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1. Introduction and Preliminaries

To demonstrate the main idea underlying the factorization approach, let us briefly
explore a subject that is commonly discussed: the contrast between Maxwell’s and Dirac’s
equations. Both of these linear systems of equations have first-order partial derivatives,
making them useful tools for addressing important questions related to eigenvalue prob-
lems for physicists. Both the Maxwell and Dirac equations are Lorentz invariant. It should
be emphasized that difficulties with infinite self-energies may arise from oversimplifying
the linearity of Maxwell’s equations.

Therefore, the factorization method is a powerful technique used in mathematical
analyses to derive recurrence relations and differential equations for special functions,
including the Appell polynomials and their members. The main idea of the factorization
method is to express a given function in terms of a sequence of multiplicative and derivative
operators, which enables the derivation of recurrence relations and differential equations
satisfied by the function. The factorization method, described in the work of Infield [1],
provides a practical technique for solving eigenvalue problems that are of great importance
to physicists. The key concept involves considering two first-order differential equations,
the solution of which leads to a second-order differential equation of the same magnitude.
The computation of transition probabilities also takes the production process into account.
This approach is designed to handle perturbation issues.

Let a polynomial sequence of degree n with n with n = 0, 1, 2, · · · be denoted
by {Qn(q1)}∞

n=0. The sequences of the differential operators Ψ−n and Ψ+
n operating on

{Qn(q1)}∞
n=0 satisfy the following properties:

Ψ−n (Qn(q1)) = Qn−1(q1) (1)

and
Ψ+

n (Qn(q1)) = Qn+1(q1). (2)
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A significant property, named differential equation

(Ψ−n+1Ψ+
n ){Qn(q1)} = Qn(q1), (3)

is derived by using Ψ−n and Ψ+
n operators. The factorization approach is the procedure used

to construct differential equations from Equation (3). To ensure that Equation (3) holds, the
primary goal of the factorization approach is to obtain the multiplicative operator Ψ+

n and
the derivative operator Ψ−n .

The factorization method has been widely used in various areas of mathematics,
including the special functions theory, orthogonal polynomials, and differential equations,
to name a few. It provides a systematic approach to deriving recurrence relations and
differential equations for special functions, which can be helpful in solving mathematical
problems and analyzing the properties of these functions.

The operational rule for the 2-V Hermite Kampé de Fériet polynomials (2VHKdFP)
Y [2]

n (q1, q2) [2] is provided below:

exp
(

q2
∂2

∂q1
2

)
q1

n = Y [2]
n (q1, q2) (4)

and the generating function shown below defines these polynomials:

exp(q1ξ + q2ξ2) =
∞

∑
n=0
Y [2]

n (q1, q2)
ξn

n!
. (5)

The following series also defines these polynomials:

Y [2]
n (q1, q2) = n!

[ n
2 ]

∑
k=0

qk
2qn−2k

1
k!(n− 2k)!

. (6)

Further, the multivariate Hermite polynomials (MVHP) Y [m]
n (q1, q2, · · · , qm) [3] are given

by the following operational rule:

exp
(

q2
∂2

∂q1
2 + q3

∂3

∂q1
3 + · · ·+ qm

∂m

∂q1
m

)
qn

1 = Y [m]
n (q1, q2, · · · , qm). (7)

These polynomials are given by generating expression:

exp(q1ξ + q2ξ2 + · · ·+ qmξm) =
∞

∑
n=0
Y [m]

n (q1, q2, · · · , qm)
ξn

n!
(8)

and are defined by the series:

Y [m]
n (q1, q2, · · · qm) = n!

[n/m]

∑
r=0

pr
mY

[m]
n−mr(q1, q2, · · · , pm−1)

r!(n−mr)!
. (9)

As a result of the significance of the factorization approach in comparing Maxwell’s
and Dirac’s equations, it was first developed by He and Ricci [4]. Both of these linear
systems of equations involve first-order partial derivatives, making them valuable resources
for physicists seeking solutions to important eigenvalue problem-related inquiries. This
approach helps derive the differential equation for the Appell polynomials. In [5], the
multidimensional extensions of the Bernoulli and Appell polynomials are described. The
extended 2D Bernoulli and Euler polynomials are utilized to produce the differential,
integro–differential, and partial differential equations in the [6]. This method is also used
to generate the hybrid form, 2D extended, and mixed-type polynomial integro–differential
equations for the Appell family; for instance, see [7–15]. Additionally, in [16], the Appell
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polynomials are used to build a collection of finite order differential equations by extending
the factorization strategy using k-times shift operators. These findings inspire the creation of
families of differential equations, shift operators, and recurrence relations for multivariate
Hermite polynomials represented by (8); because of their importance in a variety of fields,
such as in quantum mechanics, they arise in the solution of the Schrodinger equation for
the harmonic oscillator. They are also useful in the study of random walks and Brownian
motion, as well as in the approximation theory and numerical analysis. Additionally, the
Hermite polynomials have applications in the biological and medical sciences, such as in
the analysis of EEG and ECG signals. These polynomials have many useful properties that
make them valuable in various areas of mathematics and physics. For instance, they are
complete, meaning that any square-integrable function on the real line can be expressed
as a series of Hermite polynomials. Moreover, they have a three-term recurrence relation,
which makes their computation efficient. The Hermite polynomials are also orthogonal
with respect to the weight function e−q2

1 , which arises frequently in problems involving
Gaussian integrals.

In this article, the families of differential equations connected to the multivariate
Hermite polynomials are derived using the factorization method. The recurrence relation
for these multivariate Hermite polynomials is first derived in Section 2. Shift operators are
also generated for these polynomials. Section 3 develops families of differential equations
for these polynomials, including differential, integro–differential, and partial differential
equations. The Volterra integral equation for these polynomials is developed in Section 4.

2. Recurrence Relations and Shift Operators

Recurrence relations are mathematical equations that define the terms of a sequence
based on previous terms in the sequence. In the context of polynomials, recurrence relations
can be utilized to express the coefficients of a polynomial in terms of its preceding coeffi-
cients. Recurrence relations in polynomials serve as a powerful tool for solving polynomial
equations, generating polynomial sequences, and examining the properties of polynomials
in various mathematical contexts. They offer a concise means of expressing the connection
between the coefficients of a polynomial and often lead to efficient algorithms for polyno-
mial computations. Moreover, recurrence relations in polynomials can also describe other
types of polynomial sequences, such as those encountered in the study of orthogonal poly-
nomials. In these cases, the coefficients are determined by recurrence relations involving
inner products or other mathematical characteristics of the polynomials. For the MVHP
Y [m]

n (q1, q2, · · · , qm), we developed recurrence relations and shift operators in this section.
First, by demonstrating the following conclusion, we construct the recurrence relation for
the MVHP Y [m]

n (q1, q2, · · · , qm):

Theorem 1. The multivariate Hermite polynomials Y [m]
n (q1, q2, · · · , qm) fulfil the following re-

currence relation:

Y [m]
n+1(q1, q2, · · · , qm) = q1Y

[m]
n (q1, q2, · · · , qm) + 2nq2Y

[m]
n−1(q1, q2, · · · , qm) + 3n(n− 1)q3

×Y [m]
n−2(q1, q2, · · · , qm) + · · ·+ n(n− 1)(n− 2) · · · (n−m + 1)qmY [m]

n−m(q1, q2, · · · , qm). (10)

Proof. Differentiating expression (8) w.r.t. ξ, we have

∂

∂ξ

{
exp(q1ξ + q2ξ2 + · · ·+ qmξm)

}
=
{

q1 + 2q2ξ + 3q3ξ2 + · · ·+ mqmξm−1
}

×
{

exp(q1ξ + q2ξ2 + · · ·+ qmξm)
}

. (11)
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Using the r.h.s. of expression (8) in expression (11), we have

∂

∂ξ

{ ∞

∑
n=0
Y [m]

n (q1, q2, · · · , qm)
ξn

n!

}
=
{

q1 + 2q2ξ + 3q3ξ2 + · · ·+ mqmξm−1
}

×
{ ∞

∑
n=0
Y [m]

n (q1, q2, · · · , qm)
ξn

n!

}
, (12)

which can further be written as

∞

∑
n=0

nY [m]
n (q1, q2, · · · , qm)

ξn−1

n!
= q1

∞

∑
n=0
Y [m]

n (q1, q2, · · · , qm)
ξn

n!
+ 2q2

∞

∑
n=0
Y [m]

n (q1, q2, · · · , qm)

× ξn+1

n!
+ 3q3

∞

∑
n=0
Y [m]

n (q1, q2, · · · , qm)
ξn+2

n!
+ · · ·+ mqm

∞

∑
n=0
Y [m]

n (q1, q2, · · · , qm)
ξn+m

n!
. (13)

Replacing n → n + 1 in the l.h.s. of the previous equation, n → n− 1, n → n− 2, · · ·
n → n − m in the r.h.s. of the second, third, and last terms of the previous equation,
we have

∞

∑
n=0
Y [m]

n+1(q1, q2, · · · , qm)
ξn

n!
= q1

∞

∑
n=0
Y [m]

n (q1, q2, · · · , qm)
ξn

n!
+ 2q2

∞

∑
n=0

nY [m]
n−1(q1, q2, · · · , qm)

ξn

n!

+3q3

∞

∑
n=0

n(n− 1)Y [m]
n−2(q1, q2, · · · , qm)

ξn

n!
+ · · ·+ mqmn(n− 1)(n− 2) · · · (n−m + 1)

×
∞

∑
n=0
Y [m]

n−m(q1, q2, · · · , qm)
ξn

n!
.

which further can be written as

∞

∑
n=0
Y [m]

n+1(q1, q2, · · · , qm)
ξn

n!
=

∞

∑
n=0

[
q1Y

[m]
n (q1, q2, · · · , qm) + 2q2nY [m]

n−1(q1, q2, · · · , qm)

+3q3n(n− 1)Y [m]
n−2(q1, q2, · · · , qm) + · · ·+ mqmn(n− 1)(n− 2) · · · (n−m + 1)

×Y [m]
n−m(q1, q2, · · · , qm)

]
ξn

n!
. (14)

Assertion (10) is proven by equating the coefficients of the same exponents of ξn

n! on
b/s of Equation (14).

The shift operators and recurrence relation are valuable tools for analyzing the proper-
ties of polynomials. The shift operators enable the translation of polynomials in different di-
rections and dimensions, while the recurrence relation allows for the computation of polyno-
mial values at higher degrees based on their values at lower degrees. Shift operators in poly-
nomials are linear operators that shift the indices of a polynomial’s coefficients by a fixed
amount. Let us consider a polynomial of degree n with coefficients a0, a1, a2, ..., an−1, an.
The left shift operator shifts the coefficients to the left by k positions, resulting in a new
polynomial of the same degree n but with coefficients b0, b1, b2, ..., bn−k−1, bn−k, ..., bn−1. The
right shift operator does the opposite, shifting the coefficients to the right by k positions.
Next, by demonstrating the following conclusion, we construct the shift operators for the
MVHP Y [m]

n (q1, q2, · · · , qm), listed as:

Theorem 2. The MVHP Y [m]
n (q1, q2, · · · , qm) satisfies the listed shift operators:

q1£−n :=
1
n

Dq1 , (15)
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q2£−n :=
1
n

D−1
q1

Dq2 , (16)

q3£−n :=
1
n

D−2
q1

Dq3 , (17)

...
...

qm £−n :=
1
n

D−(m−1)
q1 Dqm , (18)

q1£+n := q1 + 2q2Dq1 + 3q3D2
q1
+ · · ·+ mqmDm−1

q1
(19)

q2£+n := q1 + 2q2D−1
q1

Dq2 + 3q3D−2
q1

D2
q2
+ · · ·+ mqmD−(m−1)

q1 Dm−1
q2

(20)

and
q3£+n := q1 + 2q2D−2

q1
Dq3 + 3q3D−4

q1
D2

q3
+ · · ·+ mqmD−2(m−1)

q1 Dm−1
q3

, (21)

...

qm £+n := q1 + 2q2D−(m−1)
q1 Dqm + 3q3D−2(m−1)

q1 D2
qm + · · ·+ mqmD−(m−1)2

q1 Dm−1
qm , (22)

where
Dq1 :=

∂

∂q1
, Dq2 :=

∂

∂q2
, Dq3 :=

∂

∂q3
andD−1

q1
:=
∫ q1

0
f (η)dη.

Proof. Taking the derivatives of (8) w.r.t. q1 and, thus, equating the coefficients of similar
exponents of ξ on b/s of the resultant equation yields the following expression

∂

∂q1
{Y [m]

n (q1, q2, · · · , qm)} = nY [m]
n−1(q1, q2, · · · , qm), (23)

Consequently, we have

q1£−n {Y
[m]
n (q1, q2, · · · , qm)} =

1
n

Dq1{Y
[m]
n (q1, q2, · · · , qm)} = Y [m]

n−1(q1, q2, · · · , qm), (24)

which proves assertion (15).
Next, taking the derivatives of (8) w.r.t. q2 and, thus, equating the coefficients of the

same exponents of ξ on b/s of the resultant equation, we have

∂

∂q2
{Y [m]

n (q1, q2, · · · , qm)} = n(n− 1)Y [m]
n−2(q1, q2, · · · , qm). (25)

The above equation can also be written as

∂

∂q2
{Y [m]

n (q1, q2, · · · , qm)} = n
∂

∂q1
{Y [m]

n−1(q1, q2, · · · , qm)}, (26)

which finally gives

q2£−n {Y
[m]
n (q1, q2, · · · , qm)} =

1
n

D−1
q1

Dq2{Y
[m]
n (q1, q2, · · · , qm)} = Y [m]

n−1(q1, q2, · · · , qm). (27)

Thus, assertion (16) is proven.

Again, taking the derivatives of (8) w.r.t. q3 and, thus, equating the coefficients of the
same exponents of ξ on b/s of the resultant equation, we have

∂

∂q3
{Y [m]

n (q1, q2, · · · , qm)} = n(n− 1)(n− 2)Y [m]
n−3(q1, q2, · · · , qm). (28)
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The above equation can also be written as

∂

∂q3
{Y [m]

n (q1, q2, · · · , qm)} = n
∂2

∂q2
1
{Y [m]

n−1(q1, q2, · · · , qm)}, (29)

which finally gives

q3£−n {Y
[m]
n (q1, q2, · · · , qm)} = 1

n D−2
q1

Dq3{Y
[m]
n (q1, q2, · · · , qm)} = Y [m]

n−1(q1, q2, · · · , qm). (30)

Thus, it yields assertion (17).
Finally, taking the derivatives of (8) w.r.t. qm and, thus, equating the coefficients of the

same exponents of ξ on b/s of the resultant equation, we have

∂

∂qm
{Y [m]

n (q1, q2, · · · , qm)} = n(n− 1)(n− 2)(n−m + 1)Y [m]
n−m(q1, q2, · · · , qm). (31)

The above equation can also be written as

∂

∂qm
{Y [m]

n (q1, q2, · · · , qm)} = n
∂m−1

∂qm−1
1

{Y [m]
n−1(q1, q2, · · · , qm)}, (32)

which finally gives

qm £−n {Y
[m]
n (q1, q2, · · · , qm)} = 1

n D−(m−1)
q1 Dqm{Y

[m]
n (q1, q2, · · · , qm)} = Y [m]

n−1(q1, q2, · · · , qm). (33)

Therefore, assertion (18) is proven.
To demonstrate the equation for the raising operator (19), we use the expression:

Y [m]
n−m(q1, q2, · · · , qm) = (q1£−n−m+1q1£−n−m+2 · · · q1£−n−1q1 £−n ){Y

[m]
n (q1, q2, · · · , qm)}, (34)

considering (24), the above expression can be simplified as:

Y [m]
n−m(q1, q2, · · · , qm) =

(n−m)!
n!

Dm
q1
{Y [m]

n (q1, q2, · · · , qm)}. (35)

Inserting (35) in the recurrence relation (10), it follows that

Y [m]
n+1(q1, q2, · · · , qm) =

(
q1 + 2q2Dq1 + 3q3D2

q1
+ · · ·+ mqmDm−1

q1

)
Y [m]

n (q1, q2, · · · , qm). (36)

Thus, (19) for the raising operator q1£+n is proven.

Now, to demonstrate the raising operator (20), the relation listed below is considered:

Y [m]
n−m(q1, q2, · · · , qm) = (q2£−n−m+1q2£−n−m+2 · · · q2£−n−1q2 £−n ){Y

[m]
n (q1, q2, · · · , qm)}, (37)

considering (27), the above expression can be expanded as follows:

Y [m]
n−m(q1, q2, · · · , qm) =

(n−m)!
m!

D−(m−1)
q1 D(m−1)

q2 {Y [m]
n (q1, q2, · · · , qm)}. (38)

Inserting (38) in the recurrence relation (10), it follows that

Y [m]
n+1(q1, q2, · · · , qm) =

(
q1 + 2q2D−1

q1
Dq2 + 3q3D−2

q1
D2

q2
+ · · ·+ mqmD−(m−1)

q1 Dm−1
q2

)
. (39)

Thus, assertion (20) of the raising operator q2£+n is proven.
Next, to demonstrate the raising operator q3£+n , the expression listed below is considered:

Y [m]
n−m(q1, q2, · · · , qm) = (q3£−n−m+1q3£−n−m+2 · · · q3£−n−1q3 £−n ){Y

[m]
n (q1, q2, · · · , qm)}, (40)
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considering (30), the above expression can be expanded as:

Y [m]
n−m(q1, q2, · · · , qm) =

(n−m)!
m!

D−2(m−1)
q1 D(m−1)

q3 {Y [m]
n (q1, q2, · · · , qm)}. (41)

Inserting (41) in the recurrence relation (10), it follows that

Y [m]
n+1(q1, q2, · · · , qm) =

(
q1 + 2q2D−2

q1
Dq3 + 3q3D−4

q1
D2

q3
+ · · ·+ mqmD−2(m−1)

q1 Dm−1
q3

)
. (42)

Thus, assertion (21) of the raising operator q3£+n is proven.
Finally, to demonstrate the raising operator qm £+n , the expression listed below is considered:

Y [m]
n−m(q1, q2, · · · , qm) = (qm £−n−m+1qm £−n−m+2 · · · qm £−n−1qm £−n ){Y

[m]
n (q1, q2, · · · , qm)}, (43)

considering (33), the above expression can be expanded as:

Y [m]
n−m(q1, q2, · · · , qm) =

(n−m)!
m!

D−(m−1)2

q1 D(m−1)
qm {Y [m]

n (q1, q2, · · · , qm)}. (44)

Inserting (44) in the recurrence relation (10), it follows that

Y [m]
n+1(q1, q2, · · · , qm) =

(
q1 + 2q2D−(m−1)

q1 Dqm + 3q3D−2(m−1)
q1 D2

qm
+ · · ·+ mqmD−(m−1)2

q1 Dm−1
qm

)
. (45)

Thus, expression (22) of the raising operator qm £+n is proven.

In the following section, we will demonstrate the families of differential equations
satisfied by these polynomials.

3. Families of Differential Equations

For the MVHP Y [m]
n (q1, q2, q3, · · · , qm), we derive the differential, integro–differential,

and partial differential equations in this section. Secondly, by demonstrating the following
conclusion, we construct the differential equation for the MVHP Y [m]

n (q1, q2, q3, · · · , qm):

Theorem 3. The MVHP Y [m]
n (q1, q2, q3, · · · , qm) satisfies the following differential equation:(

q1Dq1 + 2q2D2
q1
+ 3q2D3

q1
+ · · ·+ qmDm

q1
− n

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (46)

Proof. We use expressions (15) and (19) of the shift operators in the below factorization relation:

q1 £−n+1q1£+n {Y
[m]
n (q1, q2, q3, · · · , qm)} = Y [m]

n (q1, q2, q3, · · · , qm), (47)

assertion (46) is proven.

Integro–differential equations are a type of mathematical equation that combines
ordinary differential equations (ODEs) and integrals. They involve functions that are
both differentiated with respect to one or more variables and integrated with respect to
one or more variables. Integro–differential equations are employed to model various
phenomena in fields such as physics, engineering, economics, and biology. These equations
are generally more complex than ordinary differential equations due to the presence of
integrals, making their solutions challenging to obtain. Several techniques can be used to
solve integro–differential equations, including separation of variables, Laplace transforms,
and numerical methods, such as finite difference or finite element methods. In certain cases,
closed-form solutions may not be feasible, necessitating the use of numerical approximation
methods to obtain approximate solutions.
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Theorem 4. The MVHPY [m]
n (q1, q2, q3, · · · , qm) satisfies the following integro–differential equations:(

q1Dq2 + 2q2D−1
q1

D2
q2
+ 3q3D−2

q1
D3

q2
+ · · ·+ mqmD−(m−1)

q1 Dm
q2
− (n + 1)Dq1

)
×Y [m]

n (q1, q2, q3, · · · , qm) = 0. (48)(
q1Dq3 + 2q2D−1

q1
Dq2 Dq3 + 3q3D−2

q1
D2

q2
Dq3 + · · ·+ mqmD−(m−1)

q1 Dm−1
q2

Dq3

−(n + 1)D2
q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (49)(
q1Dqm + 2q2D−1

q1
Dq2 Dqm + 3q3D−2

q1
D2

q2
Dqm + · · ·+ mqmD−(m−1)

q1 Dm−1
q3

Dqm

−(n + 1)Dm−1
q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (50)(
q1Dq2 + 2q2D−2

q1
Dq3 Dq2 + 3q3D−4

q1
D2

q3
Dq2 + · · ·+ mqmD−2(m−1)

q1 Dm−1
q3

Dq2

−(n + 1)Dq1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (51)(
q1Dq3 + 2q2D−2

q1
D2

q3
+ 3q3D−4

q1
D3

q3
+ · · ·+ mqmD−2(m−1)

q1 Dm
q3
− (n + 1)D2

q1

)
×Y [m]

n (q1, q2, q3, · · · , qm) = 0. (52)(
q1Dqm + 2q2D−2

q1
Dq3 Dqm + 3q3D−4

q1
D2

q3
Dqm + · · ·+ mqmD−2(m−1)

q1 Dm−1
q3

Dqm

−(n + 1)Dm−1
q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (53)

...
...

...(
q1Dq2 + 2q2D−(m−1)

q1 Dqm Dq2 + 3q3D−2(m−1)
q1 D2

qm Dq2 + · · ·+ mqmD−(m−1)2

q1 Dm−1
qm Dq2

−(n + 1)Dq1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (54)(
q1Dq3 + 2q2D−(m−1)

q1 Dqm Dq3 + 3q3D−2(m−1)
q1 D2

qm Dq3 + · · ·+ mqmD−(m−1)2

q1 Dm−1
qm Dq3

−(n + 1)D2
q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (55)

(
q1Dqm + 2q2D−(m−1)

q1 D2
qm + 3q3D−2(m−1)

q1 D3
qm + · · ·+ mqmD−(m−1)2

q1 Dm
qm

−(n + 1)Dm−1
q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (56)
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Proof. Consider the expression

£−n+1 £+n
{Y [m]

n (q1, q2, q3, · · · , qm)} = Y [m]
n (q1, q2, q3, · · · , qm). (57)

Making use of expressions (16) and (20) in the factorization relation (57), assertion (48)
is proven.

Next, making use of expressions (17) and (20) in factorization relation (57), assertion (49)
is proven.

Again, making use of expressions (18) and (20) in factorization relation (57), assertion
(50) is proven.

Further, making use of expressions (16)–(18) with expression (21) separately, assertions
(51)–(53) are proven.
Furthermore, making use of expressions (16)–(18) with expression (22) separately, assertions
(54)–(56) are proven.

These integro–differential equations have numerous applications, including in areas
such as population dynamics, control theory, fluid mechanics, signal processing, and image
processing, among others. They provide a powerful mathematical tool for understand-
ing and predicting the behaviors of complex systems that involve both differentiation
and integration.

Partial differential equations (PDEs) are mathematical equations that involve par-
tial derivatives of a function with respect to multiple independent variables. They are
utilized to describe a wide range of phenomena in the physical, biological, and social
sciences, where variation or change occurs with respect to multiple independent variables,
such as time, space, and other parameters. PDEs are more intricate than ordinary differ-
ential equations (ODEs) because they incorporate partial derivatives, which account for
simultaneous changes in multiple variables. Solving PDEs can be challenging and often
requires advanced mathematical techniques, including Fourier analysis, Laplace transform,
method of characteristics, finite difference methods, finite element methods, and various
numerical methods.

Theorem 5. The MVHP Y [m]
n (q1, q2, q3, · · · , qm) satisfy the following partial differential equations:(

q1Dn
q1

Dq2 + 2q2Dn−1
q1

D2
q2
+ 3q3Dn−2

q1
D3

q2
+ · · ·+ mqmDn−(m−1)

q1 Dm
q2
− (n + 1)Dn+1

q1

)
×Y [m]

n (q1, q2, q3, · · · , qm) = 0. (58)(
q1Dn

q1
Dq3 + 2q2Dn−1

q1
Dq2 Dq3 + 3q3Dn−2

q1
D2

q2
Dq3 + · · ·+ mqmDn−(m−1)

q1 Dm−1
q2

Dq3−

(n + 1)Dn+2
q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (59)(
q1D2n

q1
Dqm + 2q2D2n−1

q1
Dq2 Dqm + 3q3D2n−2

q1
D2

q2
Dqm + · · ·+ mqmD2n−(m−1)

q1 Dm−1
q3

Dqm

−(n + 1)D2n+m−1
q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (60)
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(
q1D2n+2

q1
Dq2 + 2q2D2n

q1
Dq3 Dq2 + 3q3D2n−2

q1
D2

q3
Dq2 + · · ·+ mqmD2n−2m

q1
Dm−1

q3
Dq2−

(n + 1)D2n+m−1q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (61)(
q1D2n+2

q1
Dq3 + 2q2D2n

q1
D2

q3
+ 3q3D2n−2

q1
D3

q3
+ · · ·+ mqmD2n−2m

q1
Dm

q3
−

(n + 1)D2n+4
q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (62)

(
q1D2n+2

q1
Dqm + 2q2D2n

q1
Dq3 Dqm + 3q3D2n−2

q1
D2

q3
Dqm + · · ·+ mqmD2n−2m

q1
Dm−1

q3
Dqm−

(n + 1)D2n+m+1
q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (63)
...

...
...(

q1Dn2+1
q1

Dq2 + 2q2Dn2−m
q1

Dqm Dq2 + 3q3Dn2−2m−1
q1

D2
qm Dq2 + · · ·+ mqmDn2−m2+2m

q1

×Dm−1
qm Dq2 − (n + 1)Dn2+2

q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (64)

(
q1Dn2+1

q1
Dq3 + 2q2D2n−m

q1
Dqm Dq3 + 3q3D2n−2m

q1
D2

qm Dq3 + · · ·+ mqmDn2−m2+2m
q1

×Dm−1
qm Dq3 − (n + 1)Dn2+2

q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (65)(
q1Dn2+2

q1
Dqm + 2q2Dn2−m

q1
D2

qm + 3q3Dn2−2(m−1)
q1 D3

qm + · · ·+ mqmDn2−m2+2m
q1

Dm
qm−

(n + 1)Dn2+m+1
q1

)
Y [m]

n (q1, q2, q3, · · · , qm) = 0. (66)

Proof. By taking partial derivatives of the integro–differential expressions (48) and (49)
w.r.t. q1 for n times, the assertions (58) and (59) are proven.

Moreover, by taking partial derivatives of the integro–differential expression (50) w.r.t.
q1 for 2n times, the assertion (60) is proven.

Furthermore, by taking partial derivatives of the integro–differential expressions (51)
to (53) w.r.t. q1 for 2n + 2 times, the assertions (61) to (63) are proven.

Moreover, by taking partial derivatives of the integro–differential expressions (54) and
(55) w.r.t. q1 for n2 + 1 times, the assertions (64) and (65) are proven.

Again, taking partial derivatives of the integro–differential expression (56) with respect
to q1 for n2 + 2 times, the assertion (66) is proven.

PDEs have numerous applications in various fields of science and engineering, includ-
ing physics, engineering, biology, finance, and many others. They are used to model a wide
range of phenomena, such as heat and mass transfer, fluid dynamics, wave propagation,
quantum mechanics, population dynamics, and many other complex systems. PDEs pro-
vide a powerful tool for understanding and predicting the behavior of systems that involve
change and variation in multiple variables.
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4. Volterra Integral Equations

A Volterra integral equation is a specific type of integral equation that was introduced
by the Italian mathematician Vito Volterra. It is a type of functional equation that involves
both an unknown function and an integral of that function. Various techniques can be used
to solve Volterra integral equations, including numerical methods, such as quadrature meth-
ods and collocation methods, as well as analytical methods, such as Fredholm’s alternative
theorem, which provides a criterion for the existence and uniqueness of solutions.

Here, we acquire the integral equation for the MVHP Y [m]
n (q1, q2, q3, · · · , qm) by

demonstrating the results listed below:

Theorem 6. The MVHP polynomials Y [m]
n (q1, q2, q3, · · · , qm) satisfy the homogeneous Volterra

integral equation listed below:

Ψ(q1) = − 1
p4

(
3q3n(n− 1)(n− 2)En−3(P ,Q) + 2q2n(n− 1)(n− 2)En−3(P ,Q, )q1

+2q2n(n− 1)En−2(P ,Q) + q1

(
n(n− 1)(n− 2)En−3(P ,Q) q2

1
2! + n(n− 1)

En−2(P ,Q)q1 + nEn−1(P ,Q)
)
− n(n− 1)(n− 2)En−3(P ,Q) q3

1
2!3!

−n(n− 1)En−2(P ,Q) q2
1

2! − nEn−1(P ,Q)q1 − En(P ,Q)
)
+

q1∫
0

(
−1
p4

(
3q3 + 2q2

(q1 − ξ) +
(

q1 − 1
p4

)
(q1−ξ)2

2!

)
− n (q1−ξ)3

3!

)
Ψ(ξ)dξ.

(67)

Proof. Here, we consider m = 4 in differential equation (46) to obtain the differential
equation of the form:(

D4
q1
+ 1

p4

(
3q3D3

q1
+ 2q2D2

q1
+ q1Dq1 − n

))
Y [m]

n (q1, q2, q3, p4) = 0. (68)

Next, we acquire the initial conditions as listed:

Y [m]
n (q1, q2, 0) = Y [m]

n (q1, q2) = n!
[ n

2 ]

∑
k=0

q2
kq1

n−2k

k!(n−2k)!

:= En(P ,Q),

d
dq1
Y [m]

n (q1, q2) = nY [m]
n−1(q1, q2) = n(n− 1)!

[ n−1
2 ]

∑
k=0

q2
kq1

n−1−2k

k!(n−1−2k)!

:= nEn−1(P ,Q),

d2

dq1
2Y

[m]
n (q1, q2, 0) = n(n− 1)Y [m]

n−2(q1, q2) = n(n− 1)(n− 2)!
[ n−2

2 ]

∑
k=0

q2
kq1

n−2−2k

k!(n−2−2k)! ,

:= n(n− 1)En−2(P ,Q),

d3

dq1
3Y

[m]
n (q1, q2, 0) = n(n− 1)(n− 2)Y [m]

n−3(q1, q2)

= n(n− 1)(n− 2)(n− 3)!
[ n−3

2 ]

∑
k=0

q2
kq1

n−3−2k

k!(n−3−2k)! := n(n− 1)(n− 2)En−3(P ,Q),

(69)

respectively, where

Es(P ,Q) := n!
[ n−s

2 ]

∑
k=0

q2
kq1

n−s−2k

k!(n− s− 2k)!
. (70)

Consider
D4

q1
Y [m]

n (q1, q2, q3, p4) = Ψ(q1). (71)
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Using the beginning circumstances from (69) and integrating the aforementioned
equation, we have

d3

dq1
3Y

[m]
n (q1, q2, q3, p4) =

q1∫
0

Ψ(ξ)dξ + n(n− 1)(n− 2)En−3(P ,Q),

d2

dq1
2Y

[m]
n (q1, q2, q3, p4) =

q1∫
0

Ψ(ξ)dξ2 + n(n− 1)(n− 2)En−3(P ,Q)q1 + n(n− 1)En−2(P ,Q),

d
dq1
Y [m]

n (q1, q2, q3, p4) =
q1∫
0

Ψ(ξ)dξ3 + n(n− 1)(n− 2)En−3(P ,Q) q1
2

2! + n(n− 1)En−2(P ,Q)q1

+nEn−1(P ,Q),

Y [m]
n (q1, q2, q3, p4) =

q1∫
0

Ψ(ξ)dξ4 + n(n− 1)(n− 2)En−3(P ,Q) q1
3

2!3! + n(n− 1)En−2(P ,Q, ) q1
2

2!

+nEn−1(P ,Q)q1 + En(P ,Q).

(72)

Using the aforementioned equations in the differential Equation (68), we discover

Ψ(q1) = − 1
p4

(
3q3

( q1∫
0

Ψ(ξ)dξ + n(n− 1)(n− 2)En−3(P ,Q)
)
+ 2q2

( q1∫
0

Ψ(ξ)dξ2 + n(n− 1)

(n− 2)En−3(P ,Q)q1 + n(n− 1)En−2(P ,Q)
)
+
(

x− 1
1−λ

)( q1∫
0

Ψ(ξ)dξ3 + n(n− 1)

(n− 2)En−3(P ,Q) q1
2

2! + n(n− 1)En−2(P ,Q)q1 + nEn−1(P ,Q)
))

+ n
p4( q1∫

0
Ψ(ξ)dξ4 + n(n− 1)(n− 2)En−3(P ,Q) q1

3

2!3! + n(n− 1)En−2(P ,Q) q1
2

2!

+nEn−1(P ,Q)q1 + En(P ,Q)
)

,

(73)

Hence, using the following method, after simplifying and integrating the resulting equation:

q1∫
a

f (ξ)dξn =

q1∫
a

(q1 − ξ)n−1

(n− 1)!
f (ξ)dξ. (74)

Thus, assertion (68) is proven.

Volterra integral equations have many applications in physics, engineering, and other
fields. For example, they can be used to model diffusion processes, heat transfer, and the
behavior of viscoelastic materials. They are also used in mathematical biology to model the
spread of infectious diseases, population dynamics, and other phenomena.

5. Conclusions

In this paper, multivariate Hermite polynomials are considered several of their proper-
ties are established. These polynomials, which are a generalization of the one-dimensional
Hermite polynomials, have significant uses in quantum mechanics, probability theory, and
other branches of math and science.

The shift operators and recurrence relation discussed in this article have proven to be
valuable tools for analyzing the characteristics of these polynomials. The shift operators
facilitate the translation of polynomials in different directions and dimensions, while the
recurrence relation allows for the computation of polynomial values at higher degrees
based on their values at lower degrees.

Another significant finding is that the multivariate Hermite polynomials satisfy the
differential equation, which enables one to express these polynomials in terms of derivatives.
This can be useful for computing certain integrals and solving differential equations that
involve these polynomials.
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It is crucial to note the sequences of integro–differential and partial differential equa-
tions have significant importance because they offer additional ways to represent and work
with the multivariate Hermite polynomials. Other features and connections between these
polynomials can be derived using these equations as well.

In closing, a particular equation that may be resolved using these polynomials is the
Volterra integral equation. This problem may be represented as an integral equation that
can be solved using methods from numerical analyses and other branches of mathematics.
It involves a polynomial with four variables, namely, q1, q2, q3, q4.

Furthermore, future investigations and observations can be used to establish extended,
generalized forms via fractional operators, symmetric identities, and other properties of the
above-mentioned polynomials. Moreover, the determinant forms and summation formulae
can also be a problem for new observations.
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