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Abstract: This manuscript is devoted to using Bernoulli polynomials to establish a new spectral
method for computing the approximate solutions of initial and boundary value problems of variable-
order fractional differential equations. With the help of the aforementioned method, some operational
matrices of variable-order integration and differentiation are developed. With the aid of these
operational matrices, the considered problems are converted to algebraic-type equations, which can
be easily solved using computational software. Various examples are solved by applying the method
described above, and their graphical presentation and accuracy performance are provided.
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1. Introduction

Fractional calculus provides generalization to classical calculus. The history of frac-
tional calculus is given in detail in [1]. Fractional calculus is the basic tool for modeling
many real-world problems. Fractional-order integral and differential equations (FOIDEs)
have many applications in almost every field of science and engineering: for example, the
aforementioned area is increasingly being used in many branches of physics, such as solid
physics [2], statistical physics [3], fluid mechanics [4], and viscoelasticity [5]. In the same
way, in other branches of science—including biology, chemistry, and economics—fractional
calculus concepts have been used. Here, we cite some famous works, where the concepts
of the fractional calculus were used to investigate real world problems, as in [6–9]. Most
FOIDEs cannot be solved analytically; therefore, numerical schemes and procedures have
been developed by researchers for the solutions to FOIDEs. These schemes and proce-
dures include the transformation scheme [10], the iteration procedure [11], the perturbation
scheme [12], the Tau procedure [13,14], and the collocation scheme [15].

We note that the use of numerical methods based on the operational matrices of or-
thogonal polynomials, in order to solve various problems related to differential and integral
equations of arbitrary order on finite and infinite intervals, produced highly accurate solu-
tions for the aforementioned equations. Due to these important applications, orthogonal
functions and polynomial series have received considerable attention, in dealing with vari-
ous problems related to differential equations of arbitrary orders. Researchers have utilized
various orthogonal polynomials introduced by Legendre, Chebyshev, Jacobi, and Bernstein
to create matrices corresponding to fractional order integration and differentiation, called
operational matrices (see [16–18]). The main characteristic of the aforementioned matrices
is to reduce the problems under consideration, of fractional integration or differentiation,
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to a system of algebraic equations: hence, the said procedure greatly simplifies the prob-
lem for its numerical solution. In the same way, the operational matrices of fractional
derivatives and integrals have also been presented for orthogonal Laguerre and modified
generalized Laguerre polynomials, and their use with numerical techniques for solving
various problems of fractional calculus on a semi-infinite interval; for further details, refer
to [19].

Recently, researchers have observed that there exist different dynamical problems with
FOIDEs that are time- and space-dependent. These problems have attracted the attention
of researchers to variable-order calculus. Samko and his co-authors introduced variable-
order calculus for the first time in 1993 [20]. Variable-order calculus is the generalization
of fractional calculus, and it is used for the solutions of some complicated dynamical
problems. The definitions of arbitrary order integration and differentiation, introduced by
Riemann–Liouville and Caputo, have been extended to variable order.

It is very difficult to obtain analytical solutions to various variable-order integral and
differential equations (VOIDEs), due to the complex nature of the variable order. On the
other hand, numerical solutions are also very difficult to obtain, because of the kernel of
the operators of variable-order integration and differentiation having variable power: due
to this fact, very few methods have been developed for numerical solutions to VOIDEs.
Those methods which have been developed include the second-order Runge–Kutta method,
introduced by Soon [21] and his co-authors to study the variable viscoelasticity oscillator
problem. The finite difference approximation method was used by Lin et al. [22] to investi-
gate variable-order diffusion problems. Zhuang et al. [23] used the Euler approximation
method to compute approximate solutions to advanced diffusion problems. Chen et al. [24]
developed a numerical scheme with high spatial accuracy for a variable-order anomalous
sub-diffusion equation. Recently, Amin et al. [25] extended the wavelet method for a
class of variable order linear integro-differential equations. In the same vein, some au-
thors [26] have recently studied various classes of variable-order problems by using a
non-orthogonal basis.

Bernoulli polynomials have been used to obtain numerical solutions to various prob-
lems with fractional orders. For instance, Keshavarz et al. [27] used the operational
matrices method to obtain the numerical solution for fractional optimal control problems
via Bernoulli polynomials. Recently, Bernoulli polynomials have been used to study various
problems of fractional calculus for numerical solutions (see [28–30]). For further properties
and applications of Bernoulli polynomials, readers should refer to [31–33]. The same oper-
ational matrices of Bernoulli polynomials have been extended to variable-order optimal
control problems by Nemati et al. [34].

Dealing with boundary value problems for numerical results is currently an attrac-
tive area of research. In addition, the investigation of boundary value problems under
variable order has hitherto very rarely been considered. On the other hand, left and right
fractional differential operators are also attracting much attention, as they appear as the
Euler–Lagrange equations in the study of variational principles (see [35]). We know that
fractional differential equations are widely used for modeling anomalous diffusion in
porous media, in which particles have been observed to spread at a rate that was incom-
patible with classical Brownian motion. For such purposes, the Riesz fractional derivative
has been shown to be more attractive than the left-sided derivative, as it is able to take
into account contributions from both sides of the domain (see [36,37]). The aforementioned
differential operator is a linear combination of the left- and right-sided derivatives, hence re-
sulting in a fractional differential operator centrally symmetric on finite domains. While the
aforementioned derivative is commonly used as a left and right Riemann–Liouville deriva-
tive of fractional order, to model fractional diffusion, the Riesz–Caputo derivative seems
more suitable for avoiding nonphysical issues (see [38]). Very recently, Blaszczyk et al. [39]
investigated some applications of the Riesz–Caputo fractional derivative of variable order
with fixed memory. In the same way, Pitolli et al. [40] investigated approximation of the
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Riesz–Caputo derivative by cubic splines. The aforementioned differential operator of
variable order, depending on a time variable with fixed memory a, is defined as

RC
t−aDv(t)

t+a z(t) =
1
2

[
C
t−aDv(t)

t z(t) + (−1)n C
t Dv(t)

t+a z(t)
]

,

where

C
t−aDv(t)

t z(t) =
1

Γ(n− v(t))

∫ t

t−a
(t− τ)n−v(t)−1z(n)(τ)dτ, n− 1 < v(t) < n,

C
t Dv(t)

t+a z(t) =
1

Γ(n− v(t))

∫ t+a

t
(τ − t)n−v(t)−1z(n)(τ)dτ, n− 1 < v(t) < n.

Inspired by the above discussion, this paper is devoted to presenting an algorithm
using the aforementioned concept of fractional-order Bernoulli polynomials, and using this
approximation to solve initial and boundary value problems with variable-order derivatives
depending on time. Keeping in mind the importance of the left operator of variable order,
we will use it in our results. Our first considered problem with the initial condition is
described as {

Dv1(t)y(t) + cy(t) = h(t), c ∈ R, t ∈ [0, 1],

y(0) = y0, y0 ∈ R,
(1)

where h : [0, 1] → R is a linear continuous function, and v1 : [0, 1] → (0, 1] is a con-
tinuous function. In addition, we consider our second problem, under some boundary
conditions, as{

Dv(t)y(t) + c1Dv1(t)y(t) + c2y(t) = g(t), c1, c2 ∈ R, t ∈ [0, 1]

y(0) = y0, y(1) = y1, y0, y1 ∈ R,
(2)

where g : [0, 1] → R is a linear continuous function defined, and v : [0, 1] → (1, 2], v1 :
[0, 1]→ (0, 1] are continuous functions.

We present numerical algorithms based on operational matrices for the above prob-
lems. For this purpose, we first reconstruct operational matrices for fractional-order integra-
tion and differentiation, as already derived in [34] for variable order. In addition, we also
create new matrices corresponding to boundary conditions. Based on the aforementioned
operational matrices, the considered problems are converted to algebraic type equations,
which we solve by using Matlab, for finding the unknown vector. In this way, we obtain
the required numerical solution to the problem under our consideration. Usually, the
operational matrices are used in a variety of ways. Majority research work established
these matrices by using collocation and discretization tools, which require extra memory
consumption and more time for employment. To overcome these issues, we establish
these matrices directly, an approach which had been very rarely considered. Furthermore,
the operational matrix corresponding to the boundary conditions in Theorem 3 has also
been newly obtained according to our information. Generally, researchers perform nu-
merical solutions for variable order lies in (0, 1], and very rarely for order in (1, 2]. In
addition, using the variable-order Riemann–Liouville integral operator and the Caputo
differential operator, we specify that these are the left operators. In the adopted fractional
differential operators, the Caputo derivative is the most-used operator. Furthermore, the
Caputo derivative is related to the Reimann–Liouville derivative by a proper relation-
ship. Usually, Caputo has no integral operator, as the Caputo derivative is deduced from
Reimann–Liouville as a special consequence. Furthermore, its geometrical interpretation
can be performed like ordinary derivatives. Most of the applied problem requires fractional
derivatives with proper utilization of initial conditions with known physical interpretation,
especially in the theory of viscoelasticity and solid mechanics. In such cases, the Caputo
approach is more applicable, because in Caputo fractional derivatives, the initial conditions
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are the same as those of integer-ordered differential equations, and these initial conditions
have a known physical interpretation of the problem.

2. Basic Results

This section is devoted to some fundamental results of variable-order derivatives and
integration. In addition, some properties of Bernoulli polynomials are presented.

Definition 1 ([34,41]). The left Riemann–Liouville fractional integral of order v(t) is defined as

0Iv(t)
t x(t) =

1
Γdv(t)e

∫ t

0
(t− k)v(t)−1x(k)dk, t > 0, (3)

where Γ is the Euler gamma function described as Γ(t) =
∫ ∞

0 kt−1 exp(−k)dk, t > 0, and d·e is
the ceiling function.

This operator obeys the following properties, as discussed in [41]:

i. 0Iv(t)
t (l1x1(t) + l2x2(t)) = l1 0Iv(t)

t x1(t) + l2 0Iv(t)
t x2(t),

ii. 0Iv1(t)
t 0Iv2(t)

t =0 Iv1(t)+v2(t)
t x(t),

iii. 0Iv1(t)
t 0Iv2(t)

t x(t) =0 Iv2(t)
t 0Iv1(t)

t x(t),

iv. 0Iv1(t)
t tα = Γ(α+1)

Γ(α+1+v1(t))
tα+v1(t), α > −1,

where l1 and l2 are real numbers.

Definition 2. The left variable-order Caputo differential operator is defined as [31,34]

Dv(t)
t x(t) =

1
Γdn− v(t)e

∫ t

0
(t− k)n−v(t)−1x(n)(k)dk, n− 1 < v(t) ≤ n, t > 0. (4)

For 0 ≤ v(t) < w(t) ≤ n, n ∈ N and α > 0, this operator obeys the following
properties, as discussed in [34,41]:

i. Dv(t)
t 0Iv(t)

t x(t) = x(t),

ii. 0Iv(t)
t

C
0 Dv(t)

t x(t) = x(t)−∑
dv(t)e−1
i=0 x(i)(0) ti

i! , t > 0

iii. Dv(t)
t tα =

{
0, α < v(t),

Γ(α+1)
Γ(α+1−v(t)) tα−v(t), otherwise,

iv. 0Iv(t)
t (xn(t)) = C

0 Dv(t)
t x(t)−∑n−1

i=dv(t)e xi(0) ti−v(t)

Γ(i−v(t)+1) , t > 0,

v. 0Iv(t)−w(t)
t

(
C
0 Dv(t)

t

)
= C

0 Dw(t)
t x(t)−∑

dv(t)e−1
i=dw(t)e xi(0) ti−w(t)

Γ(i−w(t)+1) , t > 0,

vi. C
0 Dv(t)

t c = 0,

vii. C
0 Dv(t)

t (l1 x1(t) + l2x2(t)) = l1 C
0 Dv(t)

t x1(t) + l2 C
0 Dv(t)

t x2(t),

where c, l1, l2 are any real constants.

The Fractional-Order Bernoulli Polynomials

In this subsection, we define the fractional-order Bernoulli functions (FOBFs), and
show some of their properties.

Definition 3. The fractional-order Bernoulli polynomials Bγ
i (t) of order iγ are defined over [0, 1]

as [32]

Bγ
i (t) =

i

∑
r=0

(
i
r

)
Bγ

i−rtrγ, t ∈ [0, 1], (5)
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where Bγ
r = Bγ

r (0) = Br, r = 0, 1, 2, · · · , i are Bernoulli numbers. Thus, we have

Bγ
0 (t) = 1, Bγ

1 (t) = tγ − 1
2

, Bγ
2 (t) = t2γ − tγ +

1
6

, Bγ
3 (t) = t3γ − 3

2
t2γ +

1
2

tγ.

According to [33], FOBFs form a complete basis on [0, 1], and satisfy the following property [32]:∫ 1

0
Bγ

i (t)Bγ
j (t)t

γ−1dt =
1
γ
(−1)i−1 j!i!

(j + i)!
Bj+i, j, i ≥ 1. (6)

3. Procedure for Approximation of Functions

In this section, we present a procedure for approximating a function [32]. In this
regard, consider that

S = {Bγ
0 (t), Bγ

1 (t), Bγ
2 (t), · · · , Bγ

n (t)} ⊂ L2[0, 1], n ∈ N ∪ {0}

is the set of FOBFs, and that

Xn = Span{Bγ
0 (t), Bγ

1 (t), Bγ
2 (t), · · · , Bγ

n (t)}.

Then, Xn is a finite dimensional closed vector space, and for each h ∈ L2[0, 1] there exists
hn ∈ Xn, for which

‖h− hn‖ ≤ ‖h− z‖, for all z ∈ Xn.

As hn belong to a finite dimensional closed vector space Xn, we obtain

h(t) ' hn(t) =
n

∑
i=0

kiB
γ
i (t) = KT

NBγ
N(t), (7)

where N = n + 1 and

KN =


k0
k1
...

kn

, Bγ
N(t) =


Bγ

0 (t)
Bγ

1 (t)
...

Bγ
n (t)

 (8)

are the coefficients and FOBFs vector, respectively.
For evaluating KN , we consider

hj =< h, Bγ
j >=

∫ 1

0
h(t)Bγ

j (t)t
γ−1dt.

By using (7), we obtain

hj =
n

∑
i=0

ki

∫ 1

0
Bγ

i (t)Bγ
j (t)t

γ−1dt =
n

∑
i=0

kie
γ
ij, j = 0, 1, 2, . . . , n,

where

eγ
ij =

∫ 1

0
Bγ

i (t)Bγ
j (t)t

γ−1dt, i = j = 0, 1, 2, . . . , n,

which implies that

hj = KT
N [e

γ
0j, eγ

1j, eγ
2j, . . . , eγ

nj]
T , j = 0, 1, 2, . . . , n,

which can be written as
FT

N = KT
NEγ

N , (9)
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where

HT
N =


h0
h1
...

hn

,

and

Eγ
N = [eγ

ij] =


eγ

00 eγ
01 · · · eγ

0n
eγ

10 eγ
11 · · · eγ

1n
...

... · · ·
...

eγ
n0 eγ

n1 · · · eγ
nn

,

where

eγ
ij =

∫ 1

0
Bγ

i (t)Bγ
j (t)t

γ−1dt =
1
γ
(−1)i−1 j!i!

(j + i)!
Bj+i, i, j ≥ 1. (10)

Extended Bernoulli Operational Matrices

We recollect the Bernoulli operational matrices of fractional-order integration and
differentiation from [32]. A new operational matrix based on boundary conditions is
developed in the same subsection.

Theorem 1. Let Bγ
N(t) be the FOBFs vector, then

Iv(t)Bγ
N(t) = P(v(t),γ)

N×N Bγ
M(t), (11)

where P(v(t),γ)
N×N in (11) is a variable-order Riemann–Liouville integral operator, given by

P(v(t),γ)
N×N =


w(v(t),γ)

0,0,0 w(v(t),γ)
0,1,0 · · · w(v(t),γ)

0,n,0

∑1
s=0 w(v(t),γ)

1,0,s ∑1
s=0 w(v(t),γ)

1,1,s · · · ∑1
s=0 w(v(t),γ)

1,n,s
...

... · · ·
...

∑n
s=0 w(v(t),γ)

n,0,s ∑n
s=0 w(v(t),γ)

n,1,s · · · ∑n
s=0 w(v(t),γ)

n,n,s

.

Proof. Following the method discussed in [41], we reconstruct here the operational matrix
of variable-order integration. Applying Iv(t) to FOBFs, we obtain

Iv(t)Bγ
i (t) =

i

∑
s=0

(
i
s

)
Bγ

i−s Iv(t)tγs

=
i

∑
s=0

(
i
s

)
Bγ

i−s
Γ(γs + 1)

Γ(γs + 1 + v(t))
tγs+v(t) (12)

=
i

∑
s=0

η
(v(t),γ)
i,s tγs+v(t), i = 0, 1, 2, . . . , n,

where

η
(v(t),γ)
i,s =

(
i
s

)
Bγ

i−s
Γ(γs + 1)

Γ(γs + 1 + v(t))
. (13)

Approximating tγs+v(t) in terms of FOBFs, we obtain

tγs+v(t) '
n

∑
j=0

φ
(v(t),γ)
s,j Bγ

j (t). (14)
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Applying (11) in (9), we can obtain

Iv(t)Bγ
i (t) '

i

∑
s=0

η
(v(t),γ)
i,s

n

∑
j=0

φ
(v(t),γ)
s,j Bγ

j (t) =
n

∑
j=0

(
i

∑
s=0

w(v(t),γ)
i,j,s

)
Bγ

j (t), (15)

where
w(v(t),γ)

i,j,s = η
(v(t),γ)
i,s φ

(v(t),γ)
s,j . (16)

We can write (1) as

Iv(t)Bγ
i (t) '

[
i

∑
s=0

w(v(t),γ)
i,0,s ,

i

∑
s=0

w(v(t),γ)
i,1,s , . . . ,

i

∑
s=0

w(v(t),γ)
i,n,s

]
Bγ

N(t), i = 0, 1, 2, . . . , n.

This implies that

P(v(t),γ)
N×N =


w(v(t),γ)

0,0,0 w(v(t),γ)
0,1,0 · · · w(v(t),γ)

0,n,0

∑1
s=0 w(v(t),γ)

1,0,s ∑1
s=0 w(v(t),γ)

1,1,s · · · ∑1
s=0 w(v(t),γ)

1,n,s
...

... · · ·
...

∑n
s=0 w(v(t),γ)

n,0,s ∑n
s=0 w(v(t),γ)

n,1,s · · · ∑n
s=0 w(v(t),γ)

n,n,s

.

Lemma 1. Let Bγ
i (t) be a FOBF, then Dv(t)Bγ

i (t) = 0, i = 0, 1, . . . , d v(t)
γ e − 1, v(t) > 0.

Proof. By applying the properties of a variable-order Caputo differential operator, one can
obtain the required result, which has already been done in [32].

Theorem 2. Let Bγ
N(t) be the FOBFs vector, then

Dv(t)Bγ
N(t) = D(v(t),γ)

N×N Bγ
M(t), (17)

where D(v(t),γ)
N×N is a variable-order Caputo differential operator, given by

D(v(t),γ)
N×N =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

∑
d v(t)

γ e

s=d v(t)
γ e

Φ(v(t),γ)

d v(t)
γ e,0,s

∑
d v(t)

γ e

s=d v(t)
γ e

Φ(v(t),γ)

d v(t)
γ e,1,s

· · · ∑
d v(t)

γ e

s=d v(t)
γ e

Φ(v(t),γ)

d v(t)
γ e,n,s

...
... · · ·

...

∑i
s=d v(t)

γ e
Φ(v(t),γ)

i,0,s ∑i
s=d v(t)

γ e
Φ(v(t),γ)

i,1,s · · · ∑i
s=d v(t)

γ e
Φ(v(t),γ)

i,n,s

...
... · · ·

...

∑n
s=d v(t)

γ e
Φ(v(t),γ)

n,0,s ∑n
s=d v(t)

γ e
Φ(v(t),γ)

n,1,s · · · ∑n
s=d v(t)

γ e
Φ(v(t),γ)

n,n,s



.
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Proof. Applying Iv(t) to FOBFs, as in [32], we obtain

Dv(t)Bγ
i (t) =

i

∑
s=0

(
i
s

)
Bγ

i−sDv(t)tγs

=
i

∑
s=d v(t)

γ e

(
i
s

)
Bγ

i−s
Γ(γs + 1)

Γ(γs + 1− v(t))
tγs−v(t) (18)

=
i

∑
s=0

κ
(v(t),γ)
i,s yγs−v(t), i = dv(t)

γ
e, . . . , n,

where

κ
(v(t),γ)
i,s =

(
i
s

)
Bγ

i−s
Γ(γs + 1)

Γ(γs + 1− v(t))
. (19)

Approximating tγs−v(t) in terms of FOBFs, we obtain

tγs−v(t) '
n

∑
j=0

ζ
(v(t),γ)
s,j Bγ

j (t). (20)

Applying (17) in (15), we can obtain

Dv(t)Bγ
i (t) '

i

∑
s=d v(t)

γ e

κ
(v(t),γ)
i,s

n

∑
j=0

ζ
(v(t),γ)
s,j Bγ

j (t) =
n

∑
j=0

 i

∑
s=d v(t)

γ e

Φ(v(t),γ)
i,j,s

Bγ
j (t), (21)

where
Φ(v(t),γ)

i,j,s = κ
(v(t),γ)
i,s ζ

(v(t),γ)
s,j . (22)

We can write (2) as

Dv(t)Bγ
i (t) '

[
i

∑
s=0

Φ(v(t),γ)
i,0,s ,

i

∑
s=0

Φ(v(t),γ)
i,1,s , . . . ,

i

∑
s=0

Φ(v(t),γ)
i,n,s

]
Bγ

N(t), i = dv(t)
γ
e, . . . , n. (23)

Furthermore, we can write

Dv(t)Bγ
i (t) = [0, 0, 0, . . . , 0]Bγ

N(t), i = 0, 1, . . . , dv(t)
γ
e − 1. (24)

From (20) and (21), we obtain

D(v(t),γ)
N×N =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

∑
d v(t)

γ e

s=d v(t)
γ e

Φ(v(t),γ)

d v(t)
γ e,0,s

∑
d v(t)

γ e

s=d v(t)
γ e

Φ(v(t),γ)

d v(t)
γ e,1,s

· · · ∑
d v(t)

γ e

s=d v(t)
γ e

Φ(v(t),γ)

d v(t)
γ e,n,s

...
... · · ·

...

∑i
s=d v(t)

γ e
Φ(v(t),γ)

i,0,s ∑i
s=d v(t)

γ e
Φ(v(t),γ)

i,1,s · · · ∑i
s=d v(t)

γ e
Φ(v(t),γ)

i,n,s

...
... · · ·

...

∑n
s=d v(t)

γ e
Φ(v(t),γ)

n,0,s ∑n
s=d v(t)

γ e
Φ(v(t),γ)

n,1,s · · · ∑n
s=d v(t)

γ e
Φ(v(t),γ)

n,n,s



.

Here, the following matrix corresponding to boundary conditions is newly developed.
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Theorem 3. Let Bγ
N(t) be the FOBFs vector, and ψ(t) be any function given by ψ(t) = mtn,

where m = 0, 1, 2, ... m is any real number and Z(t) = KT
NBγ

N(t). Then,

ψ(t) 0Iv(t)
1 Z(t) = KT

NQ(v(t),ψ)
N×N Bγ

N(t), (25)

where Q(v(t),ψ)
N×N is given as

Q(v(t),ψ)
N×N =



Ψ0,0 Ψ0,1 · · · Ψ0,j · · · Ψ0,n
Ψ1,0 Ψ1,1 · · · Ψ1,j · · · Ψ1,n

...
...

...
...

...
...

Ψi,0 Ψi,1 · · · Ψi,j · · · Ψi,n
...

...
...

...
...

...
Ψn,0 Ψn,1 · · · Ψn,j · · · Ψn,n


, (26)

where Ψi,j can be obtained from (8).

Proof. Applying the operator 0Iv(t)
1 to a general term of Bγ

N(t), we obtain

0Iv(t)
1 Bγ

i (t) =
1

Γ(v(t))

∫ 1

0
(1− y)v(t)−1Bγ

i (y)dy

=
1

Γ(v(t))

∫ 1

0
(1− y)v(t)−1

n

∑
i=0

(
n
i

)
Bγ

n−iy
iγdy

=
1

Γ(v(t))

n

∑
i=0

(
n
i

)
Bγ

n−i

∫ 1

0
(1− y)v(t)−1yiγdy. (27)

Applying the following property of Beta function in (27), we obtain

β(s, r) =
∫ 1

0
xs−1(1− x)r−1dx =

Γ(s)Γ(r)
Γ(s + r)

0Iv(t)
1 Bγ

i (t) =
n

∑
i=0

(
n
i

)
Bγ

n−i
Γ(γi + 1)

Γ(γi + v(t) + 1)
= Ωi;

thus, we obtain
ψ(t) 0Iv(t)

1 Bγ
i (t) = Ωiψ(t),

which can be approximated as

Ωiψ(t) =
n

∑
j=0

Ψi,jB
γ
i (t),

where Ψi,j can be obtained from (8). Hence, the desired result is obtained.

4. Establishment of Numerical Algorithms

In this section, we present numerical algorithms based on the extended Bernoulli
operational matrices constructed in the previous subsection for initial and boundary
value problems.

4.1. Variable-Order Initial Value Problems

Consider the following generalized variable-order initial value single problem:{
Dv(t)y(t) + cy(t) = h(t), c ∈ R, t ∈ [0, 1],

y(0) = y0, y0 ∈ R.
(28)
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Let us assume that
Dv(t)y(t) = KT

NBγ
N(t). (29)

By taking integration of order v(t) of (29), we obtain

y(t) = KT
NP(v(t),γ)

N×N Bγ
N(t) + c0. (30)

Applying the initial condition to (30), we obtain

y(t) = KT
NP(v(t),γ)

N×N Bγ
N(t) + y0. (31)

Therefore, (31) can be written as

y(t) = KT
NP(v(t),γ)

N×N Bγ
N(t) + FT

NBγ
N(t), (32)

where y0 = FT
NBγ

N(t), and FT
N is the coefficient matrix to approximate the initial data.

Inserting (29) and (32) into (28), we obtain

KT
NBγ

N(t) + cKT
NP(v(t),γ)

N×N Bγ
N(t) + cFT

NBγ
N(t)−GT

NBγ
N(t) = 0,

where h(t) = GT
NBγ

N(t), and GT
N denotes the coefficient matrix. This can be further simpli-

fied as (
KT

N + cKT
NP(v(t),γ)

N×N + cFT
N −GT

N

)
Bγ

N(t) = 0. (33)

The implication of (33) is that

KT
N + c

(
KT

NP(v(t),γ)
N×N + FT

N

)
−GT

N = 0.

This equation can be solved by Matlab for the unknown matrix KT
N , to obtain the solution.

4.2. Variable-Order Boundary Value Problems

Consider the following generalized variable-order boundary value problem:{
Dv(t)y(t) + c1Dv1(t)y(t) + c2y(t) = g(t), c1, c2 ∈ R, t ∈ [0, 1],

y(0) = y0, y(1) = y1, y0, y1 ∈ R,
(34)

where g(t) is a linear continuous real valued function defined on [0, 1]. Let us assume that

Dv(t)y(t) = KT
NBγ

N(t). (35)

By taking integration of order v(t) of (35), we obtain

y(t) = KT
NP(v(t),γ)

N×N Bγ
N(t) + l0 + l1t. (36)

Applying the initial condition in (36), we obtain l0 = y0, and using the boundary condition,
we obtain

l1 = y1 − y0 −KT
NP(v(1),γ)

N×N Bγ
N(1). (37)

Inserting the values of l0 and l1 in (37), we obtain

y(t) = KT
NP(v(t),γ)

N×N Bγ
N(t) + y0 + t(y1 − y0)− tKT

NP(v(1),γ)
N×N Bγ

N(1). (38)

After simplification, we can write (38) as

y(t) = KT
N

(
P(v(t),γ)

N×N −Q(v(t),ψ)
N×N

)
Bγ

N(t) + HT
NBγ

N(t), (39)



Fractal Fract. 2023, 7, 392 11 of 17

where y0 + t(y1− y0) = HT
NBγ

N(t), and ψ(t) = t. By applying the variable-order derivative
of order v1(t) to (38), we obtain

Dv1(t)y(t) = KT
N

(
P(v(t),γ)

N×N −Q(v(t),ψ)
N×N

)
D(v1(t),γ)

N×N Bγ
N(t) + HT

ND(v1(t),γ)
N×N Bγ

N(t). (40)

Inserting (35), (40), and (35) in (34), we obtain

KT
NBγ

N(t) + c1KT
N

(
P(v(t),γ)

N×N −Q(v(t),ψ)
N×N

)
D(v1(t),γ)

N×N Bγ
N(t) + c1HT

ND(v1(t),γ)
N×N Bγ

N(t)

+ c2KT
N

(
P(v(t),γ)

N×N −Q(v(t),ψ)
N×N

)
Bγ

N(t) + c2HT
NBγ

N(t)− JT
NBγ

N(t) = 0.
(41)

The implication of (41) is that

KT
N + KT

N

(
P(v(t),γ)

N×N −Q(v(t),ψ)
N×N

)(
c1D(v1(t),γ)

N×N + c2IN×N

)
+ RN×N = 0,

where
RN×N = c1HT

ND(v1(t),γ)
N×N c2HT

NJT
N .

This is a simple algebraic equation, and can be solved by Matlab for the unknown matrix
KT

N , to obtain the solution.

4.3. Convergence Analysis

We present analysis of the convergence of the proposed method.

Theorem 4. If h ∈ L2[0, 1] is enough smooth function, and can be approximated by means of
Bernoulli polynomials as ∑N

n=0 hnBn(t), then the coefficient hn for n = 0, 1, 2, ..., N connected with
these approximations can be written in the form

hn =
1

Γ(n + 1)

∫ 1

0
h(n)(t)dt.

Proof. The proof has been given in [42].

Theorem 5. If one approximates the function h(t), which is smooth enough on t ∈ [0, 1], via using
Bernoulli polynomials as presented in Theorem 4, then the coefficient hn decays, as described by

hn ≤
Hn

Γ(n + 1)
,

where Hn = supt∈[0,1] |h(n)(t)|.

Proof. For proof, we refer to [43].

Theorem 6. Let h(t) ∈ C∞[0, 1] (with uniformly bounded derivatives) and PN [h](t) be its trun-
cated series using Bernoulli polynomials; then, the error bound can be derived by using

‖En[h](t)‖∞ ≤
CĤ

(2π)N , t ∈ [0, 1],

where Ĥ denotes a bound for all the derivatives of the function h(t) that is ‖h(n)(t)‖∞ ≤ Ĥ, for all
n = 0, 1, 2, ..., N, and C > 0 is any constant.

Proof. See proof in [32].
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Theorem 7. Let y(t) be an enough smooth function, and yN(t) be the best approximate solution; then,

‖y(t)− yN(t)‖∞ ≤
ĈĜ

(2π)N ,

where Ĉ > 0 is any constant.

Proof. We write our considered problem (34) in variable operator form as

Ly(t) = g(t) + f (t, y(t)), (42)

where L = Dv(t). Applying L−1 on both sides of (42), we obtain

y(t) = L−1[g(t)] + L−1[ f (t, y(t))] = G(t) + F(t, y(t)). (43)

Approximating the functions y(t) and G(t), using Bernoulli polynomials, we obtain

yn(t) = GN(t) + F(t, yN(t)). (44)

Then, from (43) and (44), we obtain

‖y(t)− yN(t)‖∞ = ‖G(t)− Gn(t) + F(t, y(t))− F(t, yN(t))‖∞

≤ ‖G(t)− Gn(t)‖∞ + ‖F(t, y(t))− F(t, yN(t))‖∞. (45)

Using the Lipschitz condition with constant LF, we obtain, from (45),

‖y(t)− yN(t)‖∞ ≤ ‖G(t)− Gn(t)‖∞ + LF‖y(t)− yN(t)‖∞,

which yields

‖y(t)− yN(t)‖∞ ≤ 1
1− LF

‖G(t)− GN(t)‖∞

≤ 1
1− LF

‖G(t)− GN(g)(t)‖∞. (46)

Using Theorem 6, from (46), we obtain

‖y(t)− yN(t)‖∞ ≤
C

1− LF

Ĝ
(2π)N =

ĈĜ
(2π)N ,

where C
1−LF

= Ĉ, and Ĝ denotes a bound for all the derivatives of the function g(t), such

that ‖g(n)(t)‖∞ ≤ Ĝ, n = 0, 1, 2, ..., N. From these results, we deduce that the error of y(t),
which will give the required solution on using enough values of N, will depend directly on
the approximation of the function g(t). Hence, we conclude that only a small dimension of
a Bernoulli operational matrix is needed, to obtain a satisfactory result.

5. Numerical Examples

In this section, we apply the algorithms introduced in Section 4, and compare the
obtained numerical approximation with the exact solution. In addition, the absolute error
L∞ = ‖ȳ− y‖∞ against various scale levels has been presented graphically, where y is the
approximate solution and ȳ is the exact solution. We used an HP-Cori 5 seventh generation
machine, and Matlab 2016 computational software was used for numerical solutions.
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Example 1. Consider the generalized variable-order initial value problem given by{
Dv(t)y(t) + y(t) = h(t), t ∈ [0, 1] and 0 < v(t) ≤ 1,

y(0) = 1,
(47)

where

h(t) =
2t2−e−t

Γ(3− e−t)
+

t1−e−t

Γ(2− e−t)
+

t−e−t

Γ(1− e−t)
+ t2 + t + 1.

At v(t) = e−t, the exact solution of (47) is given by

y(t) = t2 + t + 1.

We approximate the solution through our proposed numerical scheme. We compare the exact and
numerical solution at scale level N = 2 at the given variable order v(t) = e−t in Figure 1.
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Figure 1. (a) Comparison between exact and numerical solution at N = 2 for Example 1; (b) Absolute
error between exact and numerical solution at various values of N for Example 1.

Example 2. Consider another variable order initial value problem given by{
Dv(t)y(t) + 2y(t) = h(t), t ∈ [0, 1] and 0 < v(t) ≤ 1

y(0) = 2,
(48)

where

h(t) =
4t2−( t+1

2 )

Γ(3− ( t+1
2 ))

− 4t1−( t+1
2 )

Γ(2− ( t+1
2 ))

+
2t−(

t+1
2 )

Γ(1− ( t+1
2 ))

+ 4t2 − 8t + 4.

At v(t) = t+1
2 , the exact solution of Equation (48) is given by

y(t) = 2(1− t)2.

We approximate the solution through our proposed numerical scheme. We compare the exact and
numerical solution at scale level N = 6 at the given variable order v(t) = t+1

2 in Figure 2.
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Figure 2. (a) Comparison between exact and numerical solution at N = 6 for Example 2; (b) Absolute
error between exact and numerical solution at various values of N of Example 2.

Example 3. Consider the generalized variable order boundary value problem given by{
Dv(t)y(t) + Dv1(t)y(t) + y(t) = g(t), t ∈ [0, 1], 1 < v(t) ≤ 2 and 0 < v1(t) ≤ 1

y(0) = 1, y(1) = 16,
(49)

where

g(t) =
18t2−(e−t+1)

Γ(3− (e−t + 1))
+

6t1−(e−t+1)

Γ(2− (e−t + 1))

+
t−(e

−t+1)

Γ(1− (e−t + 1))
+

18t2−e−t

Γ(3− e−t)
+

6t1−e−t

Γ(2− e−t)

+
t−e−t

Γ(1− e−t)
+ 9t2 + 6t + 1.

The exact solution at v(t) = e−t + 1, and at v1(t) = e−t of (49), is given by

y(t) = 9t2 + 6t + 1.

We approximate the solution through our proposed numerical scheme. We compare the exact and
numerical solution at scale level N = 6 at the given variable order v(t) = e−t in Figure 3.
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Figure 3. (a) Comparison between exact and numerical solution at N = 6 for Example 3; (b) Absolute
error between exact and numerical solution at various values of N for Example 3.
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Example 4. Consider another variable-order boundary value problem given byDv(t)y(t) + Dv1(t)y(t) +
1
2

y(t) = g(t), t ∈ [0, 1], 1 < v(t) ≤ 2, and 0 < v1(t) ≤ 1,

y(0) = 1, y(1) = 9,
(50)

where

g(t) =
8t2−( t+3

2 )

Γ(3− ( t+3
2 ))

+
4t1−( t+3

2 )

Γ(2− ( t+3
2 ))

+
t−(

t+3
2 )

Γ(1− ( t+3
2 ))

+
8t2−( t+1

2 )

Γ(3− ( t+1
2 ))

+
4t1−( t+1

2 )

Γ(2− ( t+1
2 ))

+
t−(

t+1
2 )

Γ(1− ( t+1
2 ))

+ 2t2 + 2t +
1
2

.

At v(t) = t+3
2 and v1(t) = t+1

2 , the exact solution of (50) is given by

y(t) = 4t2 + 4t + 1.

We approximate the solution through our proposed numerical scheme. We compare the exact and
numerical solution at scale level N = 16 at the given variable order v(t) = t+3

2 and v1(t) = t+1
2 ,

in Figure 4.
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Figure 4. (a) Comparison between exact and numerical solution at N = 6 for Example 4; (b) Absolute
error between exact and numerical solution at various values of N for Example 4.

6. Conclusions and Discussion

We developed a spectral numerical method for the numerical solutions of VOPs. In this
regard, we used Bernoulli polynomials of fractional order to develop different operational
matrices corresponding to variable order integration and differentiation. We also developed
an operational matrix based on boundary conditions. By utilizing these extended Bernoulli
operational matrices, we established numerical algorithms for VOPs, which reduced the
given problems to algebraic equations. We solved these equations with the aid of Matlab,
and plotted the results graphically. We discussed the convergence of the proposed method
in detail. In addition, we applied the method to some problems, to show the efficiency and
validity of the method. By comparing the exact and the numerical solutions, we showed
that high accuracy can be obtained by increasing the scale level (see Figures 1–4). We
let y be the approximate solution, and ȳ be the exact solution; then, the absolute error
L∞ = ‖ȳ− y‖∞ was plotted in the Figures 1–4 for different scale levels. From the numerical
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point of view, it can be said that the proposed method is a powerful spectral method for
the numerical investigation of various variable-order differential equations.
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