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Abstract: Multiplicative noise removal is a quite challenging problem in image denoising. In recent
years, hyper-Laplacian prior information has been successfully introduced in the image denoising
problem and significant denoising effects have been achieved. In this paper, we propose a new hybrid
regularizer model for removing multiplicative noise. The proposed model consists of the non-convex
higher-order total variation and overlapping group sparsity on a hyper-Laplacian prior regularizer. It
combines the advantages of the non-convex regularization and the hybrid regularization, which may
simultaneously preserve the fine-edge information and reduce the staircase effect at the same time.
We develop an effective alternating minimization method for the proposed nonconvex model via an
alternating direction method of multipliers framework, where the majorization–minimization algo-
rithm and the iteratively reweighted algorithm are adopted to solve the corresponding subproblems.
Numerical experiments show that the proposed model outperforms the most advanced model in
terms of visual quality and certain image quality measurements.

Keywords: image restoration; multiplicative noise; alternating direction method of multipliers;
hyper-Laplacian; overlapping group sparsity total variation

1. Introduction

Image noise removal is an extremely significant pre-processing step in the image-
processing task. Multiplicative noise frequently presents in synthetic aperture radars,
ultrasound imaging, and laser images, which causes image quality degradation. There-
fore, the problem of multiplicative noise removal is very important. Mathematically, the
degraded observation image model with multiplicative noise is represented as

f = u · η, (1)

where f denotes the degraded image, u denotes an original image, and the multiplicative
noise η follows a Gamma distribution with the probability density function (PDF):

P(η, L) =
LL

Γ(L)
ηL−1e−Lη , L > 1, (2)

where Γ(·) is a Gamma function, and L is an integer to represent the noise level. The smaller
the value of L, the more severe the damage of the noise becomes. The mean value of η is 1
and the variance of η is 1/L.

Variational methods are effectively used for removing multiplicative noise. Among
these variational methods, the total variation (TV)-based method is the best known and
the most popular and efficient, since it can effectively preserve the image edges while
suppressing noise [1,2]. In [3], a famous TV-based multiplicative noise removal model
(RLO model) with two equality constraints was first designed by Rudin et al., which can be
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addressed by a gradient projection algorithm. Unfortunately, the RLO model can only deal
with the noise that follows Gaussian distribution and cannot yield satisfactory recovery
results for Gamma distribution. For the removal of the multiplicative Gamma noise, Aubert
and Aujol [4] proposed the following variational model (the AA model) based on total
variational regularization:

min
u

{
α〈logu +

f
u

, 1〉+ ‖∇u‖1

}
, (3)

where α is a positive regular parameter. The problem (3) is a non-convex optimization
problem, so it is difficult to obtain a globally optimal solution. To overcome the effects of
non-convex objective functions, many researchers have considered many convex models
over the past decade. In [5–7], the authors used logarithm transforming to derive the
corresponding strictly convex model:

min
z

{
α〈z + f e−z, 1〉+ ‖∇z‖1

}
, (4)

where z = logu. In addition, Steidl and Teuber [8] chose to use the I-divergence as the data
fidelity term of the objective function and proposed a convex optimization model:

min
z

{
α〈z− f logz, 1〉+ ‖∇z‖1

}
. (5)

The advantage of the above model is that a nonlinear log transformation is not required.
By introducing an overlapping group sparsity total variation regularization term into
an I-divergence data fidelity term, Liu et al. [9] proposed the convex variational model
(“OGSTVD” for short) for removing multiplicative noise:

min
z

{
α〈logz +

f
z

, 1〉+ φ(∇z)
}

, (6)

where the φ(∇z) is the OGSTV regular function. They also illustrate the effectiveness of
their model in image restoration by some numerical results.

All of the above models are TV-based convex regularizer ones. Although many studies
showed that TV-based models have a good performance in keeping sharp edges, they
tend to produce undesired staircase effects. To compensate for these shortcomings, many
higher-order TV regularization terms are also proposed. By combining the first-order and
second-order TV, Liu [10] proposed a hybrid regularization model for multiplicative noise
removal. Shama et al. [11] proposed a model based on second-order total generalized
variational regularization (TGV) to remove multiplicative noise. Influenced by model (4),
Lv [12] proposed a TGV-based model (M-TGV for short) for multiplicative noise removal
with multilook M. To obtain high-quality recovered images, some non-convex regularizers
were introduced into the variational models. The non-convex regularizer can effectively
smooth the homogeneous region of the image while preserving the edge details of the image.
Chartrand [13] gives a non-convex optimization problem whose objective function is the lp
norm, giving an arbitrary sparse signal under the theoretical constitutability condition. The
models with non-convex regularizers can also be found in [14–17]. Extensive studies show
that the models with non-convex regularizers have outperformed the models with convex
regularizers in preserving the edges of the image.

Natural image gradients obey a heavy-tailed distribution, and hyper-Laplacian (HL)
prior is more approximated to the heavy-tailed distribution than the Gaussian or Laplacian
prior. Krishnan et al. [18] proposed a fast non-blurred image deblurring method based on a
super-Laplace prior. Many scholars studied multispectral image denoising [19–23] based on
the global spectral structure of the HL prior regularization term. Shi et al. [24] combined the
OGSTV and HL prior regularizer (OGSHL) to remove Gaussian noise. They showed that
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their proposed model can effectively utilize more texture information and find a satisfying
balance between suppressing staircase effects and recovering the structure information.

Using the above strategy as inspiration, we develop a novel hybrid regularization
model to eliminate multiplicative noise. The model combines the advantages of nonconvex
regularization and OGSHL regularization. More specifically, the model can be expressed
as follows:

min
z

{
α〈z− f log z, 1〉+ φOH(∇z) + ω‖∇2z‖p

p
}

, (7)

where the φOH(∇z) is the OGSHL regular function and 0 < p < 1. According to what
we know, there has been no attempt to combine overlapping group sparsity on a hyper-
Laplacian (OGSHL) prior with higher-order non-convex total variation regularizers to
remove multiplicative noise. The main contributions of this paper are summarized as
follows: (1) We propose a new hybrid regular denoising model that combines a non-convex
higher-order total variation and overlapping group sparsity total variation on a hyper-
Laplacian prior. It can suppress the staircase effect while retaining more image detail
information. (2) To make the optimization model easy to handle, we propose an efficient
alternating minimization method. (3) The experimental results verify that the proposed
method outperforms many state-of-the-art methods.

The remaining portions of this article are outlined below. Section 2 introduces the
definitions of the higher-order TV and an OGSHL. In Section 3, based on the alternating
direction method of multipliers, we develop an efficient algorithm to solve the correspond-
ing multiplicative removal problem. In Section 4, numerical results show the effectiveness
of the proposed method. In Section 5, a summary of the paper is presented.

2. Preliminaries

We present some relevant background knowledge in this section.

2.1. Second-Order TV

For any z ∈ Rm×n, zi,j denotes the intensity value of z at pixel (i, j)
for i = 1, · · · , m, j = 1, · · · , n. The definitions of the first-order forward and backward
difference operators are given below:

(
∇+

x z
)

i,j =

{
zi+1,j − zi,j i < m,
z1,j − zn,j i = m,

(
∇+

y z
)

i,j =

{
zi,j+1 − zi,j j < n,
zi,1 − zi,n j = n,(

∇−x z
)

i,j =

{
z1,j − zn,j i = 1,
zi+1,j − zi,j i > 1,

(
∇−y z

)
i,j =

{
zi,1 − zi,n j = 1,
zi,j+1 − zi,j j > 1.

By introducing the operators above, the second-order differential operator is expressed as(
∇−+xx z

)
i,j =

(
∇−x
(
∇+

x z
))

i,j,
(
∇−+yy z

)
i,j =

(
∇−y
(
∇+

y z
))

i,j,(
∇++

xy z
)

i,j =
(
∇+

x
(
∇+

y z
))

i,j,
(
∇++

yx z
)

i,j =
(
∇+

y
(
∇+

x z
))

i,j.

‖∇z‖1 = ∑
i,j
| (∇z)i,j |= ∑

i,j

√
(∇+

x z)2
i,j + (∇+

y z)2
i,j.

‖∇2z‖1 = ∑
i,j
| (∇2z)i,j |= ∑

i,j

√
(∇−+xx z)2

i,j + (∇++
xy z)2

i,j + (∇++
yx z)2

i,j + (∇−+yy z)2
i,j.
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2.2. Overlapping Group Sparsity on Hyper-Laplacian Prior

With respect to the two-dimensional image matrix z ∈ Rn×n, a K× K-point group is
defined in [25] as

z̃(i,j),K =


z(i−m1, j−m1) · · · z(i−m1, j + m2)

z(i−m1 + 1, j−m1) · · · z(i−m1 + 1, j + m2)
...

. . .
...

z(i + m2, j−m1) · · · z(i + m2, j + m2)

 ∈ RK×K,

where m1 =
⌊K−1

2
⌋

and m2 =
⌊K

2
⌋
,
⌊
t
⌋

denotes the nearest integer that is not nearer than
t. It is clear that z̃(i,j),K can be seen as a square block of continuous K × K sampling of
z. According to the dictionary parsimonious search, Liu et al. [25] arranged z̃ as a set of
column vectors z, i.e., z(i,j),K = z̃(i,j),K(:). Then, the two-dimensional overlapping group
sparsity regularizer is defined as

ϕ(z) =
n

∑
i,j=1

∥∥z(i,j),K
∥∥

2 =
n

∑
i,j=1

√√√√ m2

∑
k1,k2=−m1

| z(i + k1, j + k2) |2.

From the above definition, the definition of the overlapping group sparse total variation
φ(∇z) can be expressed as

φ
(
∇z
)
= ϕ

(
∇+

x z
)
+ ϕ

(
∇+

y z
)
.

The hyper-Laplacian prior theory has recently attracted much attention since it of-
fers a benign approximation to the heavy-tailed distribution of natural image gradients.
Kyongson et al. [26] define the OGS-HL regularizer φOH(∇z) by

φOH
(
∇z
)
= ϕOH

(
∇+

x z
)
+ ϕOH

(
∇+

y z
)
.

with

ϕOH(z) =
n

∑
i,j=1

∥∥ | z(i,j),K |r
∥∥

2 =
n

∑
i,j=1

√√√√ m2

∑
k1,k2=−m1

| z(i + k1, j + k2) |2r,

where |z(i,j),K|r is a vector whose elements are the r-th power of the absolute value of
the corresponding element, r is the scale parameter of the hyper-Laplacian distribution,
0 < r < 1, see [26]. If r = 1, φOH(z) = φ(z).

3. Proposed Method with Adaptive Parameter Adjustment

In the framework of the alternating direction method of multipliers (ADMM), the
variable splitting technique is used to solve the proposed model. We first introduce new
auxiliary variables w, v, and q. Then, the original unconstrained optimization problem (7)
can be converted into an equivalent constrained minimization problem as follows:

min
z,w,v,q

α〈w− f log w, 1〉+ φOH(v) + ω‖q‖p
p,

s.t. w = z, v = ∇z, q = ∇2z.
(8)
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We define the corresponding augmented Lagrangian function of (8) as follows:

LA(z, w, v, q; µ1, µ2, µ3)

=α〈w− f log w, 1〉+ φOH(v) + ω‖q‖p
p − µT

1 (w− z) +
β1

2
‖w− z‖2

2

− µT
2 (v−∇z) +

β2

2
‖v−∇z‖2

2 − µT
3 (q−∇2z) +

β3

2
‖q−∇2z‖2

2,

=α〈w− f log w, 1〉+ φOH(v) + ω‖q‖p
p

+
β1

2
‖w− z− µ1

β1
‖2

2 +
β2

2
‖v−∇z− µ2

β2
‖2

2 +
β3

2
‖q−∇2z− µ3

β3
‖2

2,

where βi(i = 1, 2, 3) are positive penalty parameters, and µi(i = 1, 2, 3) are the Lagrange
multipliers, respectively. The optimal solution of (8) can be obtained by finding the saddle
point of LA(z, w, v, q; µ1, µ2, µ3) under the framework of the ADMM. We alternately solve
the following subproblems in the framework:

wk+1 = argmin
w
LA(zk, w, vk, qk; µk

1, µk
2, µk

3),

qk+1 = argmin
q
LA(zk, wk+1, vk, q; µk

1, µk
2, µk

3),

vk+1 = argmin
v
LA(zk, wk+1, v, qk+1; µk

1, µk
2, µk

3),

zk+1 = argmin
z
LA(z, wk+1, vk+1, qk+1; µk

1, µk
2, µk

3),

and the Lagrange multiplier parameters are updated as follows:
µk+1

1 = µk
1 − β1(wk+1 − zk+1),

µk+1
2 = µk

2 − β2(vk+1 −∇zk+1),

µk+1
3 = µk

3 − β3(qk+1 −∇2zk+1).

Firstly, fixing z = zk, v = vk and q = qk, the w-subproblem is following optimization problem:

wk+1 = argmin
w
LA(w, qk, vk, zk; µk

1, µk
2, µk

3)

= argmin
w

α〈w− f log w, 1〉+ β1

2
‖w− zk −

µk
1

β1
‖2

2.
(9)

Using the Euler–Lagrange equation of (9), we can obtain the optimal solution of the
w subproblem:

α(1− f
w
) + β1(w− zk −

µk
1

β1
) = 0.

Then, the solution of w is

wk+1 =
1
2

{
(zk +

µk
1

β1
− α

β1
) +

√
(zk +

µk
1

β1
− α

β1
)2 +

4α f
β1

}
. (10)

Secondly, the q-subproblem is equivalent to the following nonconvex optimization problem:

qk+1 =argmin
q
LA(zk, vk, wk+1, q; µk

1, µk
2, µk

3)

=argmin
q

ω‖q‖p
p +

β3

2
‖q−∇2zk −

µk
3

β3
‖2

2.
(11)
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The q-subproblem (11) is rewritten as

qk+1 = argmin
q

τ‖q‖p
p +

1
2

∥∥∥q− yk
∥∥∥2

2
, (12)

where yk = ∇2zk +
µk

3
β3

, τ = ω/β3. In this paper, we adopted the the iterative re-weighted
`1 algorithm (IRL1) method [27] to solve this non-convex `p regularized problem (12).
As in [27], we approximated the nonconvex minimization (12) to the following weighted
`1 problem:

qk+1 = argmin
q

∑
i

ηi | qi | +
1
2

∥∥∥q− yk
∥∥∥2

2
, (13)

where η is a weight vector with each component of ηi =
τp

(|qk
i |+ε)1−p and ε > 0 is a number

close to zero. The minimization problem (13) has a optimal solution and is obtained by the
one-dimensional shrink operator:

qk+1 = max
{
| yk | −ηi, 0

}
◦ sgn(yk). (14)

Thirdly, the minimization of v-subproblem can be expressed as

vk+1 = argmin
v
LA(zk, wk+1, v, qk+1; µk

1, µk
2, µk

3)

= argmin
v

φOH(v) +
β2

2

∥∥∥v−∇zk −
µk

2
β2

∥∥∥2

2
.

(15)

By using the majorization–minimization (MM)[26], the problem (15) can be iteratively
solved as

vk+1 = arg min
v

β2

2

∥∥v− v0
∥∥2

2 +
r
2

∥∥Λ(vk)
(
| vk |r−1 � | v |

)∥∥2
2, (16)

where Λ(v) is a diagonal matrix whose elements of each diagonal are

[Λ(v)]l,l =

√√√√ m2

∑
i,j=−m1

( m2

∑
k1,k2=−m1

| v(s− i + k1, t− j + k2) |2r
) 1

2 ,

with l = (s− 1)n + t, for s, t = 1, · · · , n, and r ∈ (0, 1), � denotes element-wise multiplica-

tion, v0 = ∇zk +
µk

2
β2

. Therefore, the explicit optimal solution to the v subproblem is given
as follows:

vk+1 =

(
I +

r
β2

Λ(vk)TΛ(vk)S(vk)

)−1

v0, (17)

where I denotes an n2 identity matrix, and S(v) = diag(| v |2r−2).
Finally, the z subproblem can be simplified as

zk+1 = argmin
z
LA(z, vk+1, wk+1, qk+1; µk

1, µk
2, µk

3)

= argmin
z

β1

2

∥∥∥∥wk+1 − z−
µk

1
β1

∥∥∥∥2

2
+

β2

2

∥∥∥vk+1 −∇z−
µk

2
β2

∥∥∥2

2

+
β3

2

∥∥∥qk+1 −∇2z−
µk

3
β3

∥∥∥2

2
,

(18)
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By differentiating the minimization problem (18) directly, its optimal solution can be
obtained from the following Euler–Lagrange equation:(

β1 I + β2∇T∇+ β3(∇2)T∇2
)

zk+1

=β1

(
wk+1 −

µk
1

β1

)
+ β2∇T

(
vk+1 −

µk
2

β2

)
+ β3(∇2)T

(
qk+1 −

µk
3

β3

)
.

(19)

By using the fast Fourier transform, the optimal solution of (19) can be given as

zk+1 = F−1
(F (β1(wk+1 − µk

1
β1
) + β2∇T(vk+1 − µk

2
β2
) + β3(∇2)T(qk+1 − µk

3
β3
))

F (β1 I + β2∇T∇+ β3(∇2)T∇2)

)
. (20)

We give a detailed description of the proposed method (named Algorithm 1: NHOGSHL)
for removing multiplicative noise as follows.

Algorithm 1: NHOGSHL for image restoration under multiplicative noise

Input: f , α, ω, β1, β2, β3, K, Niter, ε = 10−5.
Initialize: k = 0, z0 = f , t0 = 1, µ0

1 = 0, µ0
2 = 0, µ0

3 = 0.

While ‖z
k+1−zk‖2
‖zk‖2

< ε

(1): Update wk+1 by solving (10);
(2): Update qk+1 by solving (14);
(3): Update vk+1 by solving (17);
(4): Update zk+1 by solving (20);
(5): Update µk+1

1 , µk+1
2 , µk+1

3

µk+1
1 = µk

1 − β1(wk+1 − zk+1),

µk+1
2 = µk

2 − β2(vk+1 −∇zk+1),

µk+1
3 = µk

3 − β3(qk+1 −∇2zk+1).

End
Output zk+1.

4. Numerical Experiments

In this section, we illustrate the effectiveness of the NHOGSHL model (7), compared
with the following three models: the CONVEX model in [28], the OGSTVD model in [9],
and the M-TGV model in [12]. The six gray-scale images shown in Figure 1, whose sizes are
all 256× 256, were used in the experiment. All the experimental results of this article were
obtained under MATLAB R2014a running Matlab code on a PC equipped with 4.00 GB
RAM and Intel(R) Core(TM) i5-6500U CPU(3.20 GHz). In addition to selecting the peak
signal-to-noise ratio (PSNR, unit: dB) as a quantitative and qualitative index to measure
image quality, the structural similarity index measurement (SSIM) [29] was also calculated
to assess the visual quality. They are defined as follows:

PSNR = 10log10

(
2552

1
n2 ‖ z0 − z ‖2

2

)
,

where z0 denotes the original image and z denotes the recovered clean image.

SSIM =
(2µz0 µz + c1)(2σz0z + c2)

(µ2
z0 + µ2

z + c1)(σ
2
z0 + σ2

z + c2)
,
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where µz0 and µz are the means of the z0 and z, respectively. σ2
z0 and σ2

z represent the
standard deviation of the z0 and z, respectively, and σz0z represents the covariance of the
z0 and z. c1 and c2 are normal numbers with denominator values close to zero. As the
PSNR value is higher, the SSIM value is nearer to 1, and the image recovery is better. In all
experiments, the stop criterion is set to

‖ zk+1 − zk‖2

‖zk‖2
< 10−5.

(a) (b) (c)

(d) (e) (f)

Figure 1. Test images: (a) Camera, (b) Peppers, (c) Boats, (d) Tulips, (e) Lin, (f) Man.

4.1. Parameters Setting

In this section, we will describe in detail the best values for the different parameters
α, ω, p, K, Niter, and r. We take three images of “Boats”, “Camera”, and “Lin” as examples
to illustrate the process of parameter selection. We added multiplicative noise level with
L = 20 to these three images.

First, we assume that the other parameters are known and let α change between 10
and 90, so as to determine the optimal value of parameter α. The variation in PSNR and
SSIM with the value of parameter α is plotted in Figure 2. We can see that when the α value
is around 60, the proposed method has the best effect. Similarly, the optimal value of ω
can be obtained. When the parameter ω is around 0.7, both PSNR and SSIM reach the
maximum. Therefore, the parameter ω was set to 0.7 in the following experiments.

Next, Figure 2 plots the PSNR and SSIM and the relationship between the parameters p
and r. From Figure 2, we can see that the optimal results can be obtained when p ∈ (0.5, 0.7)
and r = 0.8. Therefore, we set p = 0.6 and r = 0.8.

Finally, Figure 2 shows that the optimal value of the group size K = 3. The experimen-
tal results tend to converge to the optimum when the number of iterations is Niter > 10.
Therefore, we set Niter = 10 in our experiments.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2. (a–l) The PSNR and SSIM values with respect to the parameters α, ω, p, K, Niter, and r.

4.2. Experimental Results

In this section, we conducted some experiments to verify the good performance of
the proposed algorithm. Firstly, we gave the denoising results of the different methods
a noise level of L = 30 in Figure 3. Figure 3 shows that our method is more competitive
in both visual effect and quantitative analysis. We selected the region of the images (the
marked red box area in Figure 3) to enlarge to better observe the recovered image. As seen
in Figures 3 and 4, our method provides superior recovery for the structure of the restored
image. Next, in Figures 5 and 6, the recovery images of “Boats” and “Tulips” are shown for
four different methods at a noise level of L = 20. The other compared methods produce
staircase artifacts and lose a lot of detail, while our method successfully overcomes the
above shortcomings. Finally, under the noise level L = 10, the recovered images of “Lin”
and “Peppers” by the different methods are shown in Figures 7 and 8. As can be seen in the
figures, our method has a great advantage in restoring sharp edges, such as the earrings
of “Lin” and the terriers of “Peppers”. Compared with the two models, M-TGV and our
method have better performance in restoring detail information and texture structure.
Compared with the M-TGV method, our method can restore more details and textures.

To clearly highlight the competitiveness of our method, Figure 9 plots the fifth column
of the zoomed “Boats” image under the noise level L = 20. From the fitting results shown
in Figure 9, our method can obtain much better fitting results than the other three methods.

Tables 1–3 summarize all the PSNRs and SSIMs of the different methods under the
different noise levels. From the results in the tables, it is obvious that our method has a
higher PSNR and SSIM. These also demonstrate the effectiveness of our method in terms of
visual effect and quantitative analysis.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. Recovery results of four algorithms on different images with the noise at L = 30:
(a) Degraded. (b) CONVEX. (c) OGSTVD. (d) M-TGV. (e) NHOGSHL. (f) Degraded. (g) CON-
VEX. (h) OGSTVD. (i) M-TGV. (j) NHOGSHL.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. Zoomed-in region of Figure 3: (a) Degraded. (b) CONVEX. (c) OGSTVD. (d) M-TGV.
(e) NHOGSHL. (f) Degraded. (g) CONVEX. (h) OGSTVD. (i) M-TGV. (j) NHOGSHL.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. Recovery results of four algorithms on different images with the noise at L = 20: (a) De-
graded. (b) CONVEX. (c) OGSTVD. (d) M-TGV. (e) NHOGSHL. (f) Degraded. (g) CONVEX.
(h) OGSTVD. (i) M-TGV. (j) NHOGSHL.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Zoomed-in region of Figure 5: (a) Degraded. (b) CONVEX. (c) OGSTVD. (d) M-TGV.
(e) NHOGSHL. (f) Degraded. (g) CONVEX. (h) OGSTVD. (i) M-TGV. (j) NHOGSHL.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Recovery results of four algorithms on different images with the noise at L = 10: (a) De-
graded. (b) CONVEX. (c) OGSTVD. (d) M-TGV. (e) NHOGSHL. (f) Degraded. (g) CONVEX.
(h) OGSTVD. (i) M-TGV. (j) NHOGSHL.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Zoomed-in region of Figure 7: (a) Degraded. (b) CONVEX. (c) OGSTVD. (d) M-TGV.
(e) NHOGSHL. (f) Degraded. (g) CONVEX. (h) OGSTVD. (i) M-TGV. (j) NHOGSHL.
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Table 1. Summary of the results of PSNR values and SSIM values restored by different algorithms
under the noise level of L = 30.

Level Image
CONVEX [28] OGSTVD [9] M-TGV [12] NHOGSHL

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Tulips 25.23/0.7615 25.39/0.7609 27.14/0.8312 27.29/0.8344

Man 26.19/0.7527 26.08/0.7288 28.39/0.8326 29.04/0.8583

L = 30 Camera 25.91/0.7958 26.75/0.7930 29.06/0.8260 29.17/0.8453

Boats 26.74/0.7603 27.56/0.7869 27.87/0.7926 29.46/0.8372

Lin 30.88/0.8814 29.93/0.8468 32.47/0.8970 32.61/0.9194

Peppers 27.01/0.7922 27.40/0.7949 28.99/0.8186 29.56/0.8377

Table 2. Summary of the results of PSNR values and SSIM values restored by different algorithms
under the noise level of L = 20.

Level Image
CONVEX [28] OGSTVD [9] M-TGV [12] NHOGSHL

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Tulips 24.46/0.7310 24.89/0.7447 25.96/0.7822 26.04/0.7971

Man 25.63/0.7338 25.88/0.7211 27.07/0.7826 27.90/0.8212

L = 20 Camera 25.58/0.7870 26.16/0.7274 27.84/0.8113 28.13/0.8294

Boats 26.06/0.7434 26.77/0.7350 26.78/0.7623 28.35/0.8122

Lin 29.03/0.8696 29.39/0.8229 31.39/0.8983 31.82/0.9164

Peppers 26.28/0.7773 26.69/0.7474 27.90/0.8012 28.78/0.8220

Table 3. Summary of the results of PSNR values and SSIM values restored by different algorithms
under the noise level of L = 10.

Level Image
CONVEX [28] OGSTVD [9] M-TGV [12] NHOGSHL

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Tulips 22.85/0.6842 23.52/0.6845 24.38/0.7165 24.51/0.7466

Man 24.34/0.6968 24.48/0.6590 25.65/0.7280 26.46/0.7787

L = 10 Camera 23.78/0.7564 23.91/0.7214 26.30/0.7697 26.80/0.7986

Boats 23.91/0.6858 25.28/0.6817 25.05/0.6966 26.57/0.7553

Lin 26.67/0.8451 27.70/0.7851 29.50/0.8555 29.93/0.8835

Peppers 24.25/0.7401 25.22/0.7090 26.41/0.7650 27.03/0.7804

4.3. Convergence Analysis

In this section, we verify the convergence of our method. We plot the curves of SSIM
and RelErr values of the restored images versus the iterations under different noise levels
in Figure 10. As seen in Figure 10, the curves of relative error are stable as the number of
iterations rises.
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(a)

(b) (c)

(d) (e)

Figure 9. Slice of Boats (the 5th column) and their corresponding denoising results under the noise
level L = 20: (a) Noise image. (b) CONVEX. (c) OGSTVD. (d) M-TGV. (e) NHOGSHL.
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(a) (b)

(c) (d)

Figure 10. The SSIM and the ReErr values versus iteration in our model for different images with
different noise levels: (a) L = 20. (b) L = 30. (c) L = 20. (d) L = 30.

5. Conclusions

This paper presents a new nonconvex regularization model for multiplicative noise
removal. The new model employs non-convex `p norm regularization and OGSHL regular-
ization as a hybrid regularizer. An efficient alternating method is proposed based on an
MM algorithm and the iteratively reweighted algorithm to solve the NHOGSHL model
under the framework of ADMM. Numerical experiments demonstrate that the NHOGSHL
model is competitive against the compared methods. In future work, we hope to extend
this method to deal with problems related to removed mixed noises.
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