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Abstract: In this paper, a new box-counting method to achieve a highly specific topological finger-
printing of architecture in relation to the position of the observer and in the context of its surroundings
is proposed. Central to this method is the use of 360-degree spherical panoramas as a basis for fractal
measurement. Thus, a number of problems of the comparative analysis of the fractal dimension in
the field of architecture are explicitly and implicitly addressed, first and foremost being the question
of choosing image boundaries while considering adjacent vegetation, urban elements, and other
visually present objects for Gestalt analysis of a specific building. Second, the problem of distance and
perspective as part of the aesthetic experience based on viewer and object location were taken into
account and are addressed. The implications of the use of a spherical perspective as described in this
research are also highly relevant for other methods of aesthetic measures in architecture, including
those implementing collaborative design processes guided by digital tools and machine learning,
among others.

Keywords: aesthetic measure; architectural design; box-counting; fractal analysis; Gestalt quality;
spherical perspective; complexity

1. Introduction

The aim of this research was to ensure the repeatability of fractal analysis results of non-
orthogonal representations of architecture in street-space, be it in the form of photographs
or CAD-generated, 3D model-based imagery. This was formulated as a method that
uses 360-degree spherical panoramas as a basis for fractal measurement, which is called
spherical perspective box-counting. From here on, it is also referred to as spherical box-
counting. It is demonstrated as an exemplary implementation in the web-based platform
FRACAM (“Fractal Camera”) [1], and it was tested on six CAD-generated pictures based
on a parametric 3D model and thirteen spherical photographs depicting five exterior and
two interior spaces (see Section 3, Results).

Based on the hypothesis that architectural quality and architectural characteristics can
be linked to fractal characteristics, such as roughness, complexity, self-similarity, and scale-
invariance, not least by aesthetic rules connected to fractal theory [2–8], this paper describes
an extended fractal measurement method for evaluating the complexity of architecture us-
ing 360-degree spherical images. This method improves several aspects of the quantitative
evaluation of buildings—primarily represented as façades in the street space—by employ-
ing box-counting. The influence of the correct placement of the measurement grid over the
representation of the elevation is thereby minimized (which was previously achieved using
white border and grid displacement), which is necessary to find the minimum number of
covering boxes [9–11]—see Section 2.1.1 for more information. Moreover, the spherical
box-counting method proposed here takes into account the perspective non-orthogonal
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perception of the street space (see [12]) at the same time, eliminating the influence of a
deliberate choice of one specific image section.

360 degree spherical images provide an all-around view from a chosen location.
Buildings are not solely measured as isolated objects, but by taking their environment, be it
natural or man-made, into account.

The analysis is viewer-location specific for both photograph and model analysis; if pho-
tographs are used, then the values of the analysis are subject to influence by time of day,
season, and weather conditions (recently mentioned in [13]). Analyses that do not take per-
spective respective to viewer location—i.e., an approximation to actual observation—into
account do not have these limitations. However, they do have the weakness of focusing
on an idea about architecture as geometry and not the appearance of built architecture;
the central problem of abstract and actual architecture representation was discussed by
Vaughan and Ostwald [14]. To address the problems connected to fractal analysis of archi-
tecture as appearance, FRACAM was developed [1]; the spherical box-counting process on
the basis of photographs builds on this research.

The described method does enhance FRACAM but is not limited to implementation in
this software. It represents a general approach that eliminates the problem of deliberately
choosing a picture frame when dealing with vanishing point perspective imagery as a
basis for fractal analysis methods. The implementation of this method in the existing web
application FRACAM as an enhancement is exemplary.

As shown in Section 2.2, Spherical Representation, spherical box-counting can be ap-
plied to CAD models as a controlled environment, ensuring the repeatability of calculations
and their resulting values. Using computer-generated imagery based on 3D models allows
for including, e.g., time of day, season, and weather conditions and the like in a controlled
fashion. These aspects may be left aside to pinpoint specific layers of analysis separately
while preserving observer location-based representation.

1.1. Aesthetic Qualities, Fractal Geometry, and Architecture

Architecture is not least the pursuit of an aesthetic quality. In order to describe and
reach such an aesthetic quality, architects, designers, and mathematicians have developed
various theories that are considered valid due to centuries of application. These theories in-
clude proportion theory as well as color theory (e.g., [15–19]). They imply that if a designer
follows certain rules, e.g., the golden section as a system of measurement proportions to
relate whole form to detail, this may lead to a certain quality that links it to other (possibly
iconic) buildings. Although it is very likely impossible to objectify successful aesthetic
quality in its entirety, it is a sensible goal to conceive and improve measuring methods that
provide significant aid in developing aesthetic quality and making valuable judgments
about it on the grounds of complexity after materialization. It can be shown that the
box-counting method, originating from fractal theory, is one of these methods that can
make aesthetic quality more tangible (see [5,12,13]).

1.2. Architecture and Fractals

The word “fractal” is a term coined by Benoit Mandelbrot in the year 1975 [20] to
describe irregular, non-smooth curves. It also addresses phenomena and complex objects
difficult to capture using traditional terms, including fractal shapes of mountains and
snowflakes, fractal fluctuations in the healthy human heartbeat, fractal growth of cities,
medical diagnoses of, e.g., cancer, but also applications such as fractal image compres-
sion [3,9,21–24]. “Fractal” stems from the Latin verb “frangere” meaning “to break into
irregular fragments” and being “rugged” or “rough” in some fashion, which points to a
central property of fractals [25]. Other attributes include (statistical) self-similarity, i.e.,
parts resembling the whole, infinite complexity albeit describable with simple algorithms,
generation through iterations (meaning a transformation is applied to itself over and over
again), and a fractal dimension that exceeds the topological dimension [3,21]. Although the
literature does not provide one precise definition of fractals (see [26–28]), they appear to be
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closer to nature and share the attribute of irregularity that repeats itself geometrically across
many scales [21]. The latter is connected to human perception and pattern recognition
as described in cognitive sciences. Again and again, we find (statistically) self-similar
(at least in a certain range of scales), rough, and to some extent, complex objects that follow
a simpler basic description in their formation.

The phenomena studied by Mandelbrot can only be described with difficulty using
the Euclidean geometry that we are familiar with, an aspect that is underscored by the
quotation, “Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark
is not smooth” [3]. Therefore, he introduced what he called fractal geometry. If we take a
closer look at architecture, and in particular façades, it becomes obvious that some of the
properties that describe fractals also apply here. Accordingly, a “Gründerzeit” façade is
not smooth, but rather rough, and it is caused by cornices and other architectural details
(not least by openings such as windows and doors). “Gründerzeit” is a term used primarily
in Austria for the period between 1840 and 1918 in which buildings were erected in the style
of historicism “from the catalogue”. Moreover, gothic cathedrals are good examples for
fractal-like architecture in which the whole and its parts are held together by a basic theme,
the pursuit of heaven. These examples show architectural elements that suit different
distances from the viewer, i.e., there is always something to see on the right (human)
scale [7].

When it is stated that fractals are very complex, this basically means that zooming
in will reveal more and more of the object’s detail, a property that theoretically extends
to infinity. However, with nature, but also with architecture, infinity is not strict because
fractal properties are limited to a range of scales. The same holds true with self-similarity,
as natural and objects in the built environment are rather statistically self-similar (see [29]
and, e.g., [30]). i.e., smaller parts are not strictly scaled-down copies of the whole.

1.3. Spherical Perspective Systems

There are a number of spherical perspective systems possible to create a mapping
of objects in space regarded as a territory under scrutiny—each, as the map is not the
territory (see, e.g., [31]), representing a certain focus and a specific amount and quality of
loss of information in regard to the real objects as well as their location. The discipline of
cartography provides a rich solution space for roll-outs of spherical surfaces (see e.g., [32])
which provide the basis for spherical perspective systems that may be utilized for this task.

Although spherical perspective imagery is closer to one-eyed human vision than
straight–linear, vanishing-point perspective representations, it is important to note that this
research is not primarily concerned with the question of actual human visual experience
or artistic endeavor. In relation to the latter, spherical perspective is regarded by some as
being of questionable value (see e.g., [33]). The focus is rather on the advantages of a certain
kind of mapping of architecture in space to apply fractal analysis on images representing a
specific viewing position.

To comply with the VR systems and panorama imagery standards in use nowadays,
a combination of a cylindrical roll-out in the horizontal—according to the formula (1)
described and tested by Kulcke [34]—and a torus-like roll-out in the vertical direction from
a projection of an infinite orthogonal grid onto a sphere is used. This is the standard for
imagery used in VR applications (see Figure 1).

arccosp = arccos

√
cos2α

1− sin2α ∗ cos2ϕ
(1)

This method of unwinding the grid projected onto a sphere in two different ways
(on the x-and y-axis in a cylindrical-like fashion and on the z-axis in a torus-like fashion)
is yet another simplification of the reality of vision. To simplify analysis, a viewing angle
axis parallel to the equatorial plane was chosen for all images undergoing box-counting.
If the viewing angle axis, on the one hand, is turned around the z-axis, then the curvature
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of the object edges does not change in the resulting image. If the viewing angle axis, on the
other hand, is turned toward or away from the equatorial plane, then the represented edges
undergo a change of curvilinear distortion, which significantly affects the results of the
fractal analysis (see Figure 2).
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The 360-degree spherical perspective relates to the fractal by also providing potential
for compression (see, e.g., [35] (p. 458)). A 360-degree spherical perspective image contains
a (theoretically) infinite amount of straight–linear perspective images (see exemplary se-
lection in Figure 3). These also constitute mappings with a higher degree of abstraction
in relation to human perception than curvilinear perspective representations. However,
this research does not evaluate which vanishing point perspective model or box-counting
method does capture the actual human experience best. The 360-degree spherical per-
spective is thereby regarded as a specific topological fingerprint of a specific viewpoint in
relation to surrounding objects, such as buildings and vegetation.
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2. Materials and Methods
2.1. Box-Counting Method and Complexity

Unlike perfectly describable and smooth Euclidean figures, natural objects such as
roots of trees, coastlines, and mountains are rugged and offer the same irregularity at
smaller scales. Not only do fractals offer a better way to describe nature, but fractal geometry
also provides methods to measure such irregularity [3].

As mentioned in the introduction, complexity and irregularity are two characteristics
of fractals. Carl Bovill was the first who related the complexity of architecture to a measure-
ment technique called box-counting [36]. Since then, the method has been adapted to the
specifics of architectural purposes (see [1,5,12,13,37]).

2.1.1. Standard Box-Counting and Influences on the Method

Basically, the standard box-counting method measures the distribution of black pixels’
density in a black-and-white graphic across different scales. First, a grid of square boxes is
placed over the image, with the scale of the grid being indicated by the number of boxes in
the bottom row. The next step is to count all of the boxes that cover parts of the image. The
slope in a double logarithmic graph of scale and number of covering boxes corresponds to
the box-counting dimension [38]:

DB = lim
s→∞

 log(Ns)

log
(

1
2

)
n

(2)

The settings or the method itself can influence the result; however, these influences
can be minimized (for more information, see, e.g., [8,13,39]). These influences include, for
example, the first scale of the grid, i.e., the number of boxes in the bottom row. In principle,
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the number of starting boxes depends on the level detail in the image, with four boxes
proving to be a good starting scale [11]. The smallest scale affects the result as well. In
principle, the straight part in the double logarithmic graph defines the range of scales
(largest and smallest grid size), as a linear progression indicates that the two factors (scale
and covering boxes) are dependent on each other. Other influences derive from the white
space around the image, the reduction factor from one grid size to the next, or the position
of the grid in relation to the image, as the smallest number of covering boxes per scale is
looked for [9].

2.1.2. Differential and Improved Differential Box-Counting

The standard box-counting method is well-suited for (vector-based) elevations of
façades, but it has weaknesses when measuring color images or photographs in general
(e.g., they have to be turned into black-and-white images using a certain threshold first).
The so-called differential box-counting method [40] was developed to close the gap insofar
that grayscale images can be analyzed and not just black-and-white images. With this
method, the image is interpreted as a three-dimensional landscape, with the grayscale level
defining the z-coordinate (see Figure 4), where the bright pixels form the mountains and
the darker pixels define the valleys. Finally, to apply the box-counting method to grayscale
images, three-dimensional cubes are used for the grid instead of two-dimensional boxes; in
other words, a dimension for the grayscale level is added. The size of a single cube in the
grid is, therefore, (s × s × s) for a square image (M × M pixels), where (s) are pixels and (s)
are grayscale levels. This results in a dependency of the value (s) on the total number of
grayscale levels (G) where the following applies:

G
s
=

M
s

(3)
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In further consequence, the number of boxes that contain a black part are not counted,
but the difference between the maximum grayscale level value (l) and the minimum
grayscale level value (k) is calculated for each cell (i;j) in the grid. The scale of the grid is
defined by:

ε =
s

M
(4)

The difference of the minimum (k) and maximum (l) grayscale level value in one stack
of cubes is given by (see Figure 4):

nε(i, j) = l − k + 1 (5)
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Consequently, the total number of counted cubes for each grid size covering the entire
image surface amounts to:

Nε = ∑ nε(i, j) (6)

In order to be able to cover the entire range of grayscale levels, Formula (5) is modified
as follows (see [41]):

nε(i, j) =

{[
l−k−1

s

]
i f l 6= k

1 i f l = k
(7)

The improved differential box-counting dimension (DDBC) is, finally, similar to the
standard box-counting dimension given by the slope of the regression line in a double
logarithmic graph with the number of counted cubes (log(Nε)) versus grid scale (log

(
1
ε

)
)

(see Formula (2)).
The results can be improved by shifting the stacks of cubes in the x and y directions [41,

42]. In the case of stacks of cubes lying on the edge, the direction of the shift is reversed,
if necessary, in order to prevent the shift from leaving the picture. Because the original
position and the shifted one overlap, finally, the maximum value is searched for, which is
determined as follows:

nε = max
(

nε(original pos), nε(shi f ted pos)

)
(8)

According to Long et al. [42], four different cases occur when rectangular images
(M × N pixels) are superimposed with a grid, where (m × n pixels) is the size of a single
box in the grid:

1. M = m × ε and N = n × ε, indicating an even partitioning in the x- and y-directions;
2. M > m × ε and N = n × ε, indicating an uneven partitioning in the x-direction;
3. M = m × ε and N > n × ε, indicating an uneven partitioning in the y-direction;
4. M > m × ε and N > n × ε, indicating an uneven partitioning in the x- and

y-directions.

In order to calculate the number (nε), the base area (Si,j) and the height (p = G/ε) are
added to Formula (5) as follows:

nε(i, j) = ceil
((

l − k + 1
p

)
·
( Si,j

m·n

))
, (9)

2.1.3. Differential Box-Counting for Color Images

Based on the differential box-counting method described in the previous section,
the color components in a 24-bit representation of RGB color images are considered sep-
arately (Red, Green, Blue) (see [43]). For the sake of simplicity, each color component
is first converted to grayscale in order to apply the same process as before, leading to
(DDBC(Red), DDBC(Green), DDBC(Blue)). The corresponding smoothness (equal to 2) is de-
ducted from these results, leading to

DRed = DDBC(Red) − 2; DGreen = DDBC(Green) − 2; DBlue = DDBC(Blue) − 2 (10)

Finally, all components are added to smoothness (equal to 2) again:

Dcol = DRed + DGreen + DBlue + 2 (11)

2.1.4. Implementation

Both the (improved) differential box-counting method for grayscale images and the
(improved) differential box-counting method for color images were implemented in a web
application (each for square image sections and rectangular images with shifting stacks of
cubes) [1]. FRACAM (“Fractal Camera”, first version from 2017) was initially developed to
quickly analyze photographs taken with a mobile phone. This requires a balance between
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the qualitative output (the accuracy of the result) and the speed of the calculation (at best,
in real time). For this reason, the photograph is scaled down to a maximum side length of
512 pixels. In addition, the reduction factor from one mesh size to the next is 50 percent
(as a divisor of 512), which usually leads to about 6 to 8 different grid sizes per image (see
Figure 5). The lower bound of the range is user-selectable among values of 2, 4, or 8 pixels,
and the upper bound is 256, 128, or 64 pixels.
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Figure 5. Differential box-counting of the web application “FRACAM”, showing the castle of Ghent,
Belgium. (Left top, left middle): results, with DRed = 0.471, DGreen = 0.470, and DBlue = 0.466; with
CorrelationRed = 0.471, CorrelationGreen = 0.999949, and CorrelationBlue = 0.999921; DAverage = 2.469;
Dcol = 3.408; (left bottom): used box sizes; (right side): RGB separation.

FRACAM is primarily used to estimate the box count dimension (either using the
standard box-counting method for black-and-white images by using a threshold or the
differential box-counting applied to grayscale and color pictures either as photographs or
3D model-based renderings). We must be aware that no specific value can be assigned
to a building (not least because the box-counting dimension depends on the settings, the
measurement method employed, and environmental influences if photographs are used,
as mentioned in the introduction); however, a building can nevertheless be described by
the results of this measurement. The prerequisites are the definition of the settings and a
statistical description of the deviations of the values from the regression line (see graph
Figure 5 left). This describes the continuity of a characteristic complexity over several scale
ranges and the degree of complexity.

FRACAM includes the following implementation of differential box-counting (as of
October 2022 after a revision):

Grayscale Images

1. Grayscale DBX M ×M (m × m): The original photograph is reduced and cropped to
a section of 512 × 512 pixels (M × M). In the case of a rectangular original image,
the section can be freely selected in one direction using a slider. Because the original
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image is a square of 512 × 512 side lengths, the boxes of the grid are also square
(m × m).

2. Grayscale DBX M × N (m × n): With this method, the original photograph is scaled
to an image with a maximum side length of 512 pixels while maintaining the aspect
ratio (M × N) and portion. Box sizes are based on the shorter side of the image. The
longer side is divided by this box size and rounded down to get an integer number of
boxes. The aspect ratio of a box in the grid can then also be rectangular (m × n) and
not square.

3. Grayscale DBX M ×M (m × m) (shifting boxes): This method is similar to the first,
i.e., a square image section (M × M) is considered, and the boxes are square (m × m)
as well, but this time, the stacks of cubes are moved in the x and y directions. This
improves the results [41,42].

4. Grayscale DBX M × N (m × n) (shifting boxes): This method is the same as number 2
but with moved stacks of cubes.

5. Grayscale DBX M× N (m× m) (shifting boxes) (images will be distorted to 512× 256):
This method was developed in the year 2022 to meet the requirements of measuring
spherical images. Here, the original image is adjusted to a rectangle of 512 × 256
pixels (M × N; this corresponds exactly to the aspect ratio of 1:2 of a spherical image).
The box sizes, in turn, are square (m × m).

Color Images

1. Color DBX M×M (m× m) (shifting boxes): Analogously to method 3 of the grayscale
images, a square section (M × M) is examined with a square grid (m × m).

2. Color DBX M × N (m × n) (shifting boxes): Analogously to method 4 of the grayscale
images, the aspect ratio of the original image is preserved (M × N) and examined
with a rectangular grid (m × n).

3. Color DBX M × N (m × m) (shifting boxes) (images will be distorted to 512 × 256):
Analogously to method 5 of the greyscale images, the original image is deformed to a
size of 512 × 256 pixels and examined with a square mesh.

Both groups of methods, the “Grayscale DBX” and the “Color DBX” methods, are
based on the conversion of the initial image to grayscale. In the former case, the input
can be a color image that is initially converted to 256 levels of gray. In the latter case,
a color image is initially separated into three color channels (RGB), which are then each
converted to 256 levels of gray. The default conversion is based on the average of the color
components of each pixel in question:

Grayscale =
(

R + G + B
3

)
(12)

It follows that a pure red (RGB = 255/0/0), a pure green (RGB = 0/255/0), and a pure
blue (RGB = 0/0/255) image result in the same grayscale level (G = 85; brightness = 51%).
A calculation of the box-counting dimension with the previously mentioned methods
“Grayscale DBX” and “Color DBX” leads to a result of 2 in each case. This is because there
is only one grayscale level for the entire image (i.e., there are no mountains and valleys).

Other conversion methods take into account the different perceptions of colors in
relation to brightness, e.g., the weighted method, which is also called the luminosity
method [44]. This method weighs red, green, and blue according to their wavelengths.
In this case, the ratio change is as follows:

Grayscale = 0.299·R + 0.587·G + 0.114·B (13)

In the updated 2022 version of FRACAM, it is possible to choose and apply these differ-
ent calculation methods of grayscale conversion. However, one must be aware that this will
produce different results because the mountains and valleys are differently pronounced.
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Simplified, this calculation looks like this:

if (grayCalculationNo == 0) {
//weighted grayscale conversion
col = (0.299 × d[i + 0] + 0.587 × d[i + 1] + 0.114 × d[i + 2]);

} else if (grayCalculationNo == 1) {
//standard
col = (d[i + 0] + d[i + 1] + d[i + 2])/3;

}

2.1.5. Surroundings and Vegetation

Applying box-counting to spherical representations rids the analysts of a crucial
problem, i.e., to choose a specific frame and, thus, a certain and subjectively selected part of
the architectural, topographical, and vegetational context.

2.2. Spherical Representation

To scrutinize the influence of object complexity regarding the fractal dimension in
360-degree spherical perspective images, the production of such images in CAAD software
as a controlled environment was applied. The software Blender allowed for an easy export
of spherical images based on a 3D model and a defined camera position and viewing
angle. The default dimensions for the exported representations were changed to an image
proportion of 1 to 2. To verify the underlying formula for the calculation of the image in
Blender, an overlay of the spherical grid, as described by Kulcke (for more details, see [34]),
over an exported image was used for positive visual verification (Figure 6).

Fractal Fract. 2023, 7, x FOR PEER REVIEW 10 of 20 
 

 

𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 =  0.299 ∙ 𝑅 + 0.587 ∙ 𝐺 + 0.114 ∙ 𝐵, (13)

In the updated 2022 version of FRACAM, it is possible to choose and apply these 
different calculation methods of grayscale conversion. However, one must be aware that 
this will produce different results because the mountains and valleys are differently pro-
nounced. 

 
Simplified, this calculation looks like this: 

if (grayCalculationNo == 0) { 
 //weighted grayscale conversion 
 col = (0.299 × d[i + 0] + 0.587 × d[i + 1] + 0.114 × d[i + 2]); 
} else if (grayCalculationNo == 1) { 
 //standard 
 col = (d[i + 0] + d[i + 1] + d[i + 2])/3; 

}  

2.1.5. Surroundings and Vegetation 
Applying box-counting to spherical representations rids the analysts of a crucial 

problem, i.e., to choose a specific frame and, thus, a certain and subjectively selected part 
of the architectural, topographical, and vegetational context. 

2.2. Spherical Representation 
To scrutinize the influence of object complexity regarding the fractal dimension in 

360-degree spherical perspective images, the production of such images in CAAD soft-
ware as a controlled environment was applied. The software Blender allowed for an easy 
export of spherical images based on a 3D model and a defined camera position and view-
ing angle. The default dimensions for the exported representations were changed to an 
image proportion of 1 to 2. To verify the underlying formula for the calculation of the 
image in Blender, an overlay of the spherical grid, as described by Kulcke (for more de-
tails, see [34]), over an exported image was used for positive visual verification (Figure 6). 

 
Figure 6. Spherical perspective rendering produced in Blender with an overlay of curves represent-
ing the first and third dimensions according to the formula in [34] (cylindrical roll-out) and the sec-
ond dimension in vertical lines according to the torus-like roll-out of the grid in this direction. 
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dimension in vertical lines according to the torus-like roll-out of the grid in this direction.

2.3. Special Implications of the Method

Although straight–linear perspectives would require a plane of infinite size to entirely
capture the objects and surroundings visible at a specific 360-degree viewpoint location,
the spherical perspectives provide a holistic topological fingerprint. They conserve the
focal angle and the direction of the center axis of the viewing angle as static representations;
thus, in regard to eye or camera movement, the picture is truly arrested in time. To capture
all possible foci of one location, an infinite number of finite size images would be needed
(with infinitely fine resolution, as a matter of fact). Although focal directions and image
expansion are both dependent on their specific resolution—the first defining the singular
stepping and the second defining the number of visual units per unit of plane expanse
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(e.g., dpi)—the latter might take the matter of viewpoint to object distance and area-specific
perspective distortion into account.

The spherical image thereby delivers a positional fingerprint representing the visual
of a specific position in space, limited by location but overcoming the picture frame as
a deliberate boundary. Furthermore, there is the possibility to even take the fingerprint
of visual edge focus into account, as the entire system is represented by vanishing lines
with changing curvature according to movement of the center of the camera angle. This
change of curvature delivers a change in the fractal measure resulting from the box-counting
method applied to such positional and focal fingerprints, as represented by spherical images
(see Section 1.3, Spherical Perspective Systems, and Figure 2). The focal fingerprinting
could be limited to images that represent the standard viewing angle of human beings in
future research.

It is possible to merge aspects discussed from a perspective of technical feasibility
with Viktor von Weizsäcker’s ideas on the circularity of trigger (Reiz), movement (Bewe-
gung), and sensing (Wahrnehmung) [45], which he called Gestaltkreis (Gestaltcircle). Von
Weizsäcker thereby connected the detection and reception of Gestalt by human individuals
with time, space, and movement. If this approach is consequently followed, a Gestalt
analysis has to take these into account.

The scope of the problem of image boundaries while applying aesthetic analyses is
not limited to the box-counting method. There are several other contemporary approaches
that use images of architecture as a basis for calculating aesthetic measures, crowdsourcing
aesthetic evaluation (e.g., [46]), and machine learning (e.g., [47]).

3. Results
3.1. Test Cases

As a first test of the spherical box-counting method to be implemented, several color
images were examined. As explained above, a monochromatic image (such as red, green,
blue, gray, white, or black) corresponds to a plane with no surface irregularities, and
hence, the differential box-counting dimension is two (with a correlation value of 1.0).
The situation was somewhat different when examining a checkerboard pattern, e.g., one
composed of blue and black tiles. If the size of the squares of the checkerboard matched
those of the grid, the differential box-counting method (without shifting stacks of cubes)
led again to a result of two. Although the input corresponded to areas of different heights
(the blue part being at 85 and the black part being at 0), these were located within separate
lattice boxes and were thereby separated from one another.

Once the checkerboard squares no longer matched those of the grid, the box-counting
dimension changed. This became clear with the “Grayscale DBX M×M (m×m)” method—
in which only a square section is considered—when the section was shifted accordingly
(see Figure 7).

With the improved method for grayscale images, in which the stacks of cubes are
shifted, the result was slightly higher than 2, namely 2.093 (with a correlation value of
0.999769 for the standard grayscale conversion). With the weighted grayscale conversion,
the value changed to 2.142 (with a correlation value of 0.999597). The application of the
color measurement methods that separate the color components led to similar results.
Because the chessboard consisted of blue and black tiles in our example, the box-counting
dimension for the red and green components was 2 each, whereas the results for the blue
component were, again, 2.093 and 2.142, respectively.

Looking at the checkerboard from before with the black tiles replaced by white ones,
the results changed as the black valleys were replaced by white mountains. With the color
method (that is, dividing the image into the three color components that accord to the RGB
color model), the results changed again because white light contains all three colors in RGB.
For the blue component, the box-counting dimension was two because both the blue and
white tiles contained the maximum blue value (that is, equal to a plane). The other two
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color components again resulted in 2.093 (with the standard grayscale conversion), the
same value as before, because the blue tile now constituted a black valley.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 12 of 20 
 

 

color measurement methods that separate the color components led to similar results. Be-
cause the chessboard consisted of blue and black tiles in our example, the box-counting 
dimension for the red and green components was 2 each, whereas the results for the blue 
component were, again, 2.093 and 2.142, respectively. 

 
Figure 7. Checkerboard measurement with the “Grayscale DBX M × M (m × m)” method. (Left): 
Image section with a matching grid (𝐷 = 2 with a correlation of 1.0). (Right): Image section that 
was moved relative to the grid (𝐷 = 2.028 with a correlation of 0.999983). 

Looking at the checkerboard from before with the black tiles replaced by white ones, 
the results changed as the black valleys were replaced by white mountains. With the color 
method (that is, dividing the image into the three color components that accord to the 
RGB color model), the results changed again because white light contains all three colors 
in RGB. For the blue component, the box-counting dimension was two because both the 
blue and white tiles contained the maximum blue value (that is, equal to a plane). The 
other two color components again resulted in 2.093 (with the standard grayscale conver-
sion), the same value as before, because the blue tile now constituted a black valley. 

3.1.1. Simple Parametrical CAD Models 
As a first approximation and test case, a rectangular courtyard situation was exam-

ined. The setting was parameterized using a script in a CAAD program so instances with 
specific variations (in sizes, number of façade openings, etc.) could be analyzed in com-
parison. Basically, the yard placement was characterized by four enclosures (representing 
building fronts) with the side being partially opened, whereas the distances in between 
buildings (i.e., the size of the courtyard), the heights of the building fronts, and the pro-
portions of the window openings could vary. The starting point of the building fronts (x, 
y, z), their depths, edge distances, heights, widths, and rotations could be set. Further-
more, the façade openings could be defined by the distances in horizontal and vertical 
directions according to façade orientation and by the number of rows and columns. All of 
these definitions were set via a CSV file (comma-separated values). 

Figure 7. Checkerboard measurement with the “Grayscale DBX M ×M (m × m)” method. (Left):
Image section with a matching grid (DB = 2 with a correlation of 1.0). (Right): Image section that
was moved relative to the grid (DB = 2.028 with a correlation of 0.999983).

3.1.1. Simple Parametrical CAD Models

As a first approximation and test case, a rectangular courtyard situation was examined.
The setting was parameterized using a script in a CAAD program so instances with specific
variations (in sizes, number of façade openings, etc.) could be analyzed in comparison.
Basically, the yard placement was characterized by four enclosures (representing building
fronts) with the side being partially opened, whereas the distances in between buildings
(i.e., the size of the courtyard), the heights of the building fronts, and the proportions of
the window openings could vary. The starting point of the building fronts (x, y, z), their
depths, edge distances, heights, widths, and rotations could be set. Furthermore, the façade
openings could be defined by the distances in horizontal and vertical directions according
to façade orientation and by the number of rows and columns. All of these definitions were
set via a CSV file (comma-separated values).

A total of six different square situations were examined with variations in courtyard
sizes as well as complexities of the façades (due to different window proportions). The
configurations themselves were simple, taking only the proportions of the façade and the
windows into account (leaving ornaments and finer details aside). Each of the 360-degree
spherical images were adjusted in terms of color (façades in red, green, or blue), gray levels
(façades in light gray or dark gray), and in terms of background (white or black) to address
their degree of impact. In this way, 120 measurements were carried out, 60 each for the
standard grayscale conversion (one-third share for the color channels, see Formula (12))
and for the conversion adapted to the perception of brightness (see Formula (13)).

First, the grayscale calculation was performed with the previously described algorithm
“Grayscale DBX M × N (m × m) (shifting boxes)”. It turned out that for the versions of
façades colored with different gray values, there are only minor differences between the
two different grayscale conversions. In turn, and as expected, there were differences in
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the colored façades because the weighting of the brightness of the three color channels
influenced the result but not the tendencies. The red-colored façades achieved the highest
values, whereas the green ones achieved the lowest ones (see Figure 8).
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Figure 8. Measurement method “Grayscale DBX M × N (m × m) (shifting boxes)” with the grayscale
conversion adapted to the perception of brightness (see Formula (13)) applied to a red-tinted (left;
DB = 2.391 with a correlation of 0.998568), green-tinted (center; DB = 2.356 with a correlation of
0.998986), and blue-tinted façade (right; DB = 2.372 with a correlation of 0.998868).

Closed and partially open courtyards showed differences even if the opening was
small, with the former resulting in higher box-counting dimensions than the latter (see
Figure 9).
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Figure 9. Measurement method “Grayscale DBX M × N (m × m) (shifting boxes)” with the grayscale
conversion adapted to the perception of brightness (see Formula (13)) applied to a closed (left; image
“22_11_01 Hof03_w_White”; DB = 2.363 with a correlation of 0.998963) and an open square (right;
image “22_11_01 Hof02_w_White”; DB = 2.332 with a correlation of 0.999166).

Changing the window proportions of just a few façades within the same courtyard
(with otherwise unchanged façades) led only to small differences in the results. As can be
seen in Figure 10, the box-counting dimension increased only marginally as more rows
of windows were introduced, with the number of windows increasing while their height
decreased.
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were analyzed. These examples originated from a field trip to Chicago and the surround-
ing areas in 2019 [48]. The selected motifs ranged from the Chicago skyline with a 

Figure 10. Measurement method “Grayscale DBX M× N (m× m) (shifting boxes)” with the grayscale
conversion adapted to the perception of brightness (see Formula (13)) applied to portrait windows of
the opposite and right façades (left; image “22_11_02 Hof01_w”; DB = 2.360), lower windows on the
right façade (center; image “22_11_02 Hof02_w”; DB = 2.366 ), and additional smaller windows of
the opposite façade (right; image “22_11_02 Hof03_w”; DB = 2.367 ).

After the first round of analysis, another three comparative measurements were carried
out on different configurations of instances of the surrounding façades of the courtyard.
This time, the heights of some adjacent façades were changed, which led to corresponding
changes in the results. In a first step, the height of the façade opposite the camera was
increased in comparison with the reference example, and an additional row of windows
was added. After that, an adjacent façade was also raised. Using the grayscale method with
adapted grayscale conversion (see Formula (13)), the box-counting dimensions increased
accordingly from 2.37 for the original image to 2.38 after the first change and finally to 2.387
(see Figure 11).
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Figure 11. Measurement method “Grayscale DBX M× N (m× m) (shifting boxes)” with the grayscale
conversion adapted to the perception of brightness (see Formula (13)) applied to different heights of
the opposite and right façades (left: image “22_11_03 Hof01_w_White”, DB = 2.370; center: image
“22_11_03 Hof02_w_White”, DB = 2.380; right: image “22_11_03 Hof03_w_White”; DB = 2.387 ).

3.1.2. Spherical Photographs

After the parametric test cases were completed, a total of 13 spherical photographs
were analyzed. These examples originated from a field trip to Chicago and the surrounding
areas in 2019 [48]. The selected motifs ranged from the Chicago skyline with a considerable
portion of surrounding greenery to typical examples of the prairie style of Frank Lloyd
Wright with its earthy tones showing both outside and inside, leading up to an example
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by Santiago Calatrava with large areas of white and a large area of the image taken up by
(blue) sky. With these images, the application of the grayscale calculation of the adjusted
conversion showed a clear tendency. Those examples that contained greater areas of similar
color, either in the form of a high percentage of sky or greenery but also in the form of
uniform coloring on these buildings, as was the case with the Calatrava example, had the
lowest box-counting dimensions, as presented in Figure 12:

• Figure 12a: “Chicago Skyline” with a large portion of greenery, DB = 2.340;
• Figure 12b: Federal Center Plaza in Chicago with the “Flamingo” by Alexander Calder

from 1974, with a large portion of a uniform-colored plaza and a red colored sculpture
in the foreground, DB = 2.375;

• Figure 12j: the Wingspread or Herbert F. Johnson House by Frank Lloyd Wright from
1937 in Wind Point, Wisconsin, with a considerable amount of greenery, DB = 2.361;

• Figure 12l: Quadracci Pavilion by Santiago Calatrava from 2001 in the Milwaukee
Art Museum, Wisconsin, with a large portion of uniform floor design and similarly
colored building areas, DB = 2.338;

• Figure 12m: the same white-colored building with a large portion of blue sky and
uniform floor design, DB = 2.338.
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Figure 12. Measurement method “Grayscale DBX M× N (m× m) (shifting boxes)” with the weighted
grayscale conversion adapted to the perception of brightness (see Formula (13)) applied to different
spherical photographs.

The exterior view of Frank Lloyd Wright’s Robie House achieved the highest result
(see Figure 12h). The front view of the building with exposed red bricks and horizontal
stripes of gray stone formed the center of the image, and in the foreground, a narrow strip
of green alternated with the light gray of the pavement. The surrounding trees added
further contrast through the color of the trunk and the shade of the leaves. All of this led to
a box-counting dimension of DB = 2.547. The interior views (d) and (e) also achieved a
high degree of variation (DB = 2.450 and DB = 2.499).

Applying the color measurement method “Color DBX M× N (m× m) (shifting boxes)”
to the same selection of architectural examples led to similar tendencies as the previous
analysis with the grayscale measurement method. An alike variation as before occurred for
the color channels (Red, Green, Blue), whereas Dcol resulted in an even clearer difference
between each architectural example, with the exterior front view of Robie House reaching
the absolute highest score, Dcol = 3.424 (see Figure 13). It is worth noting that using the
adapted grayscale conversion led to the lowest results for the blue color channel, especially
when the portion of blue sky was large (see Figure 13m). In contrast, the green color channel
showed the highest values, and not only for those examples that had a high portion of
greenery. With the standard grayscale conversion of the color components, the values for
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the individual color channels contracted, i.e., the differences became smaller (see Figure 14).
Though, the example by Calatrava (see Figures 13m and 14m) with a larger portion of
blue sky again showed a lower value for the blue channel, albeit not as clearly. On the
other hand, the blue channel of the Robie House usually had higher values than the other
color channels.
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Compared to the other examples, the interior spherical images of the Robie House
achieved relatively high values (see Figures 13d,e and 14d,e). This supports the hypothesis
that the Robie House exhibits a higher degree of complexity across many scales due to its
design. For example, Figures 13e and 14e shows a richly decorated ceiling, plastered wall
surfaces that alternate with exposed bricks and wooden elements, and a uniform carpet on
the floor that has individual patterns and an edge stripe.

In any case, what became clear is that both the design of the building and the character
of the surroundings have an impact on the result. Thus, Figures 13h and 14h had a high
Dcol , whereas Figures 13a,m and 14a,m had the lowest values. The former shows both the
high complexity of the building itself with exposed bricks, stone-made horizontal wall
endings, a certain angle in various elements from the “bow” to the glass window designs,
and widely projecting flat roofs [49], as well as of the environment with foliage, sidewalks,
and various surrounding buildings. Conversely, Figures 13a,m and 14a,m contained large
areas of greenery and sky, respectively, and buildings with less color variation.

4. Discussion

In the past, the aesthetic evaluation of architecture was essentially focused on propor-
tion theories and/or color theories that were developed over the centuries in the fields of
architecture and fine arts. It is common knowledge that, e.g., certain proportions as the
golden section were (and are still) considered vital for a successful building design or a
harmonious piece of art by professionals and recipients alike. In modern design theory,
a more holistic view integrates these and other approaches dealing with the question of
aesthetic quality, especially aesthetic harmony, focusing on the balance between order and
irregularity or, in other terms, between simplicity and complexity (see e.g., [50,51]).

In recent years, it can be shown that useful analysis methods were spawned by the
relatively young branch of fractal theory to measure characteristic degrees of complexity
within objects under scrutiny. Box-counting, as one of them, was originally applied to
black-and-white images and primarily focuses on examining complexity as an expression
of density distribution from large to small scales. In the present study, grayscale as well
as color images of architecture were interpreted, taking brightness as 3D landscapes with
similarity to mountains and valleys into account and thereby extending the box-counting
method, which was previously limited to two-dimensional representations of, e.g., façades
as line graphics, to 2.5 dimensions. Together with the examination of 360-degree spherical
panorama images, for the first time, the building in its entire context was examined.
This observer location-based approach minimizes the influence of the image selection in
relation to the grid, whereas the standardized 1:2 aspect ratio of the panorama images
accommodates the square-shaped boxes of the grid.

The method presented here to scrutinize architecture in its environment through the
application of box-counting to 360-degree spherical perspective imagery produced the
same tendencies considering resulting box-counting dimensions that were expected by the
authors. The instances of courtyard-like situations constructed with the help of CAAD
models organized in a parametric fashion for individual configuration allowed for testing
changes in courtyard expanse, façade height, and façade-complexity (through altering the
size and distribution of openings).

In the future, the use of specific box-counting grids with three or more sizes of boxes
within one grid are to be tested as a potential way to further improve the method.

5. Conclusions and Outlook

A method to analyze architecture in its surroundings was tested, but it still remains to
develop a method to identify significant observer positions according to the characteristics
of buildings in their environment. This aspect goes beyond fractal analysis, as it can be
considered a vital part of the groundwork for applying all methods of Gestalt analyses on
objects in space more successfully.
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With FRACAM—an easy-to-use website application to measure the box-counting
dimensions of grayscale and color images—it is shown that the measurement of 360-degree
spherical panorama images is less susceptible to influences attributable to the measurement
method itself, e.g., when using black-and-white elevation drawings, which were previously
used to analyze buildings. This is mainly due to the fact that the entire 360-degree scenery
is taken into account, thereby avoiding influence due to a specific image frame selection.
Owing to this improvement of the method, it is no longer necessary to add white (empty)
space around the selection of the image and shift the grid accordingly.

It is also shown that even minor changes in the complexity of the analyzed environ-
ment, such as raising one or more buildings or adding rows of windows, can be read from
the results. Furthermore, the effect of converting RGB color images to grayscale images
inherent in the different implemented methods was studied using two methods (the default
one-third conversion method and the luminosity method, each with different weighting
of the color components), which yielded slightly different results but showed, however,
similar tendencies.

So far, only a few initial examples of architecture have been examined, but further
measurements need to be carried out to allow putting the results into a broader context.
In the future, a series of 360-degree spherical panorama images that use the same location
at different times of the day and season will also be examined. Doing so will make it
possible to classify different scenarios or buildings in relation to one another and to iconic
architecture, with observer locations being provided in an accompanying database.
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