
Citation: Korkmaz, M.Ç.; Leiva, V.;

Martin-Barreiro, C. The Continuous

Bernoulli Distribution: Mathematical

Characterization, Fractile Regression,

Computational Simulations, and

Applications. Fractal Fract. 2023, 7,

386. https://doi.org/10.3390/

fractalfract7050386

Academic Editor: Carlo Cattani

Received: 28 March 2023

Revised: 27 April 2023

Accepted: 29 April 2023

Published: 6 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

The Continuous Bernoulli Distribution: Mathematical
Characterization, Fractile Regression, Computational
Simulations, and Applications
Mustafa Ç. Korkmaz 1 , Víctor Leiva 2,* and Carlos Martin-Barreiro 3,4

1 Department of Measurement and Evaluation, Artvin Çoruh University, Artvin 08100, Turkey;
mcagatay@artvin.edu.tr

2 School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
3 Faculty of Natural Sciences and Mathematics, Escuela Superior Politécnica del Litoral ESPOL,

Guayaquil 090902, Ecuador; cmmartin@espol.edu.ec
4 Faculty of Engineering, Universidad Espíritu Santo, Samborondón 0901952, Ecuador
* Correspondence: victor.leiva@pucv.cl or victorleivasanchez@gmail.com

Abstract: The continuous Bernoulli distribution is defined on the unit interval and has a unique
property related to fractiles. A fractile is a position on a probability density function where the
corresponding surface is a fixed proportion. This article presents the derivation of properties of
the continuous Bernoulli distribution and formulates a fractile or quantile regression model for a
unit response using the exponentiated continuous Bernoulli distribution. Monte Carlo simulation
studies evaluate the performance of point and interval estimators for both the continuous Bernoulli
distribution and the fractile regression model. Real-world datasets from science and education
are analyzed to illustrate the modeling abilities of the continuous Bernoulli distribution and the
exponentiated continuous Bernoulli quantile regression model.
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1. Introduction

The interest in new probability discrete and continuous distributions is increasing;
see, for example, [1]. Recently, this interest has been present in distributions defined on
the interval [0, 1], which has raised great attention from researchers. These distributions
have many applications in several fields of science; see, for example, [2–7]. Often, novel
unit models are transported to unit intervals by transformations of well-known models [2],
with studies on unit modeling increasing day by day [2–7].

Regression is a statistical approach that is widely employed [8] to explain the structure
between a dependent (response) variable and independent (explanatory) variables or
covariates. Such a structure can be linear or nonlinear, associating the response mean with
the independent variables. When the dependent variable is stated on the interval [0, 1],
a regression structure employing the beta distribution [9] has been the most preferred
method to explain the unit-dependent variable with the independent variables based on
the conditional mean. Note that the beta model is formulated in relation to its mean. Then,
its unit regression based on the mean was established in [9].

With similar ideas, alternative unit mean response regressions were introduced,
among them are the beta rectangular [10], Birnbaum–Saunders [11], log-Bilal [12], log-
Lindley [1], log-weighted exponential [13], and unit Lindley [14] models.
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The dependent variables can be affected by situations related to a atypical data or
asymmetric distributions. When these situations exist, the mean is also affected strongly,
and the inference from the model may give rise to possible inaccurate interpretations.

A fractile is a point on a probability density function (PDF) where the surface upon
the function is a fixed proportion. Due to the inaccuracy mentioned, the quantile regression
(QR) models are a robust alternative to mean regression models. The QR model was
introduced in [15] and relates the response’s conditional quantiles to independent variables’
given values instead of explaining their conditional mean. One of the key benefits of
using QR models over standard mean regressions is its lack of imposed distributional
assumptions on the error term. This allows for greater flexibility in modeling different
types of data [16].

To implement a QR model utilizing a probability distribution, it is necessary to pa-
rameterize it using its quantile function (QF). Fortunately, this parameterization can be
utilized for any probability distribution with a closed-form QF, regardless of whether its
mean has a closed form. This provides a high level of adaptability and enables us to
model quantiles based on various distributions, as demonstrated in the following exam-
ples: the Kumaraswamy (KW) [17], L-logistic [18], log-extended exponential-geometric
(LEEG) [19], log-symmetric [20], power Johnson SB, [21], unit-Birnbaum–Saunders [22],
unit-Burr-XII, [2,23], unit-Chen [24], unit-Weibull [25], and Weibull–Marshall–Olkin [26]
QR models. These types of models and structures have been largely applied to describe
COVID-19 mortality [23,27].

The continuous Bernoulli (CB) model, as described in [4], is a probability distribution
that exists on the interval [0, 1] and has a single parameter related to the shape of the
distribution. It belongs to the exponential family of distributions and offers a generalization
of the uniform distribution defined on the unit interval. In their study, the authors of [4]
proposed using the CB distribution to investigate the impact of Bernoulli variational
autoencoders on intensity data that fall within the [0, 1] range. The results of their research
indicated that the CB distribution leads to significant improvements in various metrics
and datasets, including the generation of sharper image samples, and suggested a wider
range of potential performance-optimized variational autoencoders. Despite the promising
findings of the CB distribution, as far as we know, its associated mathematical and statistical
properties as well as its associated QR model have yet to be explored. Thus, the primary
objectives of this article are as follows:

(i) To derive some mathematical and statistical properties that have not been studied of
the CB distribution stated on the interval [0, 1], including estimation and inference.

(ii) To formulate a QR model for a unit response employing the exponentiated CB (ECB)
distribution. In this way, the applications of the CB distribution are extended. The for-
mulated regression model is a robust alternative to the beta regression and other
models proposed in the literature. Another motivation for the proposed QR model
comes from a real-world dataset.

The present article is organized into seven main sections. Section 2 is dedicated to
deriving mathematical properties of the continuous Bernoulli (CB) distribution, while
Section 3 focuses on the various point estimation procedures for its parameters. A novel
QR model is introduced in Section 4. Monte Carlo simulations are used to evaluate the
performance of point and interval estimators for both the CB distribution and the associated
QR model in Section 5. The results are illustrated utilizing a real-world dataset in Section 6.
Finally, Section 7 sketches some concluding remarks.

2. The Continuous Bernoulli Distribution

This section provides some known and new functions of the CB distribution.
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2.1. Cumulative Distribution and Probability Density Functions

In the fields of artificial intelligence, in the context of modeling pixel intensities, the CB
distribution is a commonly encountered concept [28]. The PDF and cumulative distribution
function (CDF) of the CB distribution are formulated as

F(x, β) =


x, β = 1/2;

(1− β)

((
β

1− β

)x
− 1
)

1
(2β− 1)

, β 6= 1/2;
(1)

and

f (x, β) =


1, β = 1/2;

(1− β)

(
β

1− β

)x 1
(2β− 1)

log(β/(1− β)), β 6= 1/2;

respectively, with x ∈ (0, 1), and β ∈ (0, 1) being a parameter related to the shape of the
distribution. Alternatively, the PDF of the CB distribution can be written as

f (x, β) =


1, β = 1/2;

2(1− β) tanh−1(1− 2β)

(1− 2β)
(β/(1− β))x, β 6= 1/2;

where tanh−1(w) = (1/2) log((1 + w)/(1− w)), for w ∈ (−1, 1), is the inverse hyperbolic
tangent function. We denote the CB distribution of parameter β as CB(β). Note that the CB
distribution corresponds to the uniform distribution on the interval [0, 1], that is, on (0, 1),
when β = 1/2. Observe that there is an interesting recursive relation between the CB PDF
and its derivatives. For β 6= 1/2, this relation is stated as

dm f (x, β)

dxm = f (x, β) logm+1
(

β

1− β

)
, m ∈ {1, 2, . . . }.

Hence, it can be concluded that the PDF with a concave CDF is decreasing for β < 1/2,
and the PDF with a convex CDF is increasing for β > 1/2. Note that the term ∑n

i=1 Xi is a
sufficient statistic for estimating β based on a sample of size n, X1, . . . , Xn namely, collected
from the CB distribution.

2.2. Inverse Cumulative Distribution Function

From (1), we can obtain the CB inverse CDF, which is given by

F−1(x, β) =



x, β = 1/2;

log
(

1 +
(

2β− 1
1− β

)
x
)

log
(

β

1− β

) , β 6= 1/2.
(2)

In Figure 1, we can see the plot of (2) for the values β = 0.25, β = 0.5, and β = 0.75.
To simulate a random variable (RV) with CB distribution, we propose Algorithm 1. In sim-
ulation studies related to the CB distribution, generating data from this distribution is
important. Then, we can use Algorithm 1 for this purpose, which takes advantage of (2) to
generate a sample of size n.
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Figure 1. The CB inverse CDF for the indicated values of β.

Algorithm 1: Approach that simulates the CB distribution using the inverse-
transform method

begin
input : n, β
output : n_vector, x̄ (sample mean), s2 (sample variance)
1. Obtain a value r from U ∼ continuous uniform(0, 1);
2. Append, using (2), F−1(r, β) to n_vector;
3. Repeat steps 1–2 until length of n_vector is equal to n;
4. Compute x̄ and s2 with the values n_vector.

end

Computational experiments were conducted utilizing Algorithm 1. Table 1 displays
the results generated with β = 0.25, while Table 2 provides the results generated with
β = 0.75, using n ∈ {25, 50, 100, 200, 500, 1000} and performing 1000 Monte Carlo simula-
tions for each n.

The simulation results demonstrate the experimental convergence of Algorithm 1.
The theoretical mean and variance values for the CB distribution with β = 0.25 are 0.4102
and 0.0785354, respectively, while the theoretical mean and variance values with β = 0.75
are 0.5898 and 0.0785354, respectively.

Table 1. Simulation results with β = 0.25.

n Runtime (in seconds) x̄ s2

25 0.0116 0.4106 0.0780877
50 0.0207 0.4110 0.0788680

100 0.0352 0.4101 0.0783473
200 0.0513 0.4098 0.0785829
500 0.1273 0.4104 0.0784173

1000 0.1951 0.4102 0.0784991
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Table 2. Simulation results with β = 0.75.

n Runtime (in seconds) x̄ s2

25 0.0197 0.5895 0.0784745
50 0.0224 0.5897 0.0780702

100 0.0315 0.5885 0.0788916
200 0.0459 0.5887 0.0786282
500 0.0955 0.5894 0.0788145

1000 0.2136 0.5897 0.0784867

2.3. Hazard Rate Function

The hazard rate function (HRF) of the CB distribution is stated as

h(x, β) =
(1− β)1−xβx

β− (1− β)1−xβx
log(β/(1− β)), x ∈ (0, 1), β 6= 1/2.

The HRF is an increasing function in x because its derivative expressed as

dh(x, β)

dx
=

β(1− β)(
β− (1− β)(β/(1− β))x)2 (β/(1− β))x log2(β/(1− β))

is positive for all β. Furthermore, note that limx→1 h(x, β) = ∞ and

lim
x→0

h(x, β) =

{
1, β = 1/2;
(1−β)
2β−1 log(β/(1− β)), β 6= 1/2.

Figure 2 displays the CB PDF, CDF, and HRF. From this figure, note the flexible shapes
these functions have for the different parameter values, that is, for β.
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Figure 2. Plots of the CB PDF (left), CDF (center), and HRF (right) for the listed values of β.

2.4. Moments

Using the definition of the moment-generating function, for the case of the CB distri-
bution, we obtain that

MX(t) = E
(
etX) = (

β
(
1 + et)− 1

)
log(β/(1− β))

(2β− 1)(log(β/(1− β)) + t)
, β 6= 1/2, t ∈ <.

Note that MX(t) = (et − 1)/t for β = 1/2. Thus, utilizing the relation given by E(Xr) =
dr MX(t)/dtr|t=0, for r ∈ {1, 2, . . . }, the first four noncentral moments are, respectively,
for β 6= 1/2, stated as
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m1 = E(X) =
β log(β/(1−β))+1−2β
(2β−1) log(β/(1−β))

,

m2 = E(X2) =
β log2 β−2β log β log(1−β)+β log2(1−β)−2β log β+2β log(1−β)+4β−2

(2β−1) log2(β/(1−β))
,

m3 = E(X3) =
−β log3(1−β)+3β(log β−1) log2(1−β)−3β(log2 β+2−2 log β) log(1−β)

(2β−1) log3(β/(1−β))

+
β log3 β−12β+6β log β−3β log2 β+6

(2β−1) log3(β/(1−β))
,

m4 = E(X4) =
β log4 β−4β log3 β log(1−β)+6β log2 β log2(1−β)−4β log3(1−β) log β

(2β−1) log4(β/(1−β))

+
β log4(1−β)−4β log3 β+12β log2 β log(1−β)−12β log2(1−β) log β+4β log3(1−β)+12β log2 β

(2β−1) log4(β/(1−β))

+
−24β log β log(1−β)+12β log2(1−β)−24β log β+24β log(1−β)+48β−24

(2β−1) log4(β/(1−β))
.

Figure 3 shows some shapes of the CB moments. Note that, as β increases, the mean
increases, whereas the skewness decreases. According to the values of β, the variance
increases for β < 1/2 and decreases for β > 1/2, but a reverse situation is detected for
the kurtosis.
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Figure 3. Plots of the mean, variance, skewness, and kurtosis of the CB distribution for the indicated
values of β.

2.5. Quantile Function

The QF, defined by F−1(q, β) = xq(β), for q ∈ (0, 1), of the CB distribution can be
obtained in a closed form. Let X be a CB distributed RV with CDF as defined in (1). Then,
the CB QF is given by

xq(β) =
log
(

1 + (2β−1)q
1−β

)
log(β/(1− β))

, β 6= 1/2, q ∈ (0, 1). (3)
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Note that the CB QF is equal to q for β = 1/2, whereas the corresponding median is
derived as

x0.5(β) = (log(β/(1− β)))−1 log
(

0.5
1− β

)
,

for β 6= 1/2. Notice that if the RV Q related to q in (3) has a uniform distribution on (0, 1),
which is denoted as U(0, 1), then the RV associated with xQ(β) has the CB distribution.

2.6. Mean Residual Life Function

The mean residual life (MRL), also known as life expectancy, is a critical parameter in
the field of reliability that characterizes the assumed distribution. Unlike the hazard rate
function (HRF), which only considers the risk of immediate failure, the MRL summarizes
the entire residual life distribution. The MRL function of a positive random variable at time
x is defined as

MRL(x) =
1

1− F(x)

∫ ∞

x
(1− F(y))dy,

where F is the lifetime model CDF. Therefore, the MRL function of the CB distribution is
stated as

MRL(x) =
β(1− x) log(β/(1− β))− β

(
1 + (β/(1− β))x)+ (β/(1− β))x(

β− (1− β)(β/(1− β))x) log(β/(1− β))
, β 6= 1/2,

while MRL(0) is obtained as

MRL(0) =
β log(β/(1− β)) + 1− 2β

(2β− 1) log(β/(1− β))
, β 6= 1/2,

which is equal to the corresponding expected value, and then MRL(1) = 0. Observe that
MRL(x) = (1− x)/2, for β = 1/2.

We can comment about the shapes of the MRL function via its HRF. The following
results hold for both discrete and continuous lifetimes [29]:

• If the HRF is (strictly) increasing, then the MRL is (strictly) decreasing.
• If the HRF is (strictly) decreasing, then the MRL is (strictly) increasing.
• The HRF is a constant function (exponential or geometric distribution) if and only if

the MRL is a constant.

We can conclude that, since the HRF function of the CB distribution is strictly increas-
ing, its MRL function is strictly decreasing. For detail about the MRL, see [30].

2.7. Incomplete Moments and Lorenz Curve

For β 6= 1/2 and r ∈ {1, 2, . . . }, the rth incomplete moment of the CB distribution is
given by

I(x, r) =
∫ x

0
zr f (z, β)dz

=
xr(1−β)(rΓ(r,−x log(β/(1−β)))(−x log(β/(1−β)))−r−Γ(r+1)(−x log(β/(1−β)))−r+(β/(1−β))x)

2β−1 ,

for z < x, where Γ(·) and Γ(·, ·) are the gamma function and upper incomplete gamma
function, respectively. For β = 1/2, the CB rth incomplete moment is equal to xr+1/(r + 1).
Note that the equations limx→∞ I(x, r) = E(Xr) and F(y, β) = I(x, r = 0) hold.
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As a result of the incomplete moments, the Lorenz curve of the CB distribution for
β 6= 1/2 is expressed by

L(p) =
1

E(X)

∫ xq(β)

0
x f (x, β)dx

=
I
(
xq(β), 1

)
E(X)

=
(β(2p− 1) + 1− p) log

(
1+β(2p−1)−p

1−β

)
− 2pβ + p

1− 2β + β log(β/(1− β))
.

Then, L(p) = p2 is obtained for β = 1/2.

2.8. Stress Strength Reliability

The system with applied stress works smoothly if its strength is higher than the
applied stress. The stress–strength parameter of a life distribution is an important indicator
of reliability. This parameter is the working probability of the system and a reliability
measure, which is defined as

R = P(X < Y) =
∫ 1

0
fX(x)FY(x)dx,

where fX is the PDF of the stress (X) and FY is the CDF of the strength (Y). Now, consider
X and Y as two independent CB distributed RVs with parameters β1 and β2, respectively.
Then, the CB stress–strength parameter is given by

R =
(2β1(β2−1)−β2+1) log

(
β2

1−β2

)
+(2β2−1)β1 log

(
β1

1−β1

)
(2β2−1)(2β1−1) log

(
β1

(1−β1)
β2

(1−β2)

) .

Note that, when β1 = β2 6= 1/2, then R = 1/2.

3. Point Estimation for the Parameter of the CB Distribution

This section provides some point estimation methods, such as maximum likelihood
(ML), moment, percentile (PE), least square (LS), weighted square (WS), Anderson–Darling
(AD), and Cramér–von Mises (CM) to determine the model parameter β. Note that, for the
estimation processes of the above methods, we focus on β 6= 1/2.

3.1. Maximum Likelihood Method

Consider X1, . . . , Xn as a sample of size n collected from the CB distribution, with
x1, . . . , xn as its observed values. Thus, the associated log-likelihood function is estab-
lished as

`(β) = n log(1− β)− n log(2β− 1) + n log(log(β/(1− β))) + log(β/(1− β))
n

∑
i=1

xi. (4)

Taking the first derivative of the expression stated in (4) with respect to β, we obtain

d`(β)

dβ
= − n

log(1− β)
− 2n

log(2β− 1)
+

n
β(1− β) log(β/(1− β))

+
1

β(1− β)

n

∑
i=1

xi. (5)

Since the equation d`(β)/dβ = 0 obtained from (5) is a nonlinear function of β, the ML
estimator β̂ must be computed using numerical methods. For any smooth PDF, it is widely
recognized that under regularity conditions, β̂ has a normal distribution asymptotically
with mean β and variance I−1

β , with Iβ = −E(d2`(β)/dβ2) being the Fisher information.
After performing several computations, the inverse of the Fisher information can be

obtained as
I−1

β =
(β(1− β)(2β− 1) log(β/(1− β)))2

n
(

1− β(1− β)
(

4 + log2(β/(1− β))
)) . (6)
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Based on the previous results, the asymptotic 100(1 − θ)% confidence interval of the
parameter β is given as

β̂− zθ/2
β(1−β)(2β−1) log(β/(1−β))√

n(1−β(1−β)(4+log2(β/(1−β))))
≤ β ≤ β̂ + zθ/2

β(1−β)(2β−1) log(β/(1−β))√
n(1−β(1−β)(4+log2(β/(1−β))))

,

where zθ/2 refers to the (θ/2)× 100th upper percentile of the standard normal distribution.

3.2. Moment Estimation

The parameter estimation for the CB distribution can be performed using the moment
method, as its expected value can be expressed analytically. This method involves equating
the first moment of the sample to the expected value of the CB distribution. By solving this
equation, the moment estimate of the parameter β can be obtained as

x̄− β log(β/(1− β)) + 1− 2β

(2β− 1) log(β/(1− β))
= 0, (7)

where x̄ is the sample mean. Note that the equation stated in (7) must be solved employing
a numerical method.

3.3. Percentile Estimation

The percentile method to estimate β in the CB distribution was originally proposed
in [31]. Since the QF of the CB distribution has a closed form, this method can be applied
straightforwardly. Consider X(1), . . . , X(n) as the order statistics of a sample of size n from
the CB distribution and x(1), . . . , x(n) as their observed values. An estimate of the CDF
can be obtained as F̂(x(i)) = i/(n + 1), for i ∈ {1, . . . , n}. Then, an estimate of β can be
reached by minimizing a certain function with respect to β. The expression for this function
is given by

PE(β) =
n

∑
i=1

(
x(i) − xqi (β)

)2
, (8)

and then the PE estimate of β is attained, where xq is defined in (3). Therefore, the PE
estimate of β is the solution on β evaluated at β̂ of an equation formulated as

dPE(β)

dβ
= 2

β(1−β) log2(β/(1−β))

n
∑

i=1

(
x(i) −

log
(

1+ i(2β−1)
(n+1)(1−β)

)
log(β/(1−β))

)

×
(β((2i−1−n))+n−i+1) log

(
1+ i(2β−1)

(n+1)(1−β)

)
−iβ log(β/(1−β))

(n+1)(1−β)+i(2β−1) = 0.

3.4. Other Methods of Estimation

Next, the LS, WS, AD, and CM methods of estimation for β are provided. According
to these methods, the functions to be used for estimating β are expressed as

LS(β) =
n
∑

i=1

(
F(x(i), β)− i

n+1

)2
,

WS(β) =
n
∑

i=1

(n+2)(n+1)2

(n−i+1)i

(
F(x(i), β)− i

n+1

)2
,

LS(β) = −n−
n
∑

i=1

(2i−1)
n

(
log
(

1− F(x(n+1−i), β)
)
+ log(F(x(i), β))

)
,

CM(β) = 1
12n +

n
∑

i=1

(
F(x(i), β)− 2i−1

2n

)2
,
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In the CB distribution, a sample of size n is drawn from the population, with x(1), . . . , x(n)
representing the ordered observed values of this sample. Therefore, the LS, WS, AD, and
CM estimates of β are given by

β̂LS = argmin
β

{LS(β)}, (9)

β̂WS = argmin
β

{WS(β)}, (10)

β̂AD = argmin
β

{AD(β)}, (11)

β̂CM = argmin
β

{CM(β)}, (12)

respectively. It is important to emphasize that the equations presented in (4), (7), (8), (9),
(10), (11) and (12) do not have explicit solutions and must be solved through numerical
methods. However, these equations can be optimized directly using software such as R or
Matlab.

4. Associated QR Model

This section states a QR model employing the exponentiated CB distribution.

4.1. The Exponentiated CB Distribution

Although the CB distribution has a closed-form mean function and QF, its PDF and
CDF cannot be parameterized using these functions due to the dependence of the parameter
β. Therefore, we propose an alternative QR model that is based on the ECB distribution,
which is a generalized form of the CB distribution. The ECB CDF and PDF are expressed as

G(y, α, β) =


yα, β = 1/2;(

(1−β)((β/(1−β))y−1)
(2β−1)

)α

, β 6= 1/2;

and

g(y, α, β) =


αyα−1, β = 1/2;
α(β/(1−β))y log(β/(1−β))

(β/(1−β))y−1

(
(1−β)((β/(1−β))y−1)

(2β−1)

)α

, β 6= 1/2;

respectively, where y ∈ (0, 1), α > 0 is a parameter related to the shape of the distribution
and β ∈ (0, 1). The CDF of the ECB distribution is G(y, α, β) = (F(y, β))α, and it can be
named a Lehmann-type I CB distribution. For β = 1/2, the ECB distribution is the power
function distribution.

The τ × 100th quantile of the ECB distribution is presented by

Q(τ, α, β) =

{
τ1/α, β = 1/2;

(log(β/(1− β)))−1 log
(

1 + (2β−1)τ1/α

1−β

)
, β 6= 1/2;

where τ ∈ (0, 1).
By using the QF of the ECB distribution, we can now reparameterize it in terms of

its quantiles. Observe that, as β = 1/2, the ECB distribution can be reparameterized as a
particular case of the Kumaraswamy distribution based on the quantile form, as presented
in [17]. Here, we consider β 6= 1/2 and provide the PDF form of the ECB distribution based
on its QF.
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Consider µ = Q(τ, α, β) and α = log(τ
(
log
(
(1− β)

(
(β/(1− β))µ − 1

)
/(2β− 1)

))−1
).

Hence, the reparameterized ECB CDF and PDF are introduced by

G(y, β, µ, τ) = τlog((1−β)((β/(1−β))y−1)/(2β−1))(log((1−β)((β/(1−β))µ−1)/(2β−1)))
−1

(13)

and

g(y, β, µ, τ) =
log τ(β/(1−β))y log(β/(1−β))τlog((1−β)((β/(1−β))y−1)/(2β−1))(log((1−β)((β/(1−β))µ−1)/(2β−1)))−1

log((1−β)((β/(1−β))µ−1)/(2β−1))((β/(1−β))y−1)
. (14)

The reparameterized PDF stated in (14) is defined by the CDF presented in (13), where
β ∈ (0, 1) is a parameter related to the shape of the distribution, µ ∈ (0, 1) is the quantile
parameter, and τ ∈ (0, 1) is a known quantile level. We denote the RV associated with
the CDF given in (13) as Y ∼ ECB(β, µ, τ). Figure 4 illustrates the diverse shapes of
the reparameterized PDF, which exhibit characteristics such as U-shape, unimodality,
increasing, decreasing, and constancy.
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0
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0
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Figure 4. Plots of the PDF stated in (14) for the indicated values of parameters.

4.2. ECB Quantile Regression Model

Once the reparameterized ECB distribution is defined, a QR model can be introduced.
Suppose we have n observations y1, . . . , yn from the reparameterized distribution with its
PDF stated in (14). Then, the ECB QR model can be expressed as

g(µi) = x>i β. (15)

Here, xi =
(
1, xi1, . . . , xip

)> is the vector of independent variable values, β =
(

β0, β1, . . . , βp
)>

is the vector of unknown regression coefficients, and g: (0, 1)→ < is a strictly monotonic
and twice differentiable link function used to relate independent variables with the condi-
tional quantile of the dependent variable. Common link functions include the logit, probit,
log-log, and Cauchy structures. Thus, µi is obtained by inverting the model given in (15)
such that µi = g−1(x>i β), for i ∈ {1, . . . , n}. In this proposed regression model, we use the
logit function for linking, stated as g(µi) = log(µi/(1− µi)), for i ∈ {1, . . . n}. If we take
τ = 0.5, the link function connects the median response to the independent variables in the
ECB QR model.

4.3. ML Estimation of the Regression Coefficients

Assume that we have n independent RVs Y1, . . . , Yn following the ECB distribution,
with β being a parameter related to the shape of the distribution, µi a quantile parameter,
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and τ a known quantile level. The quantile parameter is obtained using the logistic function
formulated as

µi =
ex>i β

1 + ex>i β
, (16)

where xi is the vector of independent variable values for the ith observation, and β is the
vector of unknown regression coefficients. The parameter vector ϑ = (β, β>) has p + 2
unknown elements. The log-likelihood function of the ECB regression model is expressed as

`(ϑ) = n log(log(τ)) + n log(log(β/(1− β))) + log(β/(1− β))
n
∑

i=1
yi

−
n
∑

i=1
log
(

log
(

(1−β)((β/(1−β))µi−1)
(2β−1)

))
−

n
∑

i=1
log
(
(β/(1− β))yi − 1

)
+ log(τ)

n
∑

i=1
log
(

(1−β)((β/(1−β))yi−1)
(2β−1)

)(
log
(

(1−β)((β/(1−β))µi−1)
(2β−1)

))−1
. (17)

Thus, the first derivatives according to the model coefficients established in (17) are given by

d`(ϑ)
dβr

= −
n
∑

i=1

(β/(1−β))µi µi(1−µi)xir log(β/(1−β))

((β/(1−β))µi−1) log

(
(1−β)((β/(1−β))µi−1)

(2β−1)

) , r ∈ {0, 1, . . . , p},

−
n
∑

i=1

(β/(1−β))µi µi(1−µi)xir log(τ) log(β/(1−β))

log2

(
(1−β)((β/(1−β))µi−1)

(2β−1)

)
((β/(1−β))µi−1)

log
(

(1−β)((β/(1−β))yi−1)
(2β−1)

)
,

d`(ϑ)
dβ

=
n

β(1− β) log(β/(1− β))
+

1
β(1− β)

n

∑
i=1

yi −
n

∑
i=1

yi(β/(1− β))yi

β(1− β)
(
(β/(1− β))yi − 1

)
−

n

∑
i=1

(β/(1− β))µi ((2β− 1)µi − β) + β

β(1− β)(2β− 1)
(
(β/(1− β))µi − 1

)
log
(

(1−β)((β/(1−β))µi−1)
(2β−1)

)

+2 log(τ)
n

∑
i=1

((
β(yi − 1/2)− yi

2
)
(β/(1− β))yi + β

2

)
β(2β− 1)(1− β)

(
(β/(1− β))yi − 1

)
log
(

(1−β)((β/(1−β))µi−1)
(2β−1)

)

−2 log(τ)
n

∑
i=1

((
β(µi − 1/2)− µi

2
)
(β/(1− β))µi + β

2

)
log
(

(1−β)((β/(1−β))yi−1)
(2β−1)

)
β(2β− 1)(1− β) log2

(
(1−β)((β/(1−β))µi−1)

(2β−1)

)(
(β/(1− β))µi − 1

) .

Once the derivatives are set to zero, the resulting equations should be solved using
numerical methods since they are nonlinear functions. The formula presented in (17) can
be directly maximized utilizing the R software to obtain these solutions. It is important to
note that the asymptotic distribution of (ϑ̂ − ϑ) is a multivariate normal Np+2(0, I−1(ϑ)),
where I(ϑ) is the Fisher information matrix. However, for numerical applications, the
(p + 2)× (p + 2) observed information matrix is often used instead of I(ϑ) to make infer-
ence about the corresponding parameters.

4.4. Residual Analysis for Model Fitting

Validating a fitted regression model involves analyzing residuals. The randomized
quantile (RQ) residual is a preferred method for this validation. The RQ residual, proposed
in [32], is defined as

r̂i = Φ−1(G(yi, β̂, µ̂i, τ)), i ∈ {1, . . . , n},

where G(y, β, µ, τ) is the CDF of the CEB model and µ̂i is defined in (16). If the fitted
regression is valid, the RQ quantile should be standard normal distributed.
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5. Simulation Studies

In this section, we discuss simulation studies for point estimation of the CB parameter
and estimation of the ECB QR parameters.

5.1. Computational Framework

The experiments were conducted on a computer with Windows 10 for 64 bits, 8 Giga-
bytes of RAM, and an Intel Core i7-4510U 2-2.60 GHz processor. The optimization of the
log-likelihood function can be performed directly by software such as R or Matlab.

In the case of using R, two libraries, named ConstrOptim and maxLik, can be employed
to conduct the experimental results of the simulation studies and real data analysis when
obtaining the point estimates of the corresponding parameters. The functions of these
libraries numerically provide the parameter estimates and the associated estimated stan-
dard errors based on diverse algorithms. The Nelder–Mead optimization routine can be
utilized to obtain these estimates. Such libraries may only be employed in specific contexts,
which is their limitation. Our computations were carried out by the maxLik and goftest
functions of the R software.

For more details about R packages related to QR, the interested reader is referred to a
package named unitquantreg, which was developed in the setting stats::lm package [33].
The unitquantreg() function of this package is flexible and allows us, by means of the ns()
function, to utilize regression splines. This function is available in the splines package.
Moreover, it is possible to employ the gam() function of an R package named mgcv.

The unitquantreg package can be secured from https://github.com/AndrMenezes/
unitquantreg (accessed on 5 April 2023) and installed using

devtools::install_github(‘‘AndrMenezes/ unitquantreg’’).

The unitquantreg package contains 15 distributions, and our new distribution can be
added to this package.

5.2. Point Estimation

For the simulations of point estimation, we change n in {25, 50, 100, 200, 500, 1000}with
M = 1000 Monte Carlo replicates from the CB distribution, with β ∈ {0.25, 0.75}. The em-
pirical mean, bias, and mean square error (MSE) of the estimators, given by Mean(β̂) =
(1/M)∑M

i=1 β̂i, Bias(β̂) = (1/M)∑M
i=1(β− β̂i), and MSE(β̂) = (1/M)∑M

i=1(β− β̂i)
2, were

used to calculate statistical indicators. The results of the estimators are close to the true
values of the parameters, and consistent, with MSE and bias decreasing as n increases.
The moment estimate was used as the initial value for the ML estimates. The results are
shown in Figure 5.

Simulation studies also were conducted to evaluate the behavior of 95% confidence
intervals using the ML method. The coverage length (CL) and coverage probability (CP)
were empirically calculated to assess this behavior. The CL and CP are defined by

CL(β̂) =
1
M

M

∑
i=1

3.92 s(β̂i), (18)

CP(β̂) =
1
M

M

∑
i=1

1(β̂i − 1.96 s(β̂i) < β < β̂i + 1.96 s(β̂i)), (19)

respectively. In the expression given in (18), s(β̂i) is the estimated standard error of the ML
estimator. In the formula stated in (19), 1 is the indicator function. The simulation results
for the empirical CLs and CPs are presented in Figure 6. It is evident from the figure that
the empirical CLs decrease as the sample size increases, while the empirical CPs remain
close to 0.95.

https://github.com/AndrMenezes/unitquantreg
https://github.com/AndrMenezes/unitquantreg
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Figure 5. Plots of simulations for the point estimation with β = 0.25 (top) and β = 0.75 (bottom).
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Figure 6. Plots of simulations for the CPs and CLs with β = 0.25 (top) and β = 0.75 (bottom).

5.3. Quantile Regression Model

Next, we conduct simulations to evaluate the ML estimators’ performance for the ECB
QR parameters. We measure their performance by examining the bias, MSE, CL, and CP
across different sample sizes (n), known values of τ, true values of β, and various covariate
values. To generate the values of the unit response, we use a structure stated as

yi = log
(

1 +
(2β− 1)u1/αi

i
1− β

)
(log(β/(1− β)))−1, i ∈ {1, . . . , n},

where ui ∼ U(0, 1) and αi = log(τ
(
log
(
(1− β)

(
(β/(1− β))µi − 1

)
/(2β− 1)

))−1
).
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For this simulation study, we use M = 1000 Monte Carlo replicates and varying
sample sizes from n = 25 to n = 1000, with step sizes of 25, 50, 100, 250, 500, and 1000. We
also vary the values of τ and β, with τ taking on the values of 0.25, 0.50, and 0.75 and β
taking on the values of 0.25, 0.5, and 0.75. The regression structure used is formulated as

logit(µi) = β0 + β1zi1, i ∈ {1, . . . , n},

with β0 = −0.5, β1 = 2 and zi1 ∼ Bernoulli(0.5).
The simulation results for the ECB QR model are presented in Tables 3–8. It is observed

that the empirical CLs exhibit a decreasing trend as the sample size increases, while the
empirical CPs approach 0.95. The biases are negligible, and all MSEs approach zero.

Table 3. Empirical bias, MSE, 95% CP, and 95% CL for the ECB QR model with β = 0.25 and τ = 0.25
for the indicated n and parameter with simulated data.

n Bias(β̂0) Bias(β̂1) Bias(β̂) MSE(β̂0) MSE(β̂1) MSE(β̂) CL(β̂0) CL(β̂1) CL(β̂) CP(β̂0) CP(β̂1) CP(β̂)

25 0.0506 −0.0241 −0.0461 0.1578 0.2368 0.0524 1.3731 1.7408 0.8412 0.8880 0.9110 0.6430
50 0.0333 −0.0053 0.0057 0.0804 0.1169 0.0417 1.0516 1.3099 0.7733 0.9290 0.9490 0.7788
100 0.0120 −0.0009 −0.0064 0.0371 0.0593 0.0219 0.7197 0.9227 0.5588 0.9250 0.9430 0.8340
200 0.0078 −0.0008 −0.0013 0.0196 0.0298 0.0127 0.5310 0.6634 0.4251 0.9390 0.9360 0.8830
500 0.0004 0.0029 0.0001 0.0076 0.0122 0.0051 0.3351 0.4210 0.2758 0.9460 0.9510 0.9079
1000 −0.0010 −0.0001 0.0003 0.0035 0.0052 0.0027 0.2318 0.2967 0.1936 0.9500 0.9630 0.9240

Table 4. Empirical bias, MSE, 95% CP, and 95% CL for the ECB QR model with β = 0.75 and τ = 0.25
for the indicated n and parameter with simulated data.

n Bias(β̂0) Bias(β̂1) Bias(β̂) MSE(β̂0) MSE(β̂1) MSE(β̂) CL(β̂0) CL(β̂1) CL(β̂) CP(β̂0) CP(β̂1) CP(β̂)

25 0.0227 0.0017 −0.2301 0.2340 0.3634 0.1553 1.7324 2.1644 1.1733 0.9010 0.9190 0.6650
50 0.0296 −0.0311 −0.1406 0.1236 0.1746 0.0915 1.3305 1.5991 0.9841 0.9180 0.9360 0.7730
100 0.0171 −0.0141 −0.0833 0.0748 0.0979 0.0531 0.9991 1.1703 0.7680 0.9180 0.9320 0.8138
200 0.0027 −0.0024 −0.0442 0.0335 0.0463 0.0249 0.6950 0.8258 0.5717 0.9500 0.9440 0.8940
500 0.0046 −0.0025 −0.0206 0.0131 0.0184 0.0100 0.4437 0.5251 0.3749 0.9430 0.9500 0.9259
1000 0.0014 −0.0020 −0.0120 0.0069 0.0097 0.0050 0.3280 0.3790 0.2774 0.9520 0.9420 0.9390

Table 5. Empirical bias, MSE, 95% CP, and 95% CL for the ECB QR model with β = 0.50 and τ = 0.25
for the indicated n and parameter with simulated data.

n Bias(β̂0) Bias(β̂1) MSE(β̂0) MSE(β̂1) CL(β̂0) CL(β̂1) CP(β̂0) CP(β̂1)

25 0.0496 0.0033 0.0901 0.1766 1.1570 1.6256 0.9520 0.9480
50 0.0196 0.0110 0.0432 0.0875 0.7888 1.1547 0.9450 0.9500
100 0.0055 0.0012 0.0226 0.0465 0.5630 0.8153 0.9320 0.9410
200 0.0063 0.0032 0.0117 0.0214 0.4475 0.5820 0.9620 0.9540
500 0.0012 0.0001 0.0047 0.0088 0.2651 0.3638 0.9580 0.9470

1000 0.0022 0.0007 0.0025 0.0042 0.1919 0.2579 0.9420 0.9470

Table 6. Empirical bias, MSE, 95% CP, and 95% CL for the ECB QR model with β = 0.50 and τ = 0.75
for the indicated n and parameter with simulated data.

n Bias(β̂0) Bias(β̂1) MSE(β̂0) MSE(β̂1) CL(β̂0) CL(β̂1) CP(β̂0) CP(β̂1)

25 0.0466 −0.0147 0.1133 0.1821 1.2587 1.6439 0.9250 0.9450
50 0.0220 −0.0064 0.0443 0.0876 0.8032 1.1513 0.9470 0.9470
100 0.0146 0.0064 0.0204 0.0418 0.5626 0.8150 0.9520 0.9580
200 0.0085 −0.0130 0.0120 0.0212 0.4259 0.5761 0.9480 0.9510
500 0.0053 −0.0041 0.0045 0.0087 0.2624 0.3636 0.9460 0.9480

1000 −0.0002 0.0004 0.0024 0.0045 0.1901 0.2576 0.9430 0.9420
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Table 7. Empirical bias, MSE, 95% CP, and 95% CL for the ECB QR model with β = 0.25 and τ = 0.50
for the indicated n and parameter with simulated data.

n Bias(β̂0) Bias(β̂1) Bias(β̂) MSE(β̂0) MSE(β̂1) MSE(β̂) CL(β̂0) CL(β̂1) CL(β̂) CP(β̂0) CP(β̂1) CP(β̂)

25 −0.0429 0.0319 −0.0166 0.2150 0.2637 0.0531 1.7293 1.8910 0.8087 0.9210 0.9260 0.6940
50 −0.0056 −0.0054 −0.0086 0.0798 0.1155 0.0305 1.1040 1.3311 0.6289 0.9380 0.9500 0.8060
100 −0.0070 0.0160 −0.0053 0.0431 0.0604 0.0147 0.8228 0.9506 0.4911 0.9550 0.9460 0.8700
200 −0.0007 -0.0009 −0.0023 0.0229 0.0310 0.0091 0.6091 0.6801 0.3655 0.9520 0.9490 0.8950
500 −0.0017 -0.0041 −0.0003 0.0096 0.0118 0.0038 0.3913 0.4336 0.2382 0.9560 0.9540 0.9300
1000 0.0008 -0.0013 0.0020 0.0049 0.0059 0.0019 0.2785 0.3076 0.1710 0.9590 0.9450 0.9420

Table 8. Empirical bias, MSE, 95% CP, and 95% CL for the ECB QR model with β = 0.75 and τ = 0.50
for the indicated n and parameter with simulated data.

n Bias(β̂0) Bias(β̂1) Bias(β̂) MSE(β̂0) MSE(β̂1) MSE(β̂) CL(β̂0) CL(β̂1) CL(β̂) CP(β̂0) CP(β̂1) CP(β̂)

25 −0.0501 0.0264 −0.1891 0.2898 0.3932 0.1172 1.9476 2.3130 1.0495 0.9120 0.9290 0.7404
50 −0.0283 0.0257 −0.1072 0.1507 0.2058 0.0638 1.4803 1.6950 0.8336 0.9260 0.9320 0.8029
100 −0.0165 0.0129 −0.0566 0.0955 0.1078 0.0322 1.1702 1.2454 0.6562 0.9300 0.9400 0.8805
200 −0.0105 0.0059 −0.0321 0.0540 0.0589 0.0169 0.8995 0.9262 0.4952 0.9440 0.9360 0.8958
500 −0.0007 −0.0005 −0.0150 0.0188 0.0209 0.0063 0.5222 0.5580 0.3107 0.9370 0.9470 0.9333
1000 −0.0013 0.0012 −0.0056 0.0090 0.0101 0.0028 0.3792 0.4032 0.2310 0.9370 0.9500 0.9306

6. Applications in Science and Education

This section provides two real data illustrations to show potential applications of the
CB distribution and ECB QR model. All datasets were collected via: OECD.Stat with link
https://stats.oecd.org/ (accessed on 1 May 2023).

The OECD.Stat provides data on various development themes, including demography,
education and training, health, labor, social protection and well-being, finance, as well
as agriculture and fisheries, for both OECD and nonmember economies. Among these,
we focus on two datasets. The first dataset includes the long-term unemployment rate
of various countries, while the second dataset comprises the educational attainment pro-
portion and better life index (BLI) measurements of different countries. We analyze the
relationship between the educational attainment proportion and BLI using our QR model.
All the datasets employed in this study are publicly available and can be secured directly
from: https://stats.oecd.org/index.aspx?DataSetCode=BLI2017 (accessed on 1 May 2023).

6.1. Application I

We analyze the proportion of long-term unemployment in different countries, defined
as the ratio of the number of individuals who have been unemployed for one year or
more to the total labor force (employed and unemployed individuals). We compare the
performance of four one-parameter distributions, namely CB, log-Bilal [12], unit Lind-
ley [14], and Topp–Leone (TL) [34], using indicators such as the estimated log-likelihood
(̂̀), AIC (Akaike information criterion), and BIC (Bayesian information criterion), as well
as Kolmogorov–Smirnov (KS), Cramer–von Mises (CM), and Anderson–Darling (AD)
goodness-of-fit statistics.

We report the results of the data analysis utilizing ML estimation in Table 9, which
shows that the CB distribution is the best model according to the lowest values of AIC, BIC,
AD, CM, and KS statistics. Plots of fitted PDF and CDF for the unemployment data are
provided in Figure 7.

https://stats.oecd.org/
https://stats.oecd.org/index.aspx?DataSetCode=BLI2017
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Table 9. ML estimate and standard errors, in parentheses, as well as ̂̀ and p-value of the goodness-
of-fit test, in brackets, with unemployment data.

Distribution β̂ ̂̀ AIC BIC AD CM KS

CB 0.261× 10−13

(0.13× 10−12)
92.8248 −183.6497 −182.0122 0.6018 0.1058 0.1332 [0.5097]

Log-Bilal 4.8700 (0.5694) 74.2699 −146.5399 −144.9023 5.7487 1.1128 0.3077 [0.0015]
TL 0.2996 (0.0486) 68.0997 −134.1995 −132.5619 35.2670 7.0160 0.7110 [< 0.001]
Unit-Lindley 29.7750 (4.8431) 92.2610 −182.5221 −180.8845 0.7448 0.1317 0.1532 [0.3344]
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Figure 7. Plots of fitted PDF (left) and CDF (right) for the unemployment data.

6.2. Application II

Now, we focus on the modeling ability of the ECB QR and compare its results with
those of the KW [17] and LEEG [19] QRs. The CDFs of the KW and LEEG distributions are,
respectively, given by

GKW(y; β, µ, τ) = 1−
(
1− yβ

) log(1−τ)

log(1−µβ) y ∈ (0, 1),

GLEEG(y; β, µ, τ) =
τyβ

(
µβ − 1

)
τ
(
µβ − yβ

)
+ µβ

(
yβ − 1

) , y ∈ (0, 1),

where µ ∈ (0, 1) is the quantile parameter, β > 0 is a parameter related to the shape of the
distribution, and τ is the known quantile level.

We investigate the relationship between the conditional quantile of educational at-
tainment and the independent variables, including homicide rate (HR), dwellings without
basic facilities (DWBF), and labor market insecurity (LMI) values of countries. The unit-
dependent variable employed in this study is the proportion of educational attainment.
This dataset was previously analyzed in [12] using the log-Bilal distribution for unit mean
response regression modeling. The QR based on µi is given by

µi =
eβ0+β1HRi+β2DWBFi+β3LMIi

1 + eβ0+β1HRi+β2DWBFi+β3LMIi
, i ∈ {1, . . . , 38},

where µi is the quantile for all models.
We obtain the QR results for different quantile levels such as τ = 0.25, τ = 0.5,

and τ = 0.75, separately. Tables 10–12 supply the results of the QR analysis for the different
quantile levels mentioned. The findings from these tables indicate that when inferring about
the ECB QR, all independent variables are statistically significant at any usual significance
level based on all quantile levels.
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The signs of β0 and β2 are positive, whereas the signs of β1 and β3 are negative.
Hence, all independent variables have effects on the educational attainment of the coun-
tries. Since a direct positive correlation between the educational attainment and DWBF
exists, as the educational attainment of countries increases, the DWBF increases as well.
Moreover, there are negative relationships between educational attainment and the HR
and LMI index, indicating that as the educational attainment of countries increases, the HR
and LMI index decreases. Furthermore, the ECB QR model has minimal AIC/BIC with
maximal log-likelihood values compared with other regression models at all quantile levels.
Consequently, we conclude that the best model is the proposed regression structure.

Table 10. Results of fitted regressions with quantile τ = 0.25 and model selection criteria for
educational data.

Parameter ECB KW LEEG
Estimate SE p-Value Estimate SE p-Value Estimate SE p-Value

β0 1.9160 0.3172 <0.0001 1.3473 0.1730 <0.0001 1.4199 0.1599 <0.0001
β1 −0.0914 0.0241 <0.0001 −0.0511 0.0130 <0.0001 −0.05588 0.0118 <0.0001
β2 11.1800 2.3920 <0.0001 2.0563 1.1999 0.0866 2.3612 1.3068 0.0708
β3 −21.2000 6.1390 <0.001 −7.1977 1.1596 <0.0001 −8.1841 1.7661 <0.0001
β 0.00058 0.0009 0.5367 7.0769 1.2104 <0.0001 9.1738 1.9582 <0.0001̂̀ 35.5794 33.5838 32.3569

AIC −61.1587 −57.1676 −54.7139
BIC −52.9708 −48.9797 −46.5259

Table 11. Results of fitted regressions with quantile τ = 0.50 and model selection criteria for
educational data.

Parameter ECB KW LEEG
Estimate SE p-Value Estimate SE p-Value Estimate SE p-Value

β0 2.3830 1.7410 <0.0001 1.9595 0.1795 <0.0001 1.9907 0.1903 <0.0001
β1 −0.0942 0.0207 <0.0001 −0.0639 0.0135 <0.0001 −0.0671 0.0134 <0.0001
β2 10.9300 2.2890 <0.0001 2.3783 1.2035 0.0481 2.8145 1.4914 0.0591
β3 −21.0700 1.8860 <0.0001 −8.9696 1.3384 <0.0001 −9.8119 2.0626 <0.0001
β 0.00097 0.0015 0.513 7.2166 1.2191 <0.0001 9.1091 1.9682 <0.0001̂̀ 34.6717 33.8642 32.2079

AIC −59.3433 −57.7286 −54.4158
BIC −51.1553 −49.5406 −46.2279

Table 12. Results of fitted regressions with quantile τ = 0.75 and model selection criteria for
educational data.

Parameters ECB KW LEEG
Estimate SE p-Value Estimate SE p-Value Estimate SE p-Value

β0 3.0897 0.2262 <0.0001 2.5204 0.2044 <0.0001 2.7506 0.2707 < 0.0001
β1 −0.0978 0.0229 <0.0001 −0.0772 0.0133 <0.0001 −0.0834 0.0157 <0.0001
β2 9.7876 1.8659 <0.0001 2.7295 1.5489 0.0708 3.5070 1.8068 0.0523
β3 −19.9055 1.4959 <0.0001 −10.0828 1.6659 <0.0001 −12.1760 2.6050 <0.0001
β 0.0022 0.0029 0.4530 8.2613 1.3396 <0.0001 9.0614 2.0043 <0.0001̂̀ 33.8923 33.6323 32.0757

AIC −57.7847 −57.2647 −54.1515
BIC −49.5967 −49.0768 −45.9635

Figures 8–10 display the QQ (empirical quantile versus theoretical quantile) plot of
the RQ residual for all QRs based on all quantile levels. These figures show that explaining
the unit-dependent variable by independent variables is remarkable, and there is a good fit
for the ECB QR model.
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Figure 8. QQ plots of the RQ residual for KW (left), LEEG (center), and ECB (right) models based on
τ = 0.25 quantile level with educational data, where circles indicate the observed data.
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Figure 9. QQ plots of the RQ residual for KW (left), LEEG (center), and ECB (right) models based on
τ = 0.50 quantile level with educational data, where circles indicate the observed data.
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Figure 10. QQ plots of the RQ residual for KW (left), LEEG (center), and ECB (right) models based
on τ = 0.75 quantile level with educational data, where circles indicate the observed data.
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7. Conclusions

This article presented new properties of the continuous Bernoulli distribution and
introduced its quantile regression model with an exponentiated structure. Our quantile
regression model incorporated independent variables that were associated with the quantile
of the dependent variable using a link function related to a logit structure. To assess the
performance of the estimators, we employed the Monte Carlo method under various
settings. Our results indicated that the estimators work well in statistical terms, and
additionally, the coverage probabilities approach the nominal value as the size of the
sample increases.

The adequacy of the continuous Bernoulli distribution, exponentiated continuous
Bernoulli quantile regression model, and other regression structures was compared by
analyzing two real datasets based on the better life index of the countries. The comparison
was carried out based on statistical indicators. Results indicated that the continuous
Bernoulli distribution and its associated quantile regression model demonstrated a good
coherence with the two sets based on real data, providing an alternative to other models
presented in the literature on the topic.

Our quantile regression model yielded similar results to the unit mean regression mod-
els presented in [12,13]. Other related works [35–37] proposed the unit log-log, transmuted
unit Rayleigh, and unit quantile regression models, respectively. These models analyzed
the educational attainment values of OECD countries with a unit-dependent variable and
reported a negative relationship between all responses and the independent variable of
homicide rate, which is consistent with the findings of our study.

The examination we conducted showed that the continuous Bernoulli distribution
can be very effective in analyzing data that are limited to the unit interval, whether or
not independent variables are present. The use of both quantile and mean regression
models can be easily carried out through the implementation of R codes by the authors of
this article.

There are several avenues for future research that can build upon the present investiga-
tion. One possible direction is to incorporate multivariate, functional, temporal, and spatial
structures, errors-in-variables, and partial least squares into the quantile regression frame-
work, as well as studying their influence on diagnostics [38]. Other potential areas of
investigation are the Tobit and Cobb–Douglas frameworks [39], which could be relevant
to the topic of this study. Additionally, the analysis of censored observations and frailty
models in the present context is another avenue for further research [40]. The authors
are currently analyzing these issues and their findings are expected to be available in the
future.
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