
will explore how comorbidities interact with HBV infection and how they can be incor-
porated into the model to better understand the overall disease burden and design more
effective interventions.
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