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Abstract: The investigations of the discrete and fast linear canonical transform (LCT) are becoming
one of the hottest research topics in modern signal processing and optics. Among them, the fast
calculation of LCT for non-uniform data is one of key problems. Focus on this problem, a new fast
algorithm of the LCT has been proposed in this paper firstly by interpolation and approximation
theory. The proposed algorithms can calculate quickly the LCT of the data, whether the input
or output data is uniform. Secondly, the complexity and precision of derived algorithms have
been analyzed for different situations. Finally, the experimental results are presented to verify the
correctness of the obtained results.

Keywords: linear canonical transform; fast fourier transform; interpolation; approximation theory;
linear canonical series

1. Introduction

Linear canonical transform which is generated by second-order differential operators,
is a four-parameter class of linear integral transform [1,2],

FA(u) =

{∫ ∞
−∞ x(t)KA(t, u)dt, b 6= 0√
(d)ei cdu2

2 x(du), b = 0

where
KA(t, u) =

1
i2πb

ei a
2b t2−i tu

b +i d
2b u2

A = [a, b; c, d], ad− bc = 1, FA(u) is LCT of the function x(t). The LCT integral kernels
are Green functions of quadratic Hamiltonians that can be found in [3]. The research on
LCT was first proposed by Collins (1970) and Moshinsky (1971) [1,2]. It includes many
special cases, such as, the Fourier transform (FT), the fractional Fourier transform (FRFT),
the Fresnel transform, the Lorentz transform and scaling transform. The class of LCTs
are important in signal processing [4,5], computational and applied mathematics [6,7],
optics [8] and quantum mechanics [9]. Significant applications of LCT in signal processing
include radar system analysis, filter design, pattern recognition, image watermarking and
so on [10,11]. Basic theories of LCT have been developed that include convolution theorems,
sampling theorems, and uncertainty principles [12–14]. The numerical approximation of the
LCT is of importance in modeling first-order optical systems and many signal processing
applications. Therefore, the discrete and fast algorithms of the LCT are one of the most
important issues in practical applications.

After the continuous LCT has been introduced, therefore, the definition and fast imple-
mentation of the discrete linear canonical transform (DLCT) have been widely considered
by many researchers [15–28]. The existing algorithms can be divided into the following
categories. The one is the operator decomposition type, which decomposes an arbitrary
LCT operator into its special cases that have a fast algorithm [17,18,29]. The second is
the eigenvector decomposition type, which computes the LCT of a function by using the
eigenfunctions of the LCT [24,27]. The third is split basis algorithm, which decomposes
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the discrete transform matrix of LCT into smaller matrices iteratively [20,23]. All these
algorithms can effectively and rapidly calculate the entire spectrum in the LCT domain. In
recent years, the new LCT algorithms have been proposed, which can realize local spectrum
analysis of signals [30–32]. In addition to the above-mentioned algorithms, various other
fast algorithms have been proposed in [33–39]. These research results provide a good basis
for the further development of the DLCT toward meeting the requirements of practical
applications. Many aspects of the fast methods of the DLCT still need to be studied. To the
best of our knowledge, the existing discrete algorithms are required that both input and
output data are uniform sampling. However, for certain applications, the input or output
data is nonuniform. In these cases, the fast DLCT will be lost.

For overcome the aforementioned problems, in this paper, we present a set of fast
algorithms for computing nonuniform DLCT, namely,

f (tn) =
1√
−i2πb

N−1

∑
m=0

αme−i a
2b t2

n+i umtn
b −i d

2b u2
m (1)

where n = 0, 1, · · ·N, f (tn) ∈ C,αm ∈ C, tn ∈ [−bπ, bπ] , and um ∈ [−N/2, N/2− 1]. Ac-
cording to the sampling of the tn and um , we will operate under the following assumptions

• Uniform samples and non integer frequencies: In Equation (1) the samples are equi-
spaced, i.e., tj = j2π|b|/N, and the frequencies u0, · · · , uN−1 are non integer. This
corresponds to evaluating a generalized linear canonical series at equispaced points.

• Nonuniform samples and integer frequencies: In Equation (1), t0, · · · , tN−1 are noneq-
uispaced points in [−bπ, bπ] and the frequencies u0, · · · , uN−1 are integers.

• Nonuniform samples and non-integer frequencies: In Equation (1) , t0, · · · , tN−1 are
nonequispaced points in [−bπ, bπ] and the frequencies u0, · · · , uN−1 are non-integers.
This is the fully nonuniform transform and corresponds to evaluating a generalize
linear canonical series at nonequispaced points.

To develop various nonuniform fast LCT(NFLCT) for above issues, one has to exploit
a nonzero working precision of 0 < ε < 1 and makes careful approximations. The
approximation properties of the various approaches may be obtained by considering how
they perform on the linear canonical modes.

The rest of the paper is organized as follows: In Section 2, a brief review of the related
preliminaries is presented which are used in the design of the algorithms. The Section 3
is main results of this paper. In this section, we give an exact statement of the problem
and introduce some notation that is used. The algorithms are derived. Some numerical
examples are presented in Section 4 to illustrate the preference of the schemes. Finally,
conclusions are drawn in Section 5.

2. Preliminary

The linear canonical series (LCS) is a generalized form of Fourier series (FS), which
can reveal the mixed time and frequency components of signals. The basis function of LCS
is defined as [40]

ϕA,n(t) =

√
i
T

e−i a
2b t2−i d

2b (n2πb/T)2+i t
b (n2πb/T) (2)

where n = −∞, · · · ,−1, 0, 1, · · · ,+∞. Thus, {· · · , ϕA,−1(t), ϕA,0(t), ϕA,1(t), · · · } construct
an orthonormal basis. It can be observed that every basis function is a chirp function with
chirp rate −a/b, which is an aperiodic function. Therefore, the LCS is only applicable to
finite-length function. The LCS expansion of the finite-length function x(t) can be written as

x(t) =
∞

∑
n=−∞

CA,n ϕA,n(t) =
∞

∑
n=−∞

CA,n

√
i
T

e−i a
2b t2−i d

2b (n2πb/T)2+i t
b (n2πb/T) (3)

CA,n =

√
−i
T

∫ T/2

−T/2
x(t)ei a

2b t2+i d
2b (n2πb/T)2−i t

b (n2πb/T)dt (4)
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where t ∈ [−T/2, T/2] and CA,n are called LCS expansion coefficients with the parameter
matrix A.The LCS expansion coefficients are computed by the inner product of the function
and chirp basis function. The relationship between LCS and LCT is that the LCS expansion
coefficients are the sampled values of LCT, by

CA,n =

√
2πb

T
FA[x(t)](n

2πb
T

) (5)

The well-known FS is just a special case of LCS for the parameter matrix A = [0, 1;−1, 0].
In addition, we also presented some well results to be used in the remainder of the pa-
per [41].

Lemma 1. For any real α > 0 and complex z,

∫ ∞

−∞
e−αt2

eztdt =
√

π

α
ez2/4α (6)

Lemma 2. For any real α > 0 and r > 0,

∫ ∞

r
e−αt2

dt <
e−αr2

2αr
(7)

In the next section, the main results will be derived based on above facts.

3. Main Results
3.1. Exact Statement of the Problem and Information Description of the Algorithm
3.1.1. Exact Statement of the Problem

In the reminder of this paper, we will operate under the following assumptions:

1. u = {u0, u1, · · · , uN−1} and t = {t0, t1, · · · , tN−1} are finite sequences of real numbers.
2. um ∈ [−N/2, N/2− 1] for m = 0, 1, · · · , N − 1.
3. tj ∈ [−bπ, bπ] for j = 0, 1, · · · , N − 1.
4. α = {α0, · · · , αN−1}, f = { f−N/2, · · · , fN/2−1}, β = {β−N/2, · · · , βN/2−1},

g = {g0, g1, · · · , gN−1}, γ = {γ0, · · · , γN−1} and {h0, h1, · · · , hN−1} are finite se-
quences of complex numbers.

We will consider the problems of applying and inverting the LCT and its transpose. We
are interested in the transformations F, G: CN → CN and their inverse defined by formulate

f j = F(α)j =
N−1

∑
k=0

αke−i a
2b (

2bπ j
N )2+i uk

b
2π j
N −i d

2b u2
k (8)

for j = −N/2, · · · , N/2− 1, and

gj = G(g)j =
N/2−1

∑
k=−N/2

βke−i a
2b t2

j +i
ktj
b −i d

2b k2
(9)

For j = 0, 1, · · · , N − 1, we will also consider the more general transformation H :
CN → CN defined by the formula

hj = H(γ)j =
N−1

∑
k=0

γke−i a
2b t2

j +i
uktj

b −i d
2b u2

k (10)

More formally, we consider that give α, β, γ to find FA(α), GA(β), HA(γ) respectively.
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3.1.2. Information Description of the Algorithm

In this section, we give information outlines of algorithms for above problems. The al-
gorithms are based on the following principal steps. Any function e−ia/(2b)t2+iβt/b−id/(2b)β2

can be accurately represented on any finite interval on the real line using a small number of
terms of the eαt2

e−ia/(2b)t2+ikt/b−id/(2b)k2
and this number of terms of q is independent of

the value β. For the efficient calculation Equations (8)–(10), the following two ways will
be used,

• to approximate each e−iat2/2b+iumt/b−idu2
m/2b in term of a q-term LCS;

• to approximate the value of a LCS at each tn in terms of values at the nearest q
uniformly-spaced nodes.

The interpolation between equispaced and nonequispaced sets of points can thus be
performed in O(Nq) operations.

3.2. Derivation of Algorithms
3.2.1. Relevant Facts from Approximation Theory

The principal tool of this paper is a detailed analysis of the LCS of functions
φ : [−bπ, bπ]→ C given by the formula

φ(t) = e−αt2
e−i a

2b t2+i βt
b −i d

2b β2
(11)

where α > 1/2 and β are real numbers. The lemmas and theorems are presented in
the following.

Theorem 1. The functions φ(t) = e−αt2
e−i a

2b t2+i βt
b −i d

2b β2
, t ∈ (−bπ, bπ) can be approximated

by LCS, the error of the approximation can be obtained by the following inequality∣∣∣∣∣φ(t)− ∞

∑
k=−∞

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2

∣∣∣∣∣
< e−αb2π2

[
(1 +

1
π2b2 )(

8α(1 + 4b)
9

+ 2bπ + 2) + 1
] (12)

where k = −∞, · · · , ∞

ρA,k =

√
−i

2bπ
ei d

2b (k
2−β2)

√
π

α
e−

(β−k)2

4b2α (13)

a, b, c, d are linear canonical parameters, α > 1/2 and β are any real , q ≥ 4αb2π is even integer.

Proof. The kth LCS coefficient for φ(t) is denoted by σA,k,

φ(t) =

√
i

2bπ

∞

∑
k=−∞

σA,ke−i a
2b t2+i kt

b −i d
2b k2

(14)

where t ∈ (−bπ, bπ),

σA,k =

√
−i

2bπ

∫ bπ

−bπ
ei a

2b t2−i kt
b +i d

2b k2
φ(t)dt (15)

For any real α > 0 and complex z, we have the following equality

∫ ∞

−∞
e−αt2

eztdt =
√

π

α
ez2/4α (16)
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thus

σA,k =

√
−i

2bπ

∫ bπ

−bπ
e−αt2

e−i a
2b t2+i βt

b −i d
2b β2

ei a
2b t2−i kt

b +i d
2b k2

dt

=

√
−i

2bπ
ei d

2b (k
2−β2)

[∫ ∞

−∞
e−αt2

ei (β−k)t
b dt−

∫ −bπ

−∞
e−αt2

ei (β−k)t
b dt

−
∫ ∞

bπ
e−αt2

ei (β−k)t
b dt

]
=

√
−i

2bπ
ei d

2b (k
2−β2)

√
π

α
e−

(β−k)2

4b2α +

√
−i

2bπ
ei d

2b (k
2−β2)

[∫ bπ

∞
e−αt2

e−i (β−k)t
b dt

−
∫ ∞

bπ
e−αt2

ei (β−k)t
b dt

]
= ρA,k −

√
−i

2bπ
ei d

2b (k
2−β2)2

∫ ∞

bπ
e−αt2

cos[(β− k)t/b]dt

(17)

Rearranging Equation (17), we obtain

σA,k − ρA,k = −
√
−i

2bπ
ei d

2b (k
2−β2)2

∫ ∞

bπ
e−αt2

cos[(β− k)t/b]dt (18)

Owing to ∣∣∣∣2 ∫ +∞

bπ
e−αt2

cos[(β− k)t/b]dt + e−αb2π2
∫ bπ

−bπ
ei (β−k)t

b dt
∣∣∣∣

≤ 2
∫ +∞

bπ
e−αt2

dt + 2bπe−αb2π2
< 2bπe−αb2π2

(
1

2αb2π2 + 1)

< 2bπe−αb2π2
(

1
b2π2 + 1)

(19)

and integrating by parts, we have

2
∫ +∞

bπ
e−αt2

cos[(β− k)t/b]dt

= − 2b
β− k

e−αb2π2
sin [(β− k)π] +

4αb
β− k

∫ +∞

bπ
te−αt2

sin [(β− k)t/b]dt
(20)

After rearranging the terms in Equation (20) and integrating by parts again, we obtain∣∣∣∣∣2
∫ +∞

bπ
e−αt2

cos[(β− k)t/b]dt +
2be−αb2π2

β− k
sin[(β− k)π]

∣∣∣∣∣
=

∣∣∣∣ 4bα

β− k

∫ +∞

bπ
te−αt2

sin[(β− k)t/b]dt
∣∣∣∣

≤ 4b2α

(β− k)2

(
bπe−αb2π2

+
∫ +∞

bπ
e−αt2

dt +
∫ +∞

bπ
t · 2αte−αt2

dt
)

<
4b2α

(β− k)2

(
2bπe−αb2π2

+ 2
∫ +∞

bπ
e−αt2

dt
)
<

4b2αe−απ2b2

(β− k)2 (2bπ +
2

2αbπ
)

=
8b3παe−αb2π2

(β− k)2 (1 +
1

b2π2 )

(21)
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Therefore, we can obtain the following inequalities∣∣∣∣2 ∫ +∞

bπ
e−αt2

cos[(β− k)t]dt + e−απ2b2
∫ bπ

−bπ
ei(β−k)t/bdt

∣∣∣∣
<

8b3παe−αb2π2

(β− k)2 (1 +
1

b2π2 )

(22)

Due to Equations (19) and (22), we have the inequalities∣∣∣∣∣σA,k − ρA,k −
√
−i

2bπ
ei d

2b (k
2−β2) · e−απ2b2

∫ bπ

−bπ
ei(β−k)t/bdt

∣∣∣∣∣
<

∣∣∣∣∣
√
−i

2bπ
ei d

2b (k
2−β2)

∣∣∣∣∣ · 2bπe−αb2π2
(

1
b2π2 + 1) =

√
2bπe−αb2π2

(1 +
1

b2π2 )

(23)

∣∣∣∣∣σA,k − ρA,k −
√
−i

2bπ
ei d

2b (k
2−β2) · e−απ2b2

∫ bπ

−bπ
ei(β−k)t/bdt

∣∣∣∣∣
<

4b2α
√

2bπe−αb2π2

(β− k)2 (1 +
1

b2π2 )

(24)

for any t ∈ (−bπ, bπ), combination of Equations (14), (23), and (24), we have∣∣∣∣∣φ(t)− +∞

∑
k=−∞

ρA,k

√
−i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2 − e−αb2π2
e−i a

2b t2+i βt
b −i d

2b β2

∣∣∣∣∣
=

∣∣∣∣∣ +∞

∑
k=−∞

(σA,k − ρA,k)

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2 − e−αb2π2
e−i a

2b t2+i βt
b −i d

2b β2

∣∣∣∣∣
<

∣∣∣∣∣∣ ∑
k,|β−k|≥|bπ|

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2 4b2α
√

2bπe−αb2π2

(β− k)2 (1 +
1

b2π2 )

∣∣∣∣∣∣
+

∣∣∣∣∣∣ ∑
k,|β−k|<|bπ|

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2√
2bπe−αb2π2

(1 +
1

b2π2 )

∣∣∣∣∣∣
< ∑

k,|β−k|≥|bπ|

4b2αe−αb2π2

(k− β)2 (1 +
1

b2π2 ) + 2|bπ|e−αb2π2
(1 +

1
b2π2 )

< 4αb2e−αb2π2
(1 +

1
b2π2 )× 2

∞

∑
k=|bπ|

1
k2 + 2(bπ + 1)e−αb2π2

(1 +
1

b2π2 )

(25)

Due to
∞

∑
k=|bπ|

1
k2 <

1

|bπ|2
+
∫ ∞

|bπ|

1
t2 dt =

1

|bπ|2
+

1
|bπ| <

1 + 4b
9b2 (26)

and substituting Equation (26) into Equation (25), we obtain∣∣∣∣∣φ(t)− ∞

∑
k=−∞

ρA,k

√
−i

2bπ
e−i a

2b t2+i kt
b −i d

b k2 − e−αb2π2
e−i a

2b t2+i βt
b −i d

2b β2

∣∣∣∣∣
< e−αb2π2

(1 +
1

π2b2 )[
8α(1 + 4b)

9
+ 2bπ + 2]

(27)
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Then, we make use of the triangle inequality and Equation (27) to obtain∣∣∣∣∣φ(t)− ∞

∑
k=−∞

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2

∣∣∣∣∣
< e−αb2π2

[
(1 +

1
π2b2 )(

8α(1 + 4b)
9

+ 2bπ + 2) + 1
] (28)

Thus, the proof of the Theorem 1 is complemented.

According to Theorem 1, functions e−αt2
e−i a

2b t2+i βt
b −i d

2b β2
can be approximated by linear

canonical series whose coefficients are given analytically, and the error of the approximation
decreases exponentially as α increases.

The coefficients ρA,k in Equation (13) have a peak at k = [β] ([?] is the nearest integer
to ?), and decay exponentially as k → ±∞. We keep only the q + 1 largest coefficients,
where the integer q is chosen such as

q ≥ 4αb2π (29)

thus
e(−q/2)2/4b2 ≤ e−αb2π2

(30)

The following theorem provides a method for approximating functions φ(t) defined in
Equation (11) by a q + 1 term series, and estimates the truncation error under the conditions
Equation (29).

Theorem 2. The functions φ(t) = e−αt2
e−i a

2b t2+i βt
b −i d

2b β2
,t ∈ (−bπ, bπ) can be approximated by

q + 1 term linear canpnical series, and the truncation error can be obtained by the following inequality∣∣∣∣∣∣φ(t)−
[β]+q/2

∑
k=[β]−q/2

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2

∣∣∣∣∣∣
< e−αb2π2

[
(1 +

1
b2π2 )(

8α(1 + 4b)
9

+ 2bπ + 2) + 1 +
1

b
√

2π
(1 +

1
π
)

] (31)

where ρA,k is defined by Equation (13), a, b, c, d are linear canonical parameters, α > 1/2 and β are
any real, and q is an even integer such that q ≥ 4αb2π.

Proof. For any t ∈ (−bπ, bπ),∣∣∣∣∣∣φ(t)−
[β]+q/2

∑
k=[β]−q/2

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2

∣∣∣∣∣∣
<

∣∣∣∣∣φ(t)− ∞

∑
k=−∞

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2

∣∣∣∣∣
+

∣∣∣∣∣∣ ∑
k>[β]+q/2

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2

∣∣∣∣∣∣
+

∣∣∣∣∣∣ ∑
k<[β]−q/2

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2

∣∣∣∣∣∣

(32)
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Based on Equation (13) and the triangle inequality, we have∣∣∣∣∣∣ ∑
k>[β]+q/2

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2

∣∣∣∣∣∣
<

√
1

2bπ

∞

∑
k=[β]+q/2+1

1√
2bπ

∣∣∣∣ei d
2b (k

2−β2)

√
π

α
e−

(β−k)2

4b2α e−i a
2b t2+i kt

b −i d
2b k2
∣∣∣∣

=
1

2b
√

απ

∞

∑
k=[β]+q/2+1

e−
(β−k)2

4b2α <
1

2b
√

απ

∞

∑
k=q/2

e−
k2

4b2α

(33)

∣∣∣∣∣∣ ∑
k<[β]−q/2

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2

∣∣∣∣∣∣
<

√
1

2bπ

[β]−q/2−1

∑
k=−∞

1√
2bπ

∣∣∣∣ei d
2b (k

2−β2)

√
π

α
e−

(β−k)2

4b2α e−i a
2b t2+i kt

b −i d
2b k2
∣∣∣∣

=
1

2b
√

απ

∞

∑
k=[β]−q/2−1

e−
(β−k)2

4b2α <
1

2b
√

απ

∞

∑
k=q/2

e−
k2

4b2α

(34)

Because of real α > 0 and r > 0, we obtain

∫ ∞

r
e−αt2

dt <
e−αr2

2αr
(35)

Thus,

∞

∑
k=q/2

e−k2/4b2α < e−(q/2)2/4b2α +
∫ ∞

q/2
e−t2/4b2αdt < e−αb2π2

(1 +
1
π
) (36)

Substituting Equation (36) into Equations (33) and (34), we have∣∣∣∣∣∣ ∑
k>[β]+q/2

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i dk2

2b

∣∣∣∣∣∣+
∣∣∣∣∣∣ ∑
k<[β]−q/2

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i dk2

2b

∣∣∣∣∣∣
<

1
b
√

απ
e−αb2π2

(1 +
1
π
)

(37)

Substituting Equations (28), (37) into Equation (32), we obtain∣∣∣∣∣∣φ(t)−
[β]+q/2

∑
k=[β]−q/2

ρA,k

√
i

2bπ
e−i a

2b t2+i kt
b −i d

2b k2

∣∣∣∣∣∣
< e−αb2π2

[
(1 +

1
π2b2 )(

8α(1 + 4b)
9

+ 2bπ + 2) + 1 +
1

b
√

απ
(1 +

1
π
)

]
< e−αb2π2

[
(1 +

1
π2b2 )(

8α(1 + 4b)
9

+ 2bπ + 2) + 1 +
1

b
√

2π
(1 +

1
π
)

]
(38)

The following corollary describes that the function e−i a
2b t2+i βt

b −i d
2b β2

can be approxi-
mated by using a series of q + 1 terms.
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Corollary 1. Supposed that the conditions of Theorem 2 are satisfied. Then, multiplying both sides
of Equation (31) by eαt2

, we obtain∣∣∣∣∣∣e−i a
2b t2+i βt

b −i d
2b β2 − eαt2

[β]+q/2

∑
k=[β]−q/2

√
i

2bπ
ρA,ke−i a

2b t2+i kt
b −i d

2b k2

∣∣∣∣∣∣
< e−αb2π2(1−1/m2)

[
(1 +

1
π2b2 )(

8α(1 + 4b)
9

+ 2bπ + 2) + 1 +
1

b
√

2π
(1 +

1
π
)

] (39)

where t ∈ [−bπ/m, bπ/m],m ≥ 2 is an integer.

Finally, Theorem 3 makes use of a simple linear scaling to generalize the inequality
Equation (39) from [−bπ/m, bπ/m] to [−s, s],

Theorem 3. Let α > 1/2, β, s > 0 be real numbers and let m ≥ 2, q ≥ 4απ be integers. Then,
for any t ∈ [−s, s]∣∣∣∣∣∣e−i a

2b t2+i βt
b −i d

2b β2 − eα( bπt
ms )

2
[msβ/bπ]+q/2

∑
k=[msβ/bπ]−q/2

ρ′A,k

√
i

2bπ
e−i a

2b′ t
2+ik π

ms t−i dk2
2b ( bπ

ms )
2

∣∣∣∣∣∣
< e−αb2π2(1−1/m2)

[
(1 +

1
π2b2 )(

8α(1 + 4b)
9

+ 2bπ + 2) + 1 +
1

b
√

2π
(1 +

1
π
)

] (40)

where

ρ′A,k =

√
−i
2bα

ei d
2b (

bπ
ms )

2(k2−(msβ/bπ)2)e−
(msβ/bπ−k)2

4b2α (41)

Corollary 2. If a = d = 0, b = 1, c = −1 in Theorem 3, and the conditions of Theorem 3 are
satisfied. Then, for any t ∈ [−s, s]∣∣∣∣∣∣eiβt − eα( πt

ms )
2

[msβ/π]+q/2

∑
k=[msβ/π]−q/2

ρk

√
i

2π
eik π

ms t

∣∣∣∣∣∣
< e−απ2(1− 1

m2 )
[
(1 +

1
π2 )(

32α

9
+ 2π + 2) + 1 +

1√
2π

(1 +
1
π
)

] (42)

where ρk is defined by

ρk =

√
−i
2α

e−(βms/π−k)2/4α (43)

3.2.2. Implementation of Algorithms

In this subsection, the notations to be used for the detailed algorithm descriptions are
introduced. For an integer m ≥ 2 and a real number α > 0, we will define a real number
ε > 0 by

ε = e−αb2π2(1−1/m2)

[
(1 +

1
π2b2 )(

8α(1 + 4b)
9

+ 2bπ + 2) + 1 +
1

b
√

2π
(1 +

1
π
)

]
(44)

and we will denote by q the smallest even natural number such that

q ≥ 4πb2α (45)

For an integer m and a set of real number uk , we will denote by µk the neatest integer
to muk for k = 0, 1, · · · , N − 1,

ρ′A,k,n =

√
−i

2bαπ
ei d

2bm2 [(µn+k)2−(mun)2]e−
[mun−(µn+k)]2

4b2α (46)
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for n = 0, 1, · · · , N − 1, and k = −q/2, · · · , q/2.

Corollary 3. Setting s = bπ in Theorem 3, we obtain that∣∣∣∣∣e−i a
2b t2+i unt

b −i d
2b u2

n − eα( t
m )2

q/2

∑
k=−q/2

ρ′A,k,n

√
i

2bπ
e−i a

2b t2+i(k+µn)
t

mb−i d(µn+k)2

2bm2

∣∣∣∣∣ < ε (47)

for any n = 0, 1, · · · , N − 1, and any t ∈ [−bπ, bπ], where ε is defined by Equation (44).

For a given set of complex numbers αn, we will denote by τl the unique set of complex
coefficients such that

N−1

∑
n=0

αne−i a
2b t2+i unt

b −i d
2b u2

n

=
N−1

∑
n=0

αneα( t
m )2

q/2

∑
k=−q/2

ρ′A,k,n

√
i

2bπ
e−i a

2b t2+i(k+µn)
t

mb−i d(µn+k)2

2bm2

= e−i a
2b t2

eα( t
m )2
√

i
2bπ

mN/2−1

∑
l=−mN/2

τleiklt/bm

(48)

so that

τl = ∑
n,k,µn+k=l

αne−i d(µn+k)2

2bm2 ρ′A,k,n (49)

We denote by Tj a set of complex numbers defined by the formula

Tj =
mN/2−1

∑
l=−mN/2

τlei 2πl j
mN (50)

for j = −mN/2, · · · , mN/2− 1. Furthermore, the f̃ j is denoted by the formula

f̃ j = e−i a
2b (

2bπ j
N )2

eα(
2bπ j
mN )2

√
i

2bπ
Tj (51)

for j = −N/2, · · · , N/2.

Remark 1. Combing Equations (47)–(51) with the triangle inequality, we see that

∣∣∣ f j − f̃ j

∣∣∣ < 1√
2bπ

ε
N−1

∑
n=0
|αn| (52)

for j = −N/2, · · · , N/2, where f j is defined by Equation (8).

Thus, the implements of NFLCT for Equation (8) is Algorithm 1.
For an integer m and a set of real of numbers tj, we will denote by vj the nearest

integer to tjmN/(2π) for j = 0, 1, · · · , N − 1, and by Qj,k a set of real numbers defined by
the formula

Qj,k =
1

2π
√

α
e−[tjmN/2π−(vj+k)]2/4α (53)
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Algorithm 1 NFLCT for fast computation of Equation (8).

Input parameter A = [a, b; c, d], the {u0, u1, · · · , uN−1},{α0, · · · , αN−1}.
Choose precision ε α and q = d4πb2αe
for n = 0 : N − 1
Compute µn, the nearest integer to mun

for k = −q/2 : q/2
Calculate ρ′A,k,n and τµn+k according to
Equation (46) and Equation (49), respectively end
end
Comment: Evaluate τk Fourier Seres at uniform sampling in [−bmπ, bmπ]
using inverse FFT of size mN
Calculate Tj according Equation (50), for j = −mN/2, · · · , mN/2− 1
Comment: Scale the values at those points which lie in [−bπ, bπ]
for j = −N/2 : N/2− 1

f̃ j = Tje−ia/(2b)(2bπ j/N)2
eα(2bπ j/mN)2

√
i

2bπ Tj

end
Output: Approximate values f̃ j,j = −N/2, · · · , N/2− 1.
The total complexity is 2Nq + mN/2 log N + 3N

Corollary 4. Setting s = N/2 in Corollary 2, we obtain that∣∣∣∣∣eitjn − eα( 2πn
mN )2

q/2

∑
k=−q/2

Qj,kein(k+vj)2π/Nm

∣∣∣∣∣ < ε′ (54)

for j = 0, 1, · · · , N − 1 and n ∈ [−N/2, N/2],where ε is defined by

ε′ = e−απ2(1− 1
m2 )(5α + 28/3) (55)

For a given set of complex numbers {βn}, the {β′n} is a set of complex numbers
defined by the formula

β′n = βne−i d
2b n2+α(2πn/mN)2

(56)

for n = −N/2, · · · , N/2− 1, and by Ul a set of complex numbers defined by the formula

Ul =
N/2−1

∑
n=−N/2

β′nei2πnl/mN (57)

for l = −mN/2, · · · , mN/2. Furthermore, taking account of the periodicity of l, we will
denote by

{
g̃j
}

another set of complex numbers defined by the formula

g̃j = e−i a
2b (btj)

2
q/2

∑
l=−q/2

Qj,lUvj+l (58)

for j = 0, 1, · · · , N − 1

Remark 2. Combining Equations (54)–(58) with the triangle inequality, we obtain that

∣∣gj − g̃j
∣∣ < ε′

N−1

∑
n=0
|βn| (59)

for j = 0, 1, · · · , N − 1, where
{

gj
}

are defined by Equation (9).

Thus, the implements of NFLCT for Equation (9) is Algorithm 2.
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Algorithm 2 NFLCT for fast computation of Equation (9).

Input parameter A = [a, b; c, d], the {−N/2, · · · , N/2− 1}, {β−N/2, · · · , βN/2−1},
{t0, · · · , tN−1}.
Choose precision ε α and q = d4πb2αe
for j = 0 : N − 1
Compute vj, the nearest integer to tjmN/(2π)

Calculate β′j−N/2 = β j−N/2e−id/2b(j−N/2)2+α[(2π(j−N/2))/(mN)]2 according to Equation (56)
for k = −q/2 : q/2

Calculate Qj,k according to Equation (53).
end

end
Comment: Evaluate Fourier series at uniform sampling in [−bmπ, bmπ]
using inverse FFT of size mN
Calculate Ul = ∑N/2

n=−N/2 β′nei2πnl/mN , for l = −mN/2, · · · , mN/2− 1
Comment: Calculate approximate values at desired points in terms of the values at
equispaced points [−bπ, bπ]
for j = 0 : N − 1
for l = −q/2:q/2
g̃j = g̃j + Qj,lUvj+l
end
Output: Approximate values g̃j = e−ia/(2b)(btj)

2
g̃j,j = −N/2, · · · , N/2− 1.

The total complexity is Nq + mN/2 log2 N + 3N

Corollary 5. Setting d = N/2 in Corollary 2, we obtain that∣∣∣∣∣eintj/m − eα( 2πn
Nm2 )

2
q/2

∑
l=−q/2

Qj,le
i2πn

vj+l

m2 N

∣∣∣∣∣ < ε (60)

for any j = 0, 1, · · · , N − 1, and any n ∈ [−mN/2, mN/2− 1], ε is defined by Equation (44).

For a given set of complex numbers {γk},the
{

vj
}

is the unique set of complex coeffi-
cients such that

N−1

∑
n=0

γn

q/2

∑
k=−q/2

eα( t
m )2

q/2

∑
k=−q/2

ρ′A,k,n

√
i

2bπ
e−i a

2b t2+i(k+µn)
t

mb−i d(µn+k)2

2bm2

= e−i a
2b t2

eα( t
m )2
√

i
2bπ

mN/2−1

∑
l=−mN/2

vleilt/bm

(61)

so that

vl = ∑
n,k,ηn+k=l

γne−i d(µn+k)2

2bm2 ρ′A,k,n (62)

Here, we take t = t/b, then the Equation (61) can be rewritten as

N−1

∑
n=0

γn

q/2

∑
k=−q/2

eα( t
m )2

q/2

∑
k=−q/2

ρ′A,k,n

√
i

2bπ
e−i a

2b t2+i(k+µn)
t

mb−i d(µn+k)2

2bm2

= e−i a
2b (tb)

2
eα( tb

m )2
√

i
2bπ

mN/2−1

∑
l=−mN/2

vleilt/m

(63)
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where t ∈ [−π, π]. The {Vl} is a set of complex numbers defined by the formula

Vl =
mN/2−1

∑
k=−mN/2

vkeα(2πk/m2 N)e2πikl/m2 N (64)

for l = −m2N/2, · · · , m2N/2− 1.
Furthermore, the

{
h̃j

}
is another set of complex numbers defined by the formula

h̃j =

√
i

2bπ
eα(btj/m)2

e−i a
2b (tjb)2

q/2

∑
l=−q/2

Qj,lVvj+l (65)

for j = 0, 1, · · · , N − 1. Thus, the implement of NFLCT for Equation (10) is Algorithm 3.

Algorithm 3 NFLCT for fast computation of Equation (10).

Input parameter A = [a, b; c, d], the {u0, u1, · · · , uN−1}, {α0, · · · , αN−1}.
Choose precision ε α and q = d4πb2αe
for n = 0 : N − 1
Compute µn, the nearest integer to mun

for k = −q/2 : q/2
Calculate ρ′A,k,n and τµn+k according to Equation (46) and Equation (49), respectively.

end
end
Comment: Evaluate τk Fourier Seres at uniform sampling in [−bmπ, bmπ]
using inverse FFT of size mN
Calculate Tj according Equation (50), for j = −mN/2, · · · , mN/2− 1
Comment: Scale the values at those points which lie in [−bπ, bπ]
for j = −N/2 : N/2− 1

f̃ j = e−ia/(2b)(2bπ j/N)2
eα(2bπ j/mN)2

√
i

2bπ Tj

end
Output: Approximate values f̃ j,j = −N/2, · · · , N/2− 1.
The total complexity is 2Nq + mN log N + 3N

4. Simulations

In this section, some numerical examples are given to support our theoretical analysis
in the above section. All tests of numerical examples are implemented in Matlab R2016a.
Two measures of precision are selected for each algorithm,

E∞ = max
0≤j≤N−1

∣∣ f̃ j − f j
∣∣/ N−1

∑
j=0

∣∣αj
∣∣ (66)

E2 =

√√√√N−1

∑
j=0

∣∣ f̃ j − f j
∣∣2/

N−1

∑
j=0

∣∣ f j
∣∣2 (67)

where α is the input data, f is the result of a direct computation, and f̃ j is the result of
computation by proposed methods.

Example 1. Here we consider the transformation FA : CN → CN of Problem 1, as defined
Equation (8). In this example, j = −N/2, · · · , N/2− 1, u0, · · · , uN−1 were randomly distributed
on the interval [−N/2, N/2], and α0, · · · , αN−1 were generated randomly on the unit square in
the complex plane defined as

0 ≤ Re(z) ≤ 1, (68)

We take a = 2, b = 1, c = 3, d = 2; α = 0.5993, q = 14.
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We applied Algorithm 1 and direct method to this problem respectively. For different
N, we loop Algorithm 1 20 times, the error mean are presented in Table 1. The results show
that the precision is almost independent the length of input data.

Table 1. For different N, the error comparison between direct method and Algorithm 1.

N 64 128 256 512 1024

E∞ 0.0149 0.0084 0.0037 0.0024 9.7624× 10−4

E2 0.0536 0.0433 0.0271 0.0253 0.0141

Example 2. The Problem 2 as defined Equation (9) is considered for j = 0, · · · , N − 1. In this
example, t0, · · · , tN−1 were randomly distributed on the interval [−bπ, bπ], and βk = e−i2k2+i3mk ,
k = −N/2, · · · , N/2− 1, mk were distributed randomly on the interval [−N/2, N/2− 1].

We take the parameters a = 2, b = 1, c = 7, d = 4, the interpolate factors m = 2, the
terms of LCS q = 10, α = 0.646. For N = 64, we loop our algorithm 20 times, the results are
presented in Figure 1. It shows that the Algorithm 2 has almost the same effective as the
direct method. For different N, the results of E∞ and E2 are showed in Table 2. It suggested
that the precision of the Algorithm 2 is independent N. For different α and q, the errors are
presented in Table 3. It shows that the lager α and q is, the more accuracy of the Algorithm 2
is, and the rate of accuracy improvement is decreasing. The complexity of the Algorithm 2
dependents q and N. For m = 2 and different q, the calculation is plotted in Figure 2.
Therefore, we should not choose too big q according to the accuracy and complexity.

Table 2. Errorcomparison between the direct summation Equation (9) and the Algorithm 2 in case of
difference N.

N 64 128 256 512

E∞ 2.1569× 10−6 2.0019× 10−6 2.1367× 10−6 2.0761× 10−6

E2 2.1113× 10−6 2.2353× 10−6 2.2271× 10−6 2.0740× 10−6

Table 3. For fixed N = 64, error comparison between the direct summation Equation (9) and the
Algorithm 2 in case of difference α and q.

(α, q) (0.246, 4) (0.446, 6) (0.646, 10) (0.846, 12)

E∞ 0.0016 2.8818× 10−4 2.4913× 10−6 1.0767× 10−6

E2 0.0023 2.5009× 10−4 2.2433× 10−6 1.1986× 10−6

(a)

0
20

20

4

40

A
m

p
lit

u
d
e

2

60

times

10

frequency

80

0
-2

0 -4

(b)

0
20

20

4

40

A
m

p
lit

u
d
e

2

60

times

10

frequency

80

0
-2

0 -4

Figure 1. Cont.



Fractal Fract. 2023, 7, 353 15 of 18

(c)
0 5 10 15 20

times

0

1

2

3

4

5

6

E
∞

×10
-6

(d)
0 5 10 15 20

times

1

1.5

2

2.5

3

3.5

4

E
2

×10
-6

Figure 1. Twenty independent experiments. Amplitude (a) obtained by directly summation
Equation (10); (b) obtained by Algorithm 2. Error of amplitude between the direct summation
and Algorithm 2 (c) E∞; (d) E2.
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Algorithm2
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Figure 2. When m = 2, N = 526, complexity comparison between Algorithm 2 and direct summation
for different q.

Example 3. Here we consider the transformation G : CN → CN of the Problem 3 as defined
Equation (10). In this example, t0, · · · , tN−1 were randomly distributed on the interval [−bπ, bπ],
u0, · · · , uN−1 were randomly distributed on the interval [−N/2, N/2], and

γk = 2ei0.4u2
k+i2uk + ei0.4u2

k+i4uk + ei0.4u2
k−i4uk (69)

where k = 0, 1 · · · , N − 1, a = 0.234, b = 1.5, c = −0.5835, d = 0.5333; interpolation factor
m = 2; the terms of the linear canonical series q = 8 and the constant α = 0.245.

For N = 512, the Figure 3 shows the amplitude and error for this problem by direct
summation Equation (10) and Algorithm 3, respectively. It suggested that the Algorithm 3
has the almost same performance as the direct method. For different N, the Table 4 shows
the error E∞ and E2 between direct method and Algorithm 3 by cyclic algorithms 20 times.
The results show that the precision of Algorithm 3 is almost independent of the length of
input data.
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Figure 3. Twenty independent experiments. Amplitude (a) obtained by directly summation
Equation (10); (b) obtained by Algorithm 3. Error of amplitude between the direct summation
and Algorithm 3 (c) E∞; (d) E2.

Table 4. The error E∞ and E2 between direct method and Algorithm 3 by cyclic algorithms 20 times.

N 64 128 256 512 1024

E∞ 0.0089 0.0033 0.0025 0.0014 0.0014
E2 0.0343 0.0166 0.0162 0.0067 0.0102

From the above three examples, the errors produced by Algorithms 1–3 are com-
parable with those produced by the corresponding direct methods. we can see that the
numerical results coincide with the theoretical analyses which show the high efficiency of
the new method.

The results of this paper can be generalized in the following ways: the algprithms
of 1, 2 and 3 will allow the efficient application of linear transform F1, G1, H1 : CN → CM

defined by

F1(α)j =
N−1

∑
k=0

αke−i a
2b (

2bπ j
N )2+i uk

b
2π j
N −i d

2b u2
k (70)

for j = −M/2, · · · , M/2− 1, and

G1(g)j =
N/2−1

∑
k=−N/2

βke−i a
2b t2

j +i
ktj
b −i d

2b k2
(71)

For j = 0, 1, · · · , M− 1, we will also consider the more general transformation H :
CN → CN defined by the formula

H1(γ)j =
N−1

∑
k=0

γke−i a
2b t2

j +i
uktj

b −i d
2b u2

k (72)

The algorithms ofthis paper also assume that uk ∈ (−N/2, N/2), tj ∈ (−bπ, bπ).
Other distributions can be handle by partitioning the vectors u and t,treating each partition
separately and finally combining the results.
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5. Conclusions

In this paper, we have described three algorithms for computing DLCT for nonequis-
paced data based on the interpolation formulae and approximation theory, which transform
a function values from equispace to nonequispaced points. The complexity and precision
of derived algorithms are also presented. The simulation shows that the derived approach
is effective for computing nonuniform DLCT. The proposed algorithm can be viewed
as generalizations of discrete linear canonical transform, and will have a broad range of
applications in many branches of mathematics, science and engineering.
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