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Abstract: Recent studies have demonstrated the benefits of using fractional derivatives to simulate a
blood pressure profile. In this work we propose to combine a one-dimensional model of coronary
blood flow with fractional-order Windkessel boundary conditions. This allows us to obtain a greater
variety of blood pressure profiles for better model personalization An algorithm of parameter identi-
fication is described, which is used to fit the measured mean value of arterial pressure and estimate
the fractional flow reserve (FFR) for a given patient. The proposed framework is used to investigate
sensitivity of mean blood pressure and fractional flow reserve to fractional order. We demonstrate
that the fractional derivative order significantly affects the fractional flow reserve (FFR), which is
used as an indicator of stenosis significance.

Keywords: fractional derivative; parameter estimation; coronary hemodynamic; blood flow model;
mean arterial pressure; fractional flow reserve

1. Introduction

Atherosclerotic diseases of coronary vessels are the main reason for myocardial is-
chemia frequently resulting in disability or death. These diseases are mainly caused by
blockages due to an abnormal narrowing in a blood vessel—stenosis [1]. The choice of
medical treatment involves evaluation of stenosis significance, which may require invasive
measurements. To assess the severity of each stenosis case, clinicians use various hemody-
namic indices. The most popular and well-developed index is the fractional flow reserve
(FFR), which is a ratio between mean pressure distal (downstream) to stenosis and mean
aortic pressure during artificially induced hyperemia [2,3]. Stenoses with values of FFR
below 0.8 are considered to be significant and should be surgically treated.

Measuring FFR involves expensive pressure sensors and specialized equipment. Some
patients have multiple stenoses with complicated interactions. These problems led to the
development of coronary blood flow models capable of estimating FFR from coronary
computed tomography angiography (CCTA) and patient’s data (age, heart rate, stroke
volume, blood pressure, etc.). Some of these models are based on solving three-dimensional
Navier–Stokes equations [4], but in this work, we concentrate on one-dimensional (1D)
models of blood flow [5–8]. The 1D approach is less time-consuming, and it was shown that
3D and 1D FFR calculations demonstrate similar results [9].
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One-dimensional models with fractional derivatives can provide a compromise be-
tween accuracy and computational cost. Fractional-order models extend the concept of
differentiability and incorporate nonlocal and memory effects using a small amount of
parameters. This feature can be used to describe complex flows over different space and
time scales without splitting the problem into smaller subproblems. Fractional-order mod-
els have been proposed in hemodynamic applications. Some examples are the model of
blood flow in viscoelastic vessels [10,11] and the model of heat and mass transfer through
an arterial segment, which takes into account the interaction with a magnetic field [12].
Fractional derivatives are used to obtain a more realistic prediction of pulse wave forms,
which involves the development of parameter identification procedures [13,14]. The latter
task has become especially relevant in recent years with the development of computer
technology and increasing interest in inverse problems.

In order to extract the patient-specific data of coronary arteries, CCTA images are
used. However, there is no geometry data for arteries of systemic circles beyond coronary
vessels which can be accounted for in the model. One approach to resolving this issue
is to simulate the whole systemic circle with some averaged parameters [8]. This is a
physiologically based approach, and it requires a lot of computational resources and
includes many parameters that are difficult to estimate. Another option is to impose
pressure-derived boundary conditions directly on the inlet of coronary arteries [9], which
represents the impact of smaller arteries and microcirculation. This approach simplifies the
model but makes it difficult to investigate the effect of various heart conditions on coronary
blood flow. Another approach is to take into account the impact of smaller arteries and
microcirculation using a submodel coupled with the blood flow model in coronary arteries.
A popular choice is Windkessel-type models which are based on the representation of
blood vessels (or the whole systemic circulation) as elastic reservoirs with resistance [5].
This leads to small amount (from 2 to 4) of parameters to describe the influence of systemic
circulation. An alternative option, similar to the one we use in this work, is to include a
part of the aorta in the model and impose a boundary condition on the end of ascending
aorta [15]. This approach allows us to use cardiac output as an inlet boundary condition
and calculate pressure in the aorta.

Boundary conditions in blood flow models usually imitate the impact of smaller
arteries and microcirculation. A porous media-based approach was previously used to
simulate microcirculation [16], and fractional derivatives were used to describe flow in
porous media [17]. Fractional derivatives were also used to simulate blood flow in capillary
vessels [18].

We describe the flow in the systemic circle and microcirculation using Windkessel-
type boundary conditions that utilize fractional derivatives. Fractional derivatives have
already been used in Windkessel models to simulate hypertensive and normal blood
pressure profiles [14]. We propose to couple the Windkessel fractional derivative model
with a 1D coronary blood flow model to obtain a greater variety of aortic pressure profiles.
We demonstrate that the resulting shape of the aortic pressure profile allows for better
personalization of the model and affects the calculated FFR as well as the patient’s diagnosis.

2. Materials and Methods
2.1. Coronary Blood Flow Model

We simulated coronary blood flow and calculated the FFR with a 1D hemodynamic
model [19,20]. This model is based on the flow of incompressible viscous fluid through
a network of one-dimensional elastic tubes. The conditions for mass and momentum
conservation within the network are expressed as a system of hyperbolic equations for
each tube:

∂A
∂t

+
∂Au
∂x

= 0, (1)

∂u
∂t

+
∂

∂x

(
u2

2
+

P
ρ

)
= −8πµ

u
A

, (2)



Fractal Fract. 2023, 7, 373 3 of 14

where t is time, x is the coordinate along the vessel (tube), A = A(x, t) is the cross-sectional
area, u = u(x, t) is the velocity averaged over the cross-section, P = P(x, t) is the blood
pressure, ρ = 1.06 g/cm3 is the blood density, and µ = 4 cP is the blood viscosity. The
right-hand side of Equation (2) represents friction force. An additional relation between the
blood pressure and cross-sectional area of the vessel wall is required to close the system:

P(A) = ρwc2 f(A), f(A) =

exp
(

A
A0
− 1
)
− 1, A

A0
≥ 1

ln A
A0

, A
A0

< 1,
(3)

where ρw = 1.1 g/cm3 is the blood vessel wall density, A0 is the cross-sectional area of the
unstressed vessel, and c is elasticity index. The physiological meaning of c is the pulse wave
velocity or velocity of small disturbances propagated in the vessel wall [21]. Equation (3)
is an analytical approximation of the pressure–area curves obtained in experimental stud-
ies [22].

The computational domain consists of the aortic root, aorta, left coronary artery (with
branches), and right coronary artery (with branches). The diameters, lengths, and topology
of vessels can be extracted from CCTA scans. A simplified version of arterial network is
presented in Figure 1. We simulated stenosis as a separate segment with decreased diameter.

Figure 1. A simplified network of major coronary arteries. Segment 6 represents 66% stenosis. The
model parameters for each segment are presented in Table A1 in Appendix A. We impose cardiac
output function (Figure 2) on the inlet of segment 1. On the terminal ends of segments 4, 7, and 8, we
impose hydraulic resistance and outflow pressure (6). Boundary condition on the terminal end of the
aorta (segment 2) involves a 2-element Windkessel model (7) .

One-dimensional vessels are connected to each other in junction points to create an
arterial structure. The conditions of mass conservation and total pressure continuity are
imposed at the junction points:

∑
i

Qi = 0, (4)

ρu2
i

2
+ Pi =

ρu2
j

2
+ Pj, i 6= j. (5)

Equation (4) represents an algebraic sum of influxes and effluxes, where i is the index
of a vessel connected to a junction. ui, uj and Pi, and Pj in (5) are the velocities and blood
pressures of vessels with indices i and j near the junction point.
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Figure 2. Cardiac output function.

On the inlet of the aorta (segment 1 on Figure 1), we set cardiac the output as a periodic
time function Q(t) (Figure 2). The shape of the cardiac output was proposed in [23]. It can
be adjusted according to the patient’s heart rate (HR), stroke volume (SV), or other data
(peak-to-mean flow ratio, QT-interval).

On the outlet of coronary arteries (segments 4,7,8 on Figure 1), we impose a pressure
drop condition:

Pk − Pout = RkQk, (6)

where k is the index of a segment, Pk is the blood pressure at the boundary point, Qk
is the blood flux at the boundary point, and Rk is the hydraulic resistance, Pout is the
outflow pressure. Outflow pressure can be described as a value of blood pressure at which
the microcirculation between arteries and veins stops. It ranges between 20 and 60 mm
Hg [5] and can be adjusted according to the patient’s data. Resistances Rk are distributed
according to empiric Murray’s law through an algorithm described in [24]. Resistances
increase during the systolic phase to simulate contractions of myocardium tissue that
hinder coronary blood flow [19].

The boundary condition on the outlet of the aorta (segment 2 on Figure 1) differs from
boundary condition on the terminal coronary arteries (6) since the former one represents
the whole systemic circle as well as microcirculation. In order to describe the behavior of
the microcirculation vessels, the two-element Windkessel model [25] is extensively used:

Qa(t) =
Pa(t)− Pout

Ra
+ C

dPa

dt
, (7)

where Qa and Pa are the blood flow and pressure in the aorta, and Ra is the hydraulic
resistance of the systemic circle and microcirculation. In (7), compliance C is introduced.
which represents the ability of blood vessels to distend and store blood volume. Larger
values of C correspond to greater vessel elasticity. Compliance C can be adjusted according
to patient’s systolic and diastolic blood pressures, and resistance Ra can be derived from
the systemic vascular resistance—the ratio between mean blood pressure and cardiac
output [24]. The elastic index c from (3), on the other hand, increases with the rigidity of
the vessels and, thus, has a different physiological interpretation.

We solve the hyperbolic system (1) and (2) inside each vessel numerically with the
help of an explicit grid-characteristic method [26], which is monotone and first-order
accurate. Compatibility conditions imposed on junctions with Equations (4) and (5) and
boundary points with conditions (6) and (7) form the system of nonlinear equations which
is solved with the Newton method. Compatibility conditions are discretized implicitly with
a first-order approximation. Discretizations and convergence studies are presented in [27].

The described model can be used to calculate FFR at any point of the coronary arteries.
We calculate FFR as a ratio between mean pressure in the coronary artery distal to steno-
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sis (Ph
dist) and mean aortic pressure (Ph

aortic) during vasodilation of the coronary vessels
(hyperemia) [2]:

FFR =
Ph

dist

Ph
aortic

. (8)

Hyperemia is simulated by decreasing terminal resistances Rk by 70% [28]. FFR values
below 0.8 are considered to be significant. This means that the coronary vessel has an
abnormal narrowing (stenosis) that should be surgically treated.

By adjusting C and Pout in (6) and (7), we can reproduce patient’s systolic and diastolic
blood pressures. However, the range of possible blood profiles is quite limited. To improve
the mathematical model, additional elements can be introduced into the arterial structure
and the Windkessel model [8]. Instead, in this paper, we propose to use the fractional time
derivative in Equation (7).

2.2. Fractional-Order Boundary Conditions

We impose boundary condition on the terminal end of the aorta using the fractional-
order Windkessel model, which can be written as follows:

Qa(t) =
Pa(t)− Pout

Ra
+ CαDα

t Pa(t), (9)

where Dα
t is a fractional differentiation operator; α is a fractional differentiation order,

which is assumed to be between 0 and 2 in this work; and Cα is a pseudo-compliance
(pseudo-capacitance). Fractional differentiation order α determines the relative degree of
interaction between the capacitance of the microvasculature vessels, elastic compliance of
the vessels, and the dissipation forces inside them. This, in turn, defines the physiological
meaning of Cα.

Windkessel models with fractional derivatives were extensively studied before [13,29].
However, combining a one-dimensional hemodynamic model with the fractional-order
Windkessel boundary condition is a new approach that allows us to represent a greater
variety of storage and dissipation effects that can be represented with a single additional
parameter α.

A large number of different definitions have been proposed for the fractional differen-
tiation operator Dα

t [30]. We use the Caputo fractional derivative in this work:

Dα
t P(t) =

1
Γ(dαe − α)

t∫
0

P(dαe)(t′)
(t− t′)1+α−dαe dt′, (10)

where Γ is a gamma function, dαe is a ceiling of α (smallest integer greater than α), and
P(dαe)(t′) is a derivative with an integer order dαe. There are many other definitions of the
fractional derivative: the Atangana–Baleanu fractional integral [31], Riemann–Liouville
fractional derivative [32], Riesz derivative [33], etc. The choice of the Caputo fractional
derivative is due to its simplicity in representation (relative to other fractional derivatives)
and availability of well-studied numerical methods with approximation estimates for
various problems. Another useful representation derived in [34] can be obtained using
integration by parts in (10):

Dα
t P(t) =

1
Γ(−α)

t∫
0

P(t′)
(t− t′)1+α

dt′. (11)

This representation is valid for 0 < α < 2. We use it to approximate the integral in (11) with
a trapezoidal rule. For the interval [0, t] with a grid {tn = nτ : n = 0, 1, 2, .., N}, assuming
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a constant time-step τ and P(0) = 0, P′(0) = 0, numerical approximation of Dα
τ PN can be

expressed as

Dα
τ PN =

τ−α

Γ(2− α)

N

∑
n=0

an,N PN−n, (12)

where coefficients an,N are

an,N =


1, n = 0,
(n + 1)1−α − 2n1−α + (n− 1)1−α, 0 < n < N,
(1− α)N−α − N1−α + (N − 1)1−α, n = N.

The error and stability analysis of this numerical approximation was described in
detail in [30,35]. It was demonstrated that the order of approximation error is O(τ2−α).

We use an explicit approximation scheme for (9) with the discretization of fractional
derivative described above. This allows us to determine the blood pressure PN at the
terminal end of the aorta from the values of pressure and flux at the previous time steps.
Then, we calculate the outflow QN at the terminal end of the aorta using compatibility
conditions (1) and (2) and wall-state Equation (3).

2.3. Model Personalization

One of the most important problems in patient-specific blood flow modeling is to
identify the parameters of the model. Diameters, lengths, and overall arterial structure
can be extracted from CCTA images with the help of segmentation and skeletonization
algorithms [36]. Parameter c in (3) represents the pulse wave velocity and can be estimated
from the patient’s age, blood pressure, heart rate, and stroke volume with the help of
machine learning methods [20]. Terminal resistances Rk, Ra in (6), (7) and (9) are calculated
from systemic vascular resistance (the ratio between mean pressure and cardiac output)
and the diameters of the terminal arteries [24].

Outflow pressure Pout and compliance C in (7) are estimated to reproduce measured
systolic and diastolic blood pressure. A number of algorithms for Pout and C estimation
are presented in [25]. The following procedure to estimate these parameters is used in this
work. We calculate initial value of C as a ratio between stroke volume and pulse pressure
(PP = Psys − Pdia) and the initial value of Pout as 50% of diastolic pressure. After this, C
and Pout are iteratively adjusted until the measured diastolic and systolic blood pressures
match:

Pi+1
out = Pi

out
Ptrue

sys + Ptrue
dia

Pi
sys + Pi

dia
, Ci+1 = Ci Ptrue

sys − Ptrue
dia

Pi
sys − Pi

dia
. (13)

Adjustment of Cα in (9) is performed using the same procedure, but initial estimation
is usually less precise since the dimension and interpretation of Cα changes with α.

Unfortunately, relying solely on systolic and diastolic pressures may produce incorrect
diagnostic outcomes. For example, the hemodynamic significance of stenosis may vary for
the same values of systolic and diastolic pressures. In order to obtain more accurate esti-
mates, additional available information about the pressure profile, such as mean pressure,
must be taken into account.

We propose to estimate an additional parameter, fractional derivative order α, based
on the value of the mean pressure Pmean. To do this, we first iteratively adjust α to match
the mean pressure and then adjust Cα and Pout for each α to match the systolic and diastolic
blood pressures. After this, we calculate Pmean and compare it with the measured mean
pressure. If the calculated mean pressure is higher than the measured one, the order α
should be decreased, and vice-versa. As we will see from the results, the relationship
between α and Pmean is very close to linear. Therefore, in most situations, it is sufficient to
perform two preliminary calculations for α = 1 and α = 1.5 or α = 0.5 to estimate α, which
provides the appropriate value for the mean pressure.

The procedure of parameter identification described above is summarized on Figure 3.



Fractal Fract. 2023, 7, 373 7 of 14

Figure 3. Parameter identification procedure.

2.4. Patient Data

We tested the parameter identification procedure (Figure 3) on a publicly available
dataset [5]. This dataset contains data from ten patients, including the geometry of arterial
networks and the location stenoses in various coronary vessels. We kept the numeration
of patients from [5] but we excluded Patient 9 from our study since the measurement of
mean pressure is unavailable. As a result, our study included nine patients (Table 1 with 13
stenoses).

Table 1. Characteristics of the patient dataset (mean ± standard deviation). Details are presented
in [5]. θ = Pmean−Pdia

Psys−Pdia
is a measure of blood profile thickness

Characteristic Value

Number of patients 9
Number of males 5
Heart rate, bpm 69 ± 14

Systolic pressure Psys, mm Hg 141 ± 23
Diastolic pressure Pdia, mm Hg 73 ± 8
Mean pressure Pmean, mm Hg 103 ± 11

BMI, kg/m2 29 ± 4
θ 0.45 ± 0.10
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Figure 4 presents examples of two patient-specific structures for Patient 1 and Patient 4.
Table 2 presents patient metadata as well as measured FFR values. These two patients were
chosen based on the value θ, which is the measure of the blood profile thickness:

θ =
Pmean − Pdia
Psys − Pdia

. (14)

The average value of θ across all nine patients is θave = 0.45. Patient 1 has the lowest
value θ1 = 0.36, and Patient 4 has the closest to the average value θ4 = 0.44. As a result,
Patient 1 has the thinnest blood pressure profile and Patient 4 has the most typical profile.

Figure 4. Patient-specific network of coronary arteries: (a) patient 1 with 70% stenosis (segment
5) and (b) patient 4 with prolonged 50–60% stenosis (segment 5). Parameters of each segment are
presented in Tables A2 and A3.

Table 2. Characteristics of Patient 1 and Patient 4. Stroke volume (SV) was estimated from patient
age and BMI values presented in [5].

Patient 1 Patient 4

Age, years 80 68
HR, bpm 67 88
SV, mL 82 70

Psys, mm Hg 174 130
Pdia, mm Hg 76 66

Pmean, mm Hg 111 94
Stenosis location LAD LAD
Stenosis degree 70% 60%
FFR measured 0.89 0.82

3. Results
3.1. Blood Pressure and FFR Sensitivity to Order α

The proposed model was applied to calculate the blood pressure profiles for various
fractional differentiation orders α in a simplified network of coronary arteries (Figure 1).
We also calculated the FFR for 66% of the stenoses for various α.

First, we calculated aortic blood pressure for α = 1.0 and adjusted the model param-
eters to acquire the physiological systolic (125 mm Hg) and diastolic (75 mm Hg) blood
pressures. Then, we performed calculations for other values of α with the same set of model
parameters. The value of compliance C remains constant for various α. This is technically
incorrect since the physiological meaning and dimensional formula for C depend on α,
but it helps us to explore changes in pressure profiles with the change of α (Figure 5a).

Second, we adjusted C and Pout for each order α to obtain the same values of systolic
and diastolic blood pressures (Figure 5b). As α decreases, the pressure peak shifts to the
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left, and the pressure profile becomes thinner. This results in a drop in mean pressure.
Conversely, as α increases, the profile peak shifts to the right, the profile becomes thicker,
and the mean pressure grows.

Figure 5. Aortic blood pressure for various orders α. (a) All parameters, except for α, are fixed.
(b) Model parameters were adjusted to yield the same values of the systolic and diastolic blood
pressure.

Systolic and diastolic blood pressures are one of the most commonly available patient-
specific parameters. All blood profiles on Figure 5b have the same systolic and diastolic
blood pressures, but the mean pressures are different for each α. If the mean pressure
is available for a given patient, we can use it to select an appropriate α and calculate
FFR. Figure 6 demonstrates how the calculated mean pressure and FFR depend on α,
assuming that the systolic and diastolic blood pressures are the same (125/75 mm Hg). The
relationship between mean pressure and α is very close to linear within the considered
interval (from 0.25 to 1.5). Therefore, this simplifies the process of α identification from
patient’s mean pressure: if we calculate the mean pressures for any two values of α, we can
derive an appropriate α for a given mean pressure value using linear interpolation.

At the same time, FFR drops with increasing α (Figure 6b). This relation resembles
exponential decay. For 0 < α < 1, FFR drops rapidly from 0.95 (α = 0.25) to 0.78 (α = 1.0).
The threshold between the significant and insignificant lesions is 0.8, so the choice of α
affects the diagnostic outcome. For 1 < α < 2, FFR is almost constant.

Figure 6. Mean pressure and FFR for a simplified network of coronary arteries. (a) Mean pressure
and α. (b) FFR and α. The horizontal red line corresponds to FFR = 0.8—threshold value between
significant (FFR < 0.8) and insignificant (FFR > 0.8) stenoses .

3.2. Patient-Specific Calculations

In this section, we describe applying a parameter estimation algorithm (Figure 3)
to estimate FFR for nine patients (Table 1). We start with two examples: Patient 1 and
Patient 4.
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Patient 1 had stenosis in the left anterior descending artery (LAD) with a corresponding
measured FFR value of 0.89 and a mean aortic pressure of 111 mm Hg. Blood flow calcula-
tions for α = 1 (utilizing boundary condition (7)) yielded FFRα=1 = 0.83 and Pα=1

mean = 119
mm Hg. Then, we applied the proposed model with fractional-order Windkessel boundary
conditions (9) with the parameter identification procedure to fit the given systolic, diastolic,
and mean pressures. As a result, the following estimates were obtained: Pα=0.56

mean = 111
mm Hg was achieved for α = 0.56, and the resulting FFR was FFRα=0.56 = 0.87. The
error in FFR estimation was significantly reduced after applying optimization of α for
mean pressure.

Patient 4 had stenosis in the LAD with a corresponding measured FFR value of 0.82
and a mean aortic pressure of 94 mm Hg. Blood flow calculations for α = 1 (utilizing
boundary condition (7)) yielded FFRα=1 = 0.82 and Pα=1

mean = 94 mm Hg. No further
optimization was required in this case since the calculated mean pressure matched the
measured mean pressure with good accuracy. The calculated FFR value also matched the
measured one.

FFR estimations for other patients are presented in Table 3. The original approach to
estimate FFR involves a boundary condition (7) without fractional derivative. We ignored
the measured mean pressure and adjusted our model to achieve the measured systolic and
diastolic blood pressures. The fractional-order approach involves adjusting the fractional
derivative order to obtain measured mean pressure. The RMSE for the original approach
was 0.05, and the RMSE for the fractional order approach was 0.04. The RMSE was mainly
defined by large errors in the FFR estimations of patients 6, 8, and 10. We assumed that
stenosis degree and length were not identified properly for these patients. The FFR estima-
tion was improved for patients with a “thin” blood profile (θ < 0.4), including Patient 1,
Patient 5, and Patient 7. Patients 2, 3, 4, and 6 had am optimal fractional order αopt close to
1.0 (or equal to 1.0), so FFR estimations for both approaches were similar. The FFR estima-
tions for patient 6 were less precise for the fractional order approach, but the difference was
very small. Patients 8 and 10 had an optimal fractional order αopt > 1.0, and the FFR esti-
mation was similar for both approaches. This is due to the fact that FFR is almost constant
for α > 1.0 (Figure 6).

Table 3. FFR estimations for the patient dataset. Patient data: Pmean is the measured mean pressure,
mm Hg; θ is a measure of the pressure profile thickness (14); Loc. is a location of stenosis; FFR is
the invasively measured FFR. The original approach for FFR estimation (order α = 1.0): FFRα=1 is
the calculated FFR value with a boundary condition (7); Pest

mean is the calculated mean pressure with
order α = 1. The fractional derivative approach (order α = αopt) involves adjusting order α so that
the calculated mean pressure matches the measured one: FFRα=αopt is the calculated FFR value with
the boundary condition (9), and fractional order α = αopt; αopt is the optimal fractional order. Patient
9 was excluded due to the absence of a mean pressure measurement.

Patient Data Order α = 1.0 Order α = αopt
№ Pmean θ Loc. FFR FFRα=1 Pest

mean FFRαopt αopt

1 111 0.36 LAD 0.89 0.83 118 0.87 0.56
2 83 0.46 LAD 0.86 0.87 83 0.87 1.0
3 125 0.40 RCA 0.88 0.89 125 0.89 1.0
4 94 0.44 LAD 0.82 0.82 94 0.82 1.0
5 99 0.39 LAD 0.82 0.8 102 0.82 0.82
6 99 0.40 LADp 0.9 0.98 101 0.98 0.91

LADd 0.82 0.87 0.88
DA 0.81 0.84 0.85

7 98 0.37 LAD 0.75 0.68 102 0.71 0.78
LCx 0.84 0.82 0.85

8 110 0.51 LAD 0.88 0.92 107 0.92 1.3
LCx 0.89 0.97 0.96

10 108 0.51 LAD 0.72 0.81 90 0.8 1.85
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Results of the FFR estimation showed that the fractional-order approach provided
benefits for a certain group of patients (patients 1, 5, and 7) with a thin blood pressure profile.
These patients may have a common cardiovascular pathology. According to [14], low
fractional orders can be used to simulate the blood profiles of patients with hypertension.
Patients 1, 5, and 7 have a BMI > 30 kg/m2 which is a good predictor of hypertension.
However, their blood pressure levels are not the highest in the dataset. We need a larger
sample of patients to make further conclusions.

4. Discussion

We proposed coupling the well-established one-dimensional hemodynamic model of
coronary blood flow with a fractional-order boundary condition, as well as a procedure
for estimating its parameters. The fractional derivative can be a useful tool for more
accurate modeling of the pressure profile. The actual blood pressure profiles depend on
many factors, such as age, height, weight, medical history, and artery elasticity. The most
commonly available characteristics of blood pressure profiles are systolic and diastolic
blood pressures. Unfortunately, relying solely on these two values alone may produce
incorrect diagnostic outcomes. For example, the hemodynamic significance of stenosis may
vary for the same systolic and diastolic blood pressures. This fact has motivated researchers
to look for new tools to model blood pressure profiles.

We used the fractional derivative order to match calculated mean blood pressure with
the measured one. Adjusting mean pressure can be performed in other ways: introducing
a larger Windkessel model, expanding the arterial network, etc. The fractional-derivative
Windkessel model is a good compromise: we introduced a very small amount of new
parameters (1–2) and gained the ability to simulate a whole spectrum of dissipative and
storage mechanisms with the help of fractional order α. Our approach does require addi-
tional information on the blood pressure profile. These data can be obtained with simple
noninvasive procedures. Unfortunately, in many cases, these data are unavailable, and all
the pressure profile information is reduced to systolic and diastolic pressure values. This
was the case for Patient 9 who was excluded from our study.

The proposed approach has a number of shortcomings that need to be resolved in
the future. First, in some cases, the only data available regarding a patient’s pressure
profile were systolic and diastolic blood pressures. Identifying the fractional derivative
order α in this case would require a completely different approach that can be based on
other data, such as patient medical history. Second, calculating fractional derivatives
calls for significant computational resources. This negates one of the main advantages
of one-dimensional blood flow models—computational efficiency. Instead of the basic
approach presented in this work, new efficient numerical approximations can be used.
Third, the proposed approach should be tested on a larger number of patients with a wide
range of FFR values. The FFR is nearly constant for fractional differentiation orders α > 1,
so for some patients, its adjustment will be useless.

Further research will focus on integrating more efficient approaches to identify model
parameters and to approximate a fractional derivative. Other areas of work include col-
laborating with clinicians to find effective methods for pulse wave assessment and further
validation on a larger amount of patients. The proposed approach has great potential to
provide an alternative means to simulating arterial stiffness and pulse waves.
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Abbreviations
The following abbreviations are used in this manuscript:

CCTA coronary computed tomography angiography
DA diagonal artery
FFR fractional flow reserve
HR heart rate
LCA left coronary artery
LCx left circumflex artery
LAD left anterior descending artery
LADd distal part of the left anterior descending artery
LADp proximal part of the left anterior descending artery
RCA right coronary artery
RMSE root mean square error
SV stroke volume

Appendix A

Table A1. Parameters of the vessels for simplified structure (Figure 1).

Segment № Length, cm Diameter, mm c, m/s

1 3.2 22.0 7.5
2 5.0 25.0 7.5
3 1.3 3.9 9.0
4 6.0 2.8 9.0
5 3.0 3.0 9.0
6 0.7 0.9 9.0
7 4.0 0.3 9.0
8 7.5 3.0 9.0

Table A2. Parameters of the vessels for Patient 1 (Figure 4).

Segment № Length, cm Diameter, mm c, m/s

1 3.1 21.0 9.7
2 5.0 23.0 9.7
3 1.3 3.9 11.6
4 2.3 2.3 11.6
5 1.1 0.7 11.6
6 1.0 2.6 11.6
7 2.7 1.4 11.6
8 3.9 1.9 11.6
9 2.1 3.1 11.6
10 1.8 2.0 11.6
11 6.8 2.0 11.6
12 7.6 1.4 11.6
13 4.6 1.7 11.6
14 1.1 1.3 11.6
15 7.5 1.3 11.6



Fractal Fract. 2023, 7, 373 13 of 14

Table A3. Parameters of the vessels for Patient 4 (Figure 4).

Segment № Length, cm Diameter, mm c, m/s

1 2.9 21.0 8.8
2 5.0 22.0 8.8
3 0.6 2.4 10.6
4 0.9 3.0 10.6
5 2.3 1.3 10.6
6 2.2 2.0 10.6
7 9.7 1.9 10.6
8 2.8 1.3 10.6
9 4.7 1.8 10.6
10 3.0 3.0 10.6
11 6.5 2.2 10.6
12 9.4 2.8 10.6
13 1.2 1.6 10.6
14 4.6 1.3 10.6
15 9.9 1.7 10.6

References
1. Van der Wal, A.C. Coronary artery pathology. Heart 2007, 93, 1484–1489. [CrossRef] [PubMed]
2. Pijls, N.H.; de Bruyne, B.; Peels, K.; van der Voort, P.H.; Bonnier, H.J.; Koolen, J.J.B.J.; Koolen, J.J. Measurement of Fractional

Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses. N. Engl. J. Med. 1996, 334, 1703–1708. [CrossRef]
[PubMed]

3. Tebaldi, M.; Campo, G.; Biscaglia, S. Fractional flow reserve: Current applications and overview of the available data. World J.
Clin. Cases 2015, 3, 678–681. [CrossRef] [PubMed]

4. Norgaard, B.L.; Leipsic, J.; Gaur, S.; Seneviratne, S.; Ko, B.S.; Ito, H.; Jensen, J.M.; Mauri, L.; De Bruyne, B.; Bezerra, H.; et al.
Group NXTTS Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography
angiography in suspected coronary artery disease: The NXT trial (Analysis of Coronary Blood Flow Using CT Angiography:
Next Steps). J. Am. Coll. Cardiol. 2014, 63, 1145–1155. [CrossRef] [PubMed]

5. Carson, J.M.; Pant, S.; Roobottom, C.; Alcock, R.; Blanco, P.J.; Carlos Bulant, C.A.; Vassilevski, Y.; Simakov, S.; Gamilov, T.;
Pryamonosov, R.; et al. Non-invasive coronary CT angiography-derived fractional flow reserve: A benchmark study comparing
the diagnostic performance of four different computational methodologies. Int. J. Numer. Methods Biomed. Eng. 2019, 35, e3235.
[CrossRef]

6. Gognieva, D.; Mitina, Y.; Gamilov, T.; Pryamonosov, R.; Vasilevskii, Y.; Simakov, S.; Liang, F.; Ternovoy, S.; Serova, N.; Tebenkova,
E.; et al. Noninvasive assessment of the fractional flow reserve with the CT FFRc 1D method: Final results of a pilot study. Glob.
Heart 2020, 16, 837. [CrossRef]

7. Boileau, E.; Pant, S.; Roobottom, C.; Sazonov, I.; Deng, J.; Xie, X.; Nithiarasu, P. Estimating the accuracy of a reduced-order model
for the calculation of fractional flow reserve (FFR). Int. J. Numer. Methods Biomed. Eng. 2017, 34, e2908. [CrossRef]

8. Ge, X.; Liu, Y.; Yin, Z.; Tu, S.; Fan, Y.; Vassilevski, Y.; Simakov, S.; Liang, F. Comparison of instantaneous wave-free ratio (iFR) and
fractional flow reserve (FFR) with respect to their sensitivities to cardiovascular factors: A computational model-based study. J.
Interv. Cardiol. 2020, 2020, 4094121. [CrossRef]

9. Blanco, P.J.; Bulant, C.A.; Muller L.O.; Talou G.D.M.; Bezerra, C.G.; Lemos, P.A.; Feijoo, R.A. Comparison of 1D and 3D models
for the estimation of fractional flow reserve. Sci. Rep. 2018, 8, 17275. [CrossRef]

10. Craiem, D.O.; Rojo, F. J.; Atienza, J.M.; Guinea, G. V.; Armentano, R.L. Fractional calculus applied to model arterial Viscoelasticity.
Lat. Am. Appl. Res. 2008 38, 141–145.

11. Perdikaris, P.; Karniadakis, G.E. Fractional-order viscoelasticity in one-dimensional blood flow models. Ann. Biomed. Eng. 2014,
42, 1012–1023. [CrossRef]

12. Shah, N.A.; Vieru, D.; Fetecau, C. Effects of the fractional order and magnetic field on the blood flow in cylindrical domains. J.
Magn. Magn. Mater. 2016, 409, 10–19. [CrossRef]

13. Bahloul, M.A.; Laleg Kirati, T.M. Fractional-order model representations of apparent vascular compliance as an alternative in the
analysis of arterial stiffness: An in-silico study. Physiol. Meas. 2021, 42, 42. [CrossRef]

14. Bahloul, M.A.; Aboelkassem, Y.; Laleg-Kirati, T.M. Human Hypertension Blood Flow Model Using Fractional Calculus. Front.
Physiol. 2022 13, 838593. [CrossRef]

15. Carson, J.M.; Roobottom, C.; Alcock R.; Nithiarasu, P. Computational instantaneous wave-free ratio (IFR) for patient-specific
coronary artery stenoses using 1D network models. Int. J. Numer. Methods Biomed. Eng. 2019, 35, e3255. [CrossRef] [PubMed]

16. Coccarelli, A.; Prakash, A; Nithiarasu, P. A novel porous media-based approach to outflow boundary resistances of 1D arterial
blood flow models. Biomech. Model Mechanobiol. 2019, 18, 939–951. [CrossRef]

17. Zhou, H.W.; Yang, S. Fractional derivative approach to non-Darcian flow in porous media. J. Hydrol. 2018, 566, 910–918. [CrossRef]

http://doi.org/10.1136/hrt.2004.038364
http://www.ncbi.nlm.nih.gov/pubmed/17934012
http://dx.doi.org/10.1056/NEJM199606273342604
http://www.ncbi.nlm.nih.gov/pubmed/8637515
http://dx.doi.org/10.12998/wjcc.v3.i8.678
http://www.ncbi.nlm.nih.gov/pubmed/26301228
http://dx.doi.org/10.1016/j.jacc.2013.11.043
http://www.ncbi.nlm.nih.gov/pubmed/24486266
http://dx.doi.org/10.1002/cnm.3235
http://dx.doi.org/10.5334/gh.837
http://dx.doi.org/10.1002/cnm.2908
http://dx.doi.org/10.1155/2020/4094121
http://dx.doi.org/10.1038/s41598-018-35344-0
http://dx.doi.org/10.1007/s10439-014-0970-3
http://dx.doi.org/10.1016/j.jmmm.2016.02.013
http://dx.doi.org/10.1088/1361-6579/abf1b1
http://dx.doi.org/10.3389/fphys.2022.838593
http://dx.doi.org/10.1002/cnm.3255
http://www.ncbi.nlm.nih.gov/pubmed/31469943
http://dx.doi.org/10.1007/s10237-019-01122-8
http://dx.doi.org/10.1016/j.jhydrol.2018.09.039


Fractal Fract. 2023, 7, 373 14 of 14

18. Alotta, G.; Bologna, E.; Failla, G.; Zingales, M. A Fractional Approach to Non-Newtonian Blood Rheology in Capillary Vessels. J.
Peridyn. Nonlocal. Model 2019, 1, 88–96. [CrossRef]

19. Simakov, S.; Gamilov T.; Liang, F.; Gognieva, D.G.; Gappoeva, M.K.; Kopylov, P.Y. Numerical evaluation of the effectiveness of
coronary revascularization. Russian J. Num. Anal. Math. Mod. 2021, 36, 303–312. [CrossRef]

20. Gamilov, T.; Liang, F.; Kopylov, P.; Kuznetsova, N.; Rogov, A.; Simakov, S. Computational Analysis of Hemodynamic Indices
Based on Personalized Identification of Aortic Pulse Wave Velocity by a Neural Network. Mathematics 2023, 11, 1358. [CrossRef]

21. Matthys, K.S.; J. Alastruey, J.; Peiro, J.; Khir, A.W.; Segers, P.; Verdonck, P.R.; Parker, K.H.; Sherwin, S.J. Pulse wave propagation in
a model human arterial network: Assessment of 1D numerical simulations against in-vitro measurements. J. Biomech. 2007, 40,
3476–3486. [CrossRef] [PubMed]

22. Caro, C.; Pedley, T.; Schroter, R.; Seed, W.; Parker, K. The Mechanics of the Circulation, 2nd ed.; Cambridge University Press:
Cambridge, UK, 2011. [CrossRef]

23. Stevens, S.A.; Lakin, W.D.; Goetz, W. A differentiable, periodic function for pulsatile cardiac output based on heart rate and
stroke volume. Math. Biosci. 2003, 182, 201–211. [CrossRef]

24. Simakov, S.; Gamilov, T.; Liang, F.; Kopylov, P. Computational analysis of haemodynamic indices in synthetic atherosclerotic
coronary netwroks. Mathematics 2021, 9, 2221. [CrossRef]

25. Mariscal-Harana, J.; Charlton, P.; Vennin, S.; Aramburu, J.; Florkow, M.; Van Engelen, A.; Schneider, T.; Bliek, H.; Ruijsink, B.;
Valverde, I.; et al. Estimating central blood pressure from aortic flow: Development and assessment of algorithms. Am. J. Physiol.
Heart Circ. Physiol. 2020, 320. [CrossRef] [PubMed]

26. Magomedov, K.M.; Kholodov, A. S. Grid—Characteristic Numerical Methods; Nauka: Moscow, Russia, 1988; 287p. (In Russian)
27. Simakov, S.; Gamilov, T. Computational Study of the Cerebral Circulation Accounting for the Patient-specific Anatomical Features.

In Smart Modeling for Engineering Systems; Petrov , I., Favorskaya, A., Favorskaya, M., Simakov, S., Jain, L., Eds.; Springer: Cham,
Switzerland, 2019; Volume 133.

28. Lo, E.W.C. ; Menezes, L.J.; Torii, R. On outflow boundary conditions for CT-based computation of FFR: Examination using PET
images. Med Eng. Phys. 2020, 76, 79–87. [CrossRef]

29. Bahloul, M.A.; Laleg-Kirati, T.M. Assessment of Fractional-Order Arterial Windkessel as a Model of Aortic Input Impedance.
IEEE Open J. Eng. Med. Biol. 2020, 22, 123–132. [CrossRef]

30. Diethelm, K.; Ford, N.J.; Freed, A.D.; Luchko, Y. Algorithms for the fractional calculus: A selection of numerical methods. Comput.
Methods Appl. Mech. Eng. 2005, 194, 743–773. [CrossRef]

31. Liu, J.-B.; Butt, S.I.; Nasir, J.; Aslam, A.; Fahad, A.; Soontharanon, J. Jensen-Mercer variant of Hermite-Hadamard type inequalities
via Atangana-Baleanu fractional operator. AIMS Math. 2022, 7, 2123–2141. [CrossRef]

32. Jumarie, G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results.
Comput. Math. Appl.,2006, 51, 1367–1376. [CrossRef]

33. Haghighi, A.; Dadvand, A.; Ghejlo, H. Solution of the fractional diffusion equation with the Riesz fractional derivative using
McCormack method. Commun. Adv. Comput. Sci. Appl., 2014, 2014, 1–11. [CrossRef]

34. Elliot, D. An asymptotic analysis of two algorithms for certain Hadamard finite-part integrals. Ima J. Numer. Anal. 1993, 13,
445–462. [CrossRef]

35. Diethelm, K. Generalized compound quadrature formulae for finite-part integrals. IMA J. Numer. Anal. 1997, 17, 479–493.
[CrossRef]

36. Vassilevski, Y.; Olshanskii, M.; Simakov, S.; Kolobov, A.; Danilov, A. Personalized Computational Haemodynamics: Models, Methods,
and Applications for Vascular Surgery and Antitumor Therapy; Academic Press: Cambridge, MA, USA, 2020. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s42102-019-00007-9
http://dx.doi.org/10.1515/rnam-2021-0025
http://dx.doi.org/10.3390/math11061358
http://dx.doi.org/10.1016/j.jbiomech.2007.05.027
http://www.ncbi.nlm.nih.gov/pubmed/17640653
http://dx.doi.org/10.1017/CBO9781139013406
http://dx.doi.org/10.1016/S0025-5564(02)00200-6
http://dx.doi.org/10.3390/math9182221
http://dx.doi.org/10.1152/ajpheart.00241.2020
http://www.ncbi.nlm.nih.gov/pubmed/33064563
http://dx.doi.org/10.1016/j.medengphy.2019.10.007
http://dx.doi.org/10.1109/OJEMB.2020.2988179
http://dx.doi.org/10.1016/j.cma.2004.06.006
http://dx.doi.org/10.3934/math.2022121
http://dx.doi.org/10.1016/j.camwa.2006.02.001
http://dx.doi.org/10.5899/2014/cacsa-00024
http://dx.doi.org/10.1093/imanum/13.3.445
http://dx.doi.org/10.1093/imanum/17.3.479
http://dx.doi.org/10.1016/C2017-0-02421-7

	Introduction
	Materials and Methods
	Coronary Blood Flow Model
	Fractional-Order Boundary Conditions
	Model Personalization
	Patient Data

	Results
	Blood Pressure and FFR Sensitivity to Order alpha
	Patient-Specific Calculations

	Discussion
	Appendix A
	References

