
Citation: Sun, Q.; Zhu, M.; Bai, J.;

Wang, Q. Relationship between

Remanence and Micromorphology of

Nd-Fe-B Permanent Magnets

Revealed by Fractal Theory and

EBSD Data. Fractal Fract. 2023, 7, 393.

https://doi.org/10.3390/

fractalfract7050393

Academic Editor: Viorel-Puiu Paun

Received: 9 December 2022

Revised: 3 April 2023

Accepted: 30 April 2023

Published: 9 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Relationship between Remanence and Micromorphology of
Nd-Fe-B Permanent Magnets Revealed by Fractal Theory and
EBSD Data
Qisong Sun 1,2, Minggang Zhu 1,2,* , Jiaming Bai 1 and Qiang Wang 1,*

1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081, China
* Correspondence: mgzhu@126.com (M.Z.); wangq@epm.neu.edu.cn (Q.W.)

Abstract: Remanence is an important parameter of magnetic property for Nd-Fe-B magnets, and high
remanent magnetization is a prerequisite for high-performance magnets. In this paper, the surface
morphology perpendicular to the texture orientation direction and parallel to the texture orientation
direction is analyzed by Nd-Fe-B permanent magnets with different compositions. For the first time,
the relationship between the remanence of a magnet and the degree of texture orientation is explained
in depth using the fractal dimension. The fractal dimension of surface morphology combined with
the remanence equation yields the degree of texture orientation of the magnet, which is in agreement
with the trend of the squareness factor of the demagnetization curves. Among the three samples, the
Nd-Fe-B sample has the highest degree of texture orientation, the Pr-Nd-Fe-B sample has the lowest
degree of texture orientation, and the Nd-Ce-Fe-B sample is in between the first two. The multiples
of uniform (pole) density obtained by EBSD further prove the correctness of the degree of texture
orientation calculated by the fractal dimension. The combination of EBSD morphology and fractal
dimension to obtain novel insights into the correlation between remanence and the degree of texture
orientation will contribute to the development of high-performance Nd-Fe-B with high remanence.
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1. Introduction

Nd-Fe-B permanent magnets are widely used in green energy technologies such as
wind turbines and electric vehicles [1,2]. The performance evaluation of sintered Nd-Fe-B
permanent magnets is mainly expressed in terms of the following parameters: maximum
energy product, coercivity, and remanence, where the level of coercivity is related to the
applicable temperature of the magnet. The thermal stability of coercivity is generally en-
hanced by the substitution of heavy rare earths (HREs) or HRE grain boundary diffusion [3].
The expensive price of HREs limits their use in industrial production in large quantities. The
magnets prepared by the dual-main-phase (DMP) process allow the successful application
of light rare earths (LREs) resources in industrial production, which alleviates the problem
of unbalanced utilization of medium rare earths, HREs, and LREs resources [4–6]. DMP
magnets have higher remanence than single-main-phase magnets for the same nominal
composition. The key magnetic parameter that determines the maximum energy product is
remanence, and high remanence is a prerequisite for high-performance Nd-Fe-B magnets.
To have a high remanence, the magnets with the same nominal composition require a
strong c-axis <001> texture orientation structure, which means that the 2:14:1 main phase
grains of the magnet have a strong tendency to align along the easy magnetization axis.
Therefore, micron-sized magnetic powders that have undergone hydrogen decrepitation
and jet milling are pressed into green compacts under the action of an applied magnetic
field to ensure that the powders have a good degree of texture orientation during the
process of magnet preparation.
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The degree of texture orientation can be characterized by X-ray diffraction. The degree
of texture is generally obtained directly from polar figures or rocking curve measure-
ments [7]. Alternatively, the ratio of (006) and (105) diffraction peak intensities obtained
by θ-2θ scanning is used as a measure of the degree of c-axis orientation. However, the
macroscale diffraction data has a large bias because the instrument has a broadening error
of about 3 degrees [8]. Electron backscatter diffraction (SEM-EBSD) shows its unique
advantages as a micron-level texture characterization because it can simultaneously both
grain geometry and grain orientation information [9,10]. The calibration of the Kikuchi
pattern allows for the determination of the crystal structure and grain orientation of the
sample. The distribution of grains with different orientations can be finely displayed in
different colors using an inverse pole figure (IPF). High- or low-angle grain boundaries can
be obtained by misorientation between grains. The phase map of multi-phase materials can
be obtained by linking it with the energy dispersive spectrometer (EDS). Researchers have
done some studies on the texture orientation and phase map of Nd-Fe-B magnets as well
as the correlation between the magnetic domain size and the texture using EBSD [11–16].

The fractal theory originates from the self-similarity between the whole and the parts.
The fractal dimension differs from the traditional dimension in that it is a measure of
self-similarity that reflects the degree of similarity between a tiny region and the whole [17].
Regular fractal structures have strict self-similarity, and irregular fractal structures have
statistical self-similarity. The introduction of fractal theory into the analysis of material
microstructures has largely enriched the study of materials science [18,19]. We first intro-
duced linear fractal dimension into the analysis of the fractal morphology of permanent
magnet materials [20]. E. M. Semenova determined the fractal dimension of the atomic
force microscopy image of Sm(CoCuFe)5 alloy at different scales, while the average fractal
dimension is practically the same [21]. A. D. Zigert established a relationship between the
magnetic state (demagnetized state, partially magnetized by the external field) and the
fractal dimension of the changed magnetic domain structure of ferrite garnet magnetic
films [22]. Recently, we revealed the relationship between the fractal dimension and the
coercivity of permanent magnets through the complex microstructural information of the
fractal surface [23]. The unique advantages exhibited by fractal theory in microstructure
analysis prompted us to further explore the correlation between microstructure and the
magnetic properties of Nd-Fe-B permanent magnets. In the present work, the fractal di-
mension is used for the first time to give new insights into the relationship between the
remanence (the key parameters affecting the magnetic energy product) and the degree of
magnet texture orientation. Information on the degree of texture orientation is obtained by
the analysis of the surface morphology with fractal structure, which is consistent with the
texture orientation reflected by the squareness factor and the value of the multiples of uni-
form (pole) density (MUD) obtained from the EBSD inverse pole figure. New insight into
the correlation between remanence and the degree of texture orientation will contribute to
the development of high-performance Nd-Fe-B permanent magnets with high remanence.

2. Experimental

Nd-Fe-B permanent magnets were prepared using the traditional powder metallurgy process.
The magnets with nominal compositions of Nd30FebalM0.3B1, (Nd0.76Pr0.24)30FebalM0.3B1, and
(Nd0.64Ce0.36)30FebalM0.3B1 (M=Co, Cu, Al, Ga) in wt.% were prepared. According to the diversity
of remanence, the samples were named S1 (Nd30FebalM0.3B1), S2 ((Nd0.76Pr0.24)30FebalM0.3B1),
and S3 ((Nd0.64Ce0.36)30FebalM0.3B1), respectively. Each magnet was machined into a cylinder
with φ10*10 mm and a cuboid with 4 × 4 × 8 mm, while a total of six samples were used for
EBSD analysis. The test surface of the cylindrical sample is the polished surface perpendicular
to the c-axis orientation direction, as shown in Figure 1a. The test surface of a rectangular
sample is the polished surface parallel to the c-axis orientation direction, as shown in Figure 1c.
A multi-functional field emission scanning electron microscope (JSM-7200F, JEOL) equipped
with an EDAX velocity super ultrafast electron backscattered diffraction (EBSD) probe
was used to obtain the high-quality orientation data. Characterization of the magnetic
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properties of the magnets was conducted using demagnetization curves, which were
obtained on a NIM 6500C hysteresigraph analyzer system. The fractal dimension is related
to the micromorphology of Nd-Fe-B permanent magnets. The profile of the grain can be
represented by the EBSD orientation map. As shown in Figure 1b,d, the X-axis orientation
figures of the samples are chosen as the micromorphology of the magnet because only those
in both directions of the EBSD data for the same sample are similar, which is not relevant
for the different distortions of crystallographic texture. The box-counting dimension
method based on the image processing function in MATLAB is adopted to calculate the
fractal dimension of micromorphology for Nd-Fe-B permanent magnets. The figures of the
magnets’ micromorphology are first processed as graphs of two colors, black and white,
called binary images. Black and white are represented by the binary numbers 0 and 1,
respectively. In this way, the picture information is transformed into a two-dimensional
matrix consisting of 0 s and 1 s. The matrix file can be covered by several boxes, and then
the fractal dimension of the image is calculated using the matrix. The negative value of the
slope obtained by fitting the number of covered boxes and different side lengths in double
logarithmic coordinates using least squares is the fractal dimension. The fractal dimension
is calculated using the following equation [23]:

Dk = lim
δk→0

logNk

log
(

1
δk

) (1)
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Figure 1. Schematic diagram of sample for EBSD and the EBSD results. (a,c) The test surfaces are
perpendicular to (parallel to) the c-axis orientation direction. (b) EBSD orientation map of the surface
perpendicular to the c-axis orientation direction, where sample Z direction is the c-axis orientation
direction. (d) EBSD orientation map of the surface parallel to the c-axis orientation direction, where
sample Y direction is the c-axis orientation direction.

The weighted average FD is defined by the equation:

−
D =

∑n
1 Dk
n
∑
1

k
(2)

where Nk is the number of boxes, δk is the side length of the box composed of k pixels,
and k = 1, 2, 3, . . . n. According to the definition of fractal dimension, the smaller the side
length of the box, the more accurate the computed dimension of the image. In the process
of calculating the fractal dimension, the box edge length is capped at 15-pixel points in
length, so that there are enough boxes in the image to ensure that the resulting data is
accurate without distortion.
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3. Results and Discussions

Figure 1 shows the schematic diagram of the sample for EBSD measurement and
the corresponding IPF orientation maps for the surfaces perpendicular to (parallel to) the
c-axis orientation direction. The test surface in Figure 1a is the surface perpendicular to the
direction of the c-axis orientation, i.e., the (001) plane. The results are shown in Figure 1b,
where sample X and Y directions correspond to the <010> or <110> direction, and sample
Z direction corresponds to the <001> direction. Figure 1c is the surface parallel to the
direction of the c-axis orientation, i.e., the (110) plane. The results are shown in Figure 1d,
where sample X, Z directions correspond to the <010> or <110> direction, and sample Y
directions correspond to the <001> direction. The color scales show that red represents
the <001> direction, green represents the <010> direction, and blue represents the <110>
direction. According to the description of the color scale, magnets with strong <001>
texture will demonstrate red grains, such as the sample Z direction in Figure 1b and the
sample Y direction in Figure 1d. The misaligned grains will display other colors. It is worth
noting that there are some black areas in the EBSD orientation maps. They are the impurity
phases that cannot be identified outside of the 2:14:1 main phase and are usually considered
nonmagnetic phases. The nonmagnetic phase is dilutive to the remanence of the magnet;
the volume fraction of the nonmagnetic phase is lower in magnets with higher remanence.

The demagnetization curves of S1, S2, and S3 at room temperature are shown in
Figure 2. The samples exhibit diverse remanences, among which the highest remanence is
14.74 kGs for S1 and the lowest remanence is 12.99 kGs for S3. Table 1 lists the magnetic
properties of the three samples. S1 has the highest maximum energy product of 51.86 MGOe.
S2 has the highest coercivity of 14.65 kOe. The parameter related to the texture orientation is
the squareness factor (Q), which is calculated by the formula: Q = Hk

Hcj
, where Hk is the knee

coercivity defined as the external magnetic field corresponding to 90% of remanence, and
Hcj is the intrinsic coercivity [24]. The squareness factor reflects the degree of homogeneity
of the internal reverse domains during the demagnetization of the magnet, which laterally
reflects the degree of homogeneity of the grain alignment along the easy magnetization
axis. A larger value of Q indicates a stronger magnet <001> texture orientation.
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Figure 2. Demagnetization curves of all samples at room temperature. M is the magnetization and
Mr is the remanent magnetization.
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Table 1. Magnetic properties of S1, S2, and S3 magnets at room temperature.

Samples 4πMr (kGs) Hcj
(kOe)

(BH)max
(MGOe)

Hk
(kOe)

Q
Hk/Hcj %

S1 14.74 13.85 51.86 13.56 97.9
S2 13.73 14.65 44.81 13.84 94.5
S3 12.99 12.23 39.53 11.70 95.7

Figure 3a,e show the EBSD results of S1 with the test surface perpendicular to the
c-axis direction and parallel to the c-axis direction, respectively. The EBSD orientation
map demonstrates the texture orientation in addition to a clear grain profile of the mi-
cromorphology. As shown in the figure, the grains parallel to the c-axis direction show a
rounded profile (Figure 3a), while the grains perpendicular to the c-axis direction show
a flat profile (Figure 3e). Based on the self-similarity of fractal theory, the complex mor-
phological information of two surfaces of S1 is analyzed. Figure 3b,f show the binary
images of the morphology, i.e., the sample morphology is treated as black and white. It
has been previously reported in the literature that different gray-level thresholds affect the
resolution effect of the binary image [23]. Smaller or larger thresholds distort the binary
image, resulting in a poorly resolved grain profile, which in turn affects the calculation
of the fractal dimension. In this work, the gray-level threshold we used is 0.5 to ensure
the accuracy of the calculation results. Figure 3c,g show the fitted results in the form of a
logarithm of the side length of boxes and the number of boxes, and there are 15 fitted lines
in each figure. The dependency of box side length and fractal dimension indicates that the
FD gradually decreases and tends to stabilize as the box side length increases. The average
value of the fractal dimension of the sample surface perpendicular to the c-axis direction is
1.7687 (D⊥), and the average value of the fractal dimension of the sample surface parallel to
the c-axis direction is 1.7537 (D‖). The values of the average fractal dimensions are similar
in both directions, indicating that the magnets have high uniformity and consistency.
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Figure 3. The micromorphology of S1 sample is perpendicular to the c-axis direction (a) and parallel
to the c-axis direction (e). Binary images of the surface in the direction perpendicular to the c-axis
direction (b) and parallel to the c-axis direction (f). Fitted plots of surface fractal data in the direction
perpendicular to c-axis direction (c) and parallel to c-axis direction (g). The dependence of the fractal
dimensions on the side length of the box, of which the surface is in the direction perpendicular to
c-axis direction (d) and parallel to c-axis direction (h).

Figure 4a,e show the micromorphology of S2 with the test surface perpendicular to
the c-axis direction and parallel to the c-axis direction, respectively. The grain profile of
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the test surface in both directions is clearly shown. The fractal dimensions of different
side lengths of the boxes are obtained by fitting the data. For the S2 sample, the average
value of the fractal dimension of the surface perpendicular to the c-axis direction is 1.7826
(D⊥), and the average value of the fractal dimension of the surface parallel to the c-axis
direction is 1.7675 (D‖). Figure 5 shows the micromorphology of S3 surfaces perpendicular
to the c-axis direction and parallel to the c-axis direction, the binary images, the fitted
data, and the fractal dimension for different side lengths of the boxes. The average fractal
dimension of a surface perpendicular to the c-axis direction is 1.7805 (D⊥), and the average
fractal dimension of a surface parallel to the c-axis direction is 1.7663 (D‖). The morphology
images of the three magnets parallel to the c-axis prove that the grains rotate when the
magnetic field is applied to the magnetic powders during preparation, and the direction of
the long axis of the flattened grains is the direction of magnetic field orientation, as shown
in Figures 3e, 4e and 5e. In addition, the fractal dimensions of the surface parallel to the
c-axis direction for all three samples are smaller than the fractal dimensions of the surface
perpendicular to the c-axis direction. This is consistent with the fractal dimension previ-
ously calculated using fractal morphology, where anisotropic magnets exhibit anisotropic
fractal dimension [23]. The black areas in the image show no tendency to align along the
magnetic field direction, which is further evidence that the black areas are rare-earth-rich
nonmagnetic phases clustered in the corners of the 2:14:1 main phase.
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perpendicular to c-axis direction (c) and parallel to c-axis direction (g). The dependence of the fractal
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c-axis direction (d) and parallel to c-axis direction (h).

The empirical equations for remanence are expressed as follows [25]:

4πMr = A
(
1− β′

)
4πMscos θ (3)

4πMr = A
(

1−
D‖
D⊥

β

)
4πMscos θ (4)

Mr

Ms
= A

(
1−

D‖
D⊥

β

)
cos θ = xcos θ (5)
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cos θ =
Mr

xMs
(6)

where A is the volume fraction of the forward domain and β’ is the parameter related
to the volume fraction of the nonmagnetic phase. The distribution morphology of the
nonmagnetic phase is directly related to the microstructure of the magnet. The nonmagnetic
phase region is somewhat different from the main phase grains. D‖ and D⊥ are the average
values of the fractal dimension of the sample surface parallel and perpendicular to the
c-axis direction, respectively. Based on the self-similarity of fractal theory, the distribution
of the nonmagnetic phase is also directly related to the fractal dimension of the surface

morphology. Therefore, β’ can be written as
D‖
D⊥

β. Where
D‖
D⊥

is a parameter directly related
to the distribution of the nonmagnetic phase, which is also related to the microstructure of
the magnet, β is the nonmagnetic phase volume fraction, Ms is the saturation magnetization,
and cosθ represents the c-axis texture orientation of the magnet.
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Figure 5. The micromorphology of S3 sample perpendicular to the c-axis direction (a) and parallel
to the c-axis direction (e). Binary images of the surface in the direction perpendicular to the c-axis
direction (b) and parallel to the c-axis direction (f). Fitted plots of surface fractal data in the direction
perpendicular to c-axis direction (c) and parallel to c-axis direction (g). The dependence of the fractal
dimensions on the side length of the box, of which the surface in the direction perpendicular to c-axis
direction (d) and parallel to c-axis direction (h).

The saturation magnetization of Nd2Fe14B is 16.1 kGs, and that of Pr2Fe14B is 15.6 kGs.
The saturation magnetization of Ce2Fe14B is 11.7 kGs [26,27]. The weight ratios yielded the
corresponding saturation magnetizations of the three samples, which were 16.1 kGs for
S1, 15.98 kGs for S2, and 14.516 kGs for S3. Assuming that the volume fraction A of the
forward domain in the magnet is 1 and the volume fraction β of the nonmagnetic phase is
2%, the cosθ values of the S1, S2, and S3 samples are 0.9345, 0.8745, and 0.9131, respectively.
The squareness factor Q obtained from the demagnetization curves is also the degree of
texture orientation obtained from the experimental data. The Q values of 97.9%, 94.5%, and
95.7% are obtained for S1, S2, and S3 samples, respectively. Therefore, combining the data
information on surface morphology and fractal dimension, the highest and lowest degrees
of texture orientation are obtained for the S1 and S2 samples, which are consistent with the
squareness factor obtained from the demagnetization curves.

In order to have a further understanding of the degree of texture orientation through
the experimental data, Figure 6 shows the inverse polar figures from the EBSD data. The
MUD of the sample Z direction for the surface perpendicular to the c-axis direction of 22.03
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and the MUD of the sample Y direction for the surface parallel to the c-axis direction of
26.04 are obtained for the S1 sample. Figure 7 shows that the S2 sample has the MUD
perpendicular to the c-axis direction of 13.02 and parallel to the c-axis direction of 18.93.
Figure 8 shows that the S3 sample has the MUD perpendicular to the c-axis direction of
15.63 and parallel to the c-axis direction of 20.54. The average MUD in two directions

is defined as
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=
MUD⊥+MUD‖

2 , which represents the degree of texture orientation
obtained from experimental data. Figure 9 shows the different representations of the
degrees of texture orientation for the three samples. It is obviously demonstrated in the
figure that the degree of texture orientation obtained by combining the surface morphology
with the fractal dimension is consistent with the MUD values measured by the EBSD
experiment and the squareness factors obtained from demagnetization curves. This further
indicates that the fractal dimension of the surface morphology can indeed be used to
calculate the degree of texture orientation. The correlation between the remanence and
the degree of texture orientation is obtained by the calculation of the fractal dimension.
The novel insight will provide new ideas for the design of high-performance Nd-Fe-B
permanent magnet materials with high remanence.
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Figure 9. The multiple parameters (MUD, Q, and cosθ) indicating the degree of texture orientation
for S1, S2, and S3 samples. (a) Multiples of uniform density (MUD); (b) Squareness factor (Q);
(c) Calculated cosθ. The different colors represent different samples.

A strict fractal structure is scale-invariant, i.e., based on the self-similarity of fractal
structure, the properties of tiny regions are consistent with those reflected by the overall
part. In order to show the scale invariance, part of the micromorphology for S1 in Figure 10a
is taken as an image of different scales to calculate the fractal dimension, and the results
show that the fractal dimensions of the two are almost the same (1.7687 and 1.7699), and the
standard deviation was 0.0006. In addition, Figures 11–13 show the results of the EBSD test
and fractal dimension calculation for one other sample with different scales. The processing
results show that the fractal dimensions are 1.8242, 1.8225, and 1.8233, respectively, with a
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standard deviation of 0.0007. The above results indicate the existence of scale invariance
within a certain range of fractal dimensions. But for Nd-Fe-B permanent magnet materials,
there are scale-free ranges of fractal dimensions, as in natural or artificial materials, beyond
which (larger or smaller ranges) it may lose the significance of representing the material
as a whole, such as the atomic scale of the crystal structure and the nanoscale of the
transmission electron microscope. The critical scales at both ends (large and small scales)
are key scientific topics worth exploring for all natural or artificial materials.
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Figure 10. The micromorphology of S1 sample perpendicular to the c-axis direction (a). Binary images
of the surface in the direction perpendicular to the c-axis direction (b). Fitted plots of surface fractal
data in the direction perpendicular to c-axis direction (c). The dependence of the fractal dimensions
on the side length of the box, of which the surface in the direction perpendicular to c-axis direction
(d). (e–h) The calculation of fractal dimension for part of the morphology in (a), which is marked
with the box with red dotted line.
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one other sample. (a) Micromorphology; (b) Binary image; (c) Fitted plot; (d) The dependence of the
fractal dimensions on the side length of the box.
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Figure 12. Results of micromorphology and calculation of fractal dimension for 90×90 µm2 scales of
one other sample. (a) Micromorphology; (b) Binary image; (c) Fitted plot; (d) The dependence of the
fractal dimensions on the side length of the box.
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4. Conclusions

The Nd-Fe-B, Pr-Nd-Fe-B, and Nd-Ce-Fe-B samples exhibit diverse remanence mag-
nitudes, with Nd-Fe-B having the highest remanence. The fractal dimension of all three
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samples parallel to the c-axis orientation direction is smaller than that perpendicular to the
c-axis orientation direction. The correlation between remanence and micromorphology of
Nd-Fe-B permanent magnets revealed by fractal theory and EBSD data. The values of cos θ
representing the degree of texture orientation are 0.9345, 0.8745, and 0.9131, respectively.
The trend of the squareness factor Q obtained from the demagnetization curves agrees well
with the calculated degree of texture orientation, proving the accuracy of the calculated
results. The value of the multiples of uniform density representing the degree of texture
orientation obtained from the EBSD data further demonstrates the accuracy of the degree of
texture orientation calculated by the fractal dimension. The correlation between remanence
and micromorphology of magnets contributes to the research and development of high-
performance Nd-Fe-B permanent magnets. In addition, the results provide strong evidence
to confirm the accuracy of fractal dimensions as well as the existence of scale invariance
within a certain range of fractal dimensions.
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