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Abstract: We consider fractional mathematical models of fluid-porous interfaces in channel geometry.
This provokes us to deal with numerical identification of the external boundary conditions for 1D and
2D time fractional parabolic problems on disjoint domains. First, we discuss the time discretization,
then we decouple the full inverse problem into two Dirichlet problems at each time level. On this
base, we develop decomposition techniques to obtain exact formulas for the unknown boundary
conditions at point measurements. A discrete version of the analytical approach is realized on time
adaptive mesh for different fractional order of the equations in each of the disjoint domains. A variety
of numerical examples are discussed.

Keywords: Caputo fractional derivative; problems on disjoint domains; inverse problems; external
boundary conditions; difference scheme

1. Introduction

A typical inverse problem is the identification of a coefficient or right-hand side in
partial differential equation, at given initial and boundary conditions with over-specified
data as internal or boundary observations, see, e.g., [1–3]. Problems of this type have been
studied fairly well.

Many practical problems, such as heat conduction or financial engineering, are mod-
eled by inverse problems with unknown internal or external boundary conditions, see
e.g., [4–6].

Interface problems for differential equations are generally those problems in which
the input data are non-smooth or discontinuous or singular across one or more lines or
surfaces in the solution domain.

In this paper, we consider a special kind of interface problem that models processes
situated in disjoint domains. Many approaches were applied for the case of classical
parabolic or elliptic operators, see e.g., [7–13]. However, we are mainly interested in the
subdiffusion model, involving fractional derivatives. In the present study, we utilize the
Caputo derivative in time, which has been widely used for describing the anomalous
diffusion phenomena [14–17].

In recent years, there has been extensive research on numerical solutions to interface
problems. We point out the papers [18–28] closely related to the present work. In [27]
a stationary nonlinear 1D problem defined on non-connected layers is considered. Well-
posedness is proved and a convergent monotone iterative method has been developed. For
the same problem in [21] it is constructed a finite element discretization and conditions
under which the discrete maximum principle holds are investigated. In [22] is analyzed
finite element method and two-grid algorithm for 2D elliptic transmission problems on
disjoint domains, coupled with interface conditions on a part of the boundary. In [24] is
performed an analysis of parabolic heat mass transfer problems on partitioned domains.
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The existence and uniqueness of weak solutions in appropriate Sobolev-like spaces are
established and a priori estimates are obtained. Authors of [20] investigate the parabolic
problem on disjoint rectangular domains and prove the existence and uniqueness of a
weak solution. Also, they construct and analyze finite difference approximation for solving
the problem. In [18] a second-order transmission problem across a Koch-type interface
is considered. A priori error estimates are proved and numerical discretization, based
on the Galerkin method and θ-method in time, is developed. Authors of [28] study a
linear 2D parabolic problem on nonsmooth non-convex polygonal domains. They prove
the well-posedness of the problem using suitable weighted Sobolev spaces and construct
discrete finite element schemes on graded meshes.

Numerical methods for time-fractional parabolic problems on disjoint domains are
developed in [29,30]. Authors discussed well-posedness and obtain a priori estimates for
the weak solution. Moreover, a finite difference approximation is constructed.

A fast convergent numerical approach, based on reproducing kernel functions and
shooting method, is developed in [31] for solving 1D interface problems of fractional order
with Caputo derivative.

Direct problems, defined on disjoint domains, are well studied in the literature, while
results for the corresponding inverse problems, especially of fractional order, and most of
all, of different fractional order, in each domain, are missing. The present work contributes
to filling this gap.

An inverse boundary problem for the classical heat equation is solved numerically
in [32]. Simultaneous recovering of source term and initial value in integer order parabolic
transmission problem is considered in [33]. The inverse problem is defined as an optimiza-
tion problem and the existence and stability of the solutions are analyzed.

In [34] authors prove the uniqueness of the inverse problem for identifying time-
dependent smooth coefficients from measurements at part of the boundary in a time-
fractional parabolic problem. The uniqueness of the solution of inverse boundary problem
and inverse problem for identifying heat source density for nonlocal problems for time
fractional subdiffusion equations are studied in [35].

The inverse coefficient problem with measured data at the boundary for time frac-
tional parabolic partial differential equation with nonlocal boundary conditions is solved
numerically in [36].

In this paper we consider inverse time-fractional parabolic problems on disjoint
domains, including the case of different fractional order of equations in its domains. We
are interested in the numerical identification of external boundary conditions on the base
of internal point observations. Let us note that for second-order ordinary differential
equations on disjoint domains, the semilinear inverse problem is studied in our previous
conference paper [4].

The layout of the paper is as follows. In Section 2, the formulation of direct and inverse
problems is presented. In Section 3 we prove the existence and uniqueness of the solution of
the direct problem. A solution to the semidiscrete inverse problem is obtained in Section 4.
In Section 5 we propose the numerical solution of the direct and inverse problems and
discuss the implementation algorithms. An extension of the 2D problem is proposed in
Section 6. Numerical simulations for 1D and 2D test examples are discussed in Section 7.
We end the paper with some conclusions.

2. Direct and Inverse Problems

In this section, we formulate the 1D direct and inverse problems. As a model example,
we consider the following initial boundary value problem
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∂δ1 u1

∂tδ1
− ∂

∂x

(
p1(x)

∂u1

∂x

)
= f1(x, t), x ∈ Ω1 = (a1, b1), 0 < t ≤ T, (1)

∂δ2 u2

∂tδ2
− ∂

∂x

(
p2(x)

∂u2

∂x

)
= f2(x, t), x ∈ Ω2 = (a2, b2), 0 < t ≤ T, (2)

with external boundary conditions

u1(a1, t) = ϕ1(t), u2(b2, t) = ϕ2(t), 0 < t ≤ T, (3)

and interface mixed-type boundary conditions

p1(b1)
∂u1

∂x
(b1, t) + α1u1(b1, t) = β1u2(a2, t) + γ1(t), 0 < t ≤ T, (4)

−p2(a2)
∂u2

∂x
(a2, t) + α2u2(a2, t) = β2u1(b1, t) + γ2(t), 0 < t ≤ T, (5)

where −∞ < a1 < b1 < a2 < b2 < ∞, pj ∈ L∞(Ωj),

β1β2 ≤ α1α2, pj(x) ≥ pj > 0, x ∈ Ωj, j = 1, 2. (6)

and αj, β j, j = 1, 2 are given constants. The fractional time derivative is in Caputo
sense [14,15,37]

∂δj uj

∂tδj
=

1
Γ(1− δj)

t∫
0

(t− s)−δj
∂uj

∂s
ds, 0 < δj < 1, j = 1, 2, (7)

where Γ(·) is Gamma function.
The problem (1)–(5) is completed with initial conditions

u1(x, 0) = u0
1(x), x ∈ Ω1, u2(x, 0) = u0

2(x), x ∈ Ω2. (8)

The direct (forward) problem is to find the solution (u1(x, t), u2(x, t)) of (1)–(8) at given
coefficients, initial, boundary and interface conditions.

In the external boundary conditions inverse problem (1)–(6), the functions ϕ1(t) and/or
ϕ2(t) are unknown and must to be identified using some over-specified data. Depending
on the observation data, the inverse problem (IP) for identifying the external boundary
condition(s) (3) can be formulated as follows:

IP[1a]: Given observation u1(x∗1 , t) = ψ1(t), x∗1 ∈ Ω1. Find (u1, u2, ϕ1(t));

IP[1b]: Given observation u2(x∗2 , t) = ψ2(t), x∗2 ∈ Ω2. Find (u1, u2, ϕ2(t));

IP[2a]: Given observation u1(x∗1 , t) = ψ1(t), x∗1 ∈ Ω1. Find (u1, u2, ϕ2(t));

IP[2b]: Given observation u2(x∗2 , t) = ψ2(t), x∗2 ∈ Ω2. Find (u1, u2, ϕ1(t));

IP[3] : Given observations uj(x∗j , t) = ψj(t), x∗j ∈ Ωj, j = 1, 2. Find (u1, u2, ϕ1(t), ϕ2(t)).

Existence and uniqueness of the solution of the direct problem (1)–(8) and the corre-
sponding inverse problems IP[1a]–IP[3] are not studied in the literature. In [30] is consid-
ered the particular case of the problem (1)–(8), when δ1 = δ2 = δ, 0 < δ < 1 and instead
of Caputo’s derivative the Riemann-Liouville derivative is used and in [29] additionally
p1(x, t) = p2(x, t) ≡ 1 is assumed.

In the next section we generalize the results in [29,30] and establish the existence and
uniqueness of the solution of the direct problem (1)–(8).
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3. Existence and Uniqueness of the Solution of the Direct Problem

Direct problems are in general well-posed by the concept of [38], if they satisfy: the
solution to the problem exists and it is unique, the solution depends continuously on the
input data. The well-posedness of elliptic and parabolic problems on disjoint domains were
studied in papers [21,22,27].

Here we extend the results in [29,30] to the problem (1)–(8).
Further, in order to simplify the exhibition, we suppose homogeneous boundary

conditions, namely

ϕj(t) = 0, γj(t) = 0, j = 1, 2, 0 < t ≤ T (9)

and initial conditions
u0

j (x) = 0, j = 1, 2. (10)

We now introduce new unknown functions

U1(x, t) = U1
1(x, t)− A1(t)(x− a1)(x− b1), A1(t) =

γ1(t)
p1(b1)(b1 − a1)

,

U2(x, t) = U1
2(x, t)− A2(t)(x− a2)(x− b2), A2(t) =

γ2(t)
p2(a2)(b2 − a2)

,

where

U1
1(x, t) = u1(x, t)− ϕ1(t)− u0

1(x),

U1
2(x, t) = u2(x, t)− ϕ2(t)− u0

2(x).

Thus, U1 and U2 satisfy the problem for equations (1), (2), in which the right-hand sides
are obtained by substituting U1 and U2 in the left part of (1) and (2), with homogeneous
boundary conditions (3)–(5), (9) and zero initial conditions (8), (10).

We introduce the alternative of the Caputo derivative, namely, the left and the right
Riemann-Liouville fractional derivatives, respectively, which are defined for any integer n
and n− 1 ≤ δ < n by the

Dδ
0+w(t) =

1
Γ(n− δ)

dn

dtn

∫ t

0

w(τ)

(t− τ)δ−n+1 dτ,

Dδ
T−w(t) =

(−1)n

Γ(n− δ)

dn

dtn

∫ T

t

w(τ)

(τ − t)δ−n+1 dτ.

The following relation between Caputo and Riemann-Liouville fractional derivatives
is well-known [15]

∂δw
∂tδ

(x, t) = Dδ
0+w(x, t)− w(x, 0)(t)−δ

Γ(1− δ).

Let Hδ(a, b), H0(a, b) = L2(a, b), Ḣδ(a, b) be the standard Sobolev spaces [39]. Further,
we introduce the notations as in [29,30]. We define the spaces Hδ

±(a, b) and Ḣδ
±(a, b) as the

closure of C∞[a, b] and Ċ∞(a, b), with respect to the norm

‖u‖2
Hδ
±(a,b)= ‖u‖

2
L2(a,b) + |u|

2
Hδ
±

,

where
|u|Hδ

+(a,b) = ‖D
δ
a+u‖L2(a,b), |u|Hδ

−(a,b) = ‖D
δ
b−u‖L2(a,b).

Note that for integer order derivative δ ∈ N, we have Hδ
±(a, b) = Hδ(a, b).
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Let Q = (a, b)× (0, T). We introduce anisotropic Sobolev space of the functions of
two variables x and t, defined in Q [39]

Hδ,ν(Q) = L2((0, T), Hδ(a, b)
)
∩ Hν

(
(0, T), L2(a, b)

)
.

Analogously, we set

Hδ,ν
± (Q) = L2((0, T), Hδ(a, b)

)
∩ Hν

±
(
(0, T), L2(a, b)

)
.

Further, we define Qi = Ωi × (0, T) and consider the product space

L2 = L2(Q1)× L2(Q2) = {v = (v1, v2)|vi ∈ L2(Qj), j = 1, 2},

endowed with the inner product and norm

(v, w)L2 = β2(v1, w1)L2(Q1)
+ β1(v2, w2)L2(Q1)

, ‖v‖L2 = (v, v)1/2
L2 .

Now, we consider the spaces

Hδ,ν = Hδ,ν(Q1)× Hδ,ν(Q2) and Hδ,ν
± = Hδ,ν

± (Q1)× Hδ,ν
± (Q2).

In particular, we define

H1,δ/2
0 =

{
v = (v1, v2) : v1 ∈ L2(0, T) ∩ Ḣδ/2((0, T), L2(a1, b1)

)
,

v2 ∈ L2((0, T), H1(a2, b2)
)
∩ Ḣδ/2((0, T), L2(a2, b2)

)
, v1(a1, t) = v2(b2, t) = 0

}
.

Here,
|vj|Hδ(0,T) = ‖D

δ
0+vj‖L2(0,T), |vj|Hδ(0,T) = ‖D

δ
T−vj‖L2(0,T),

and
‖vj‖Hδ

±(0,T) =
(
‖vj‖L2(0,T) + ‖vj‖2

Hδ
±(0,T)

)1/2
, j = 1, 2.

In the next theorem the integration by parts formula [15] plays a key role. For all
0 < δ < 1, if w ∈ C2[0, T] and w(0) = 0, v ∈ C∞

0 [0, T], then

∫ T

0

∂δw
∂tδ

(t)v(t)dt =
∫ T

0
Dδ/2

0+ w(t)Dδ/2
T− v(t)dt,(

∂δw
∂tδ

, v
)

L2(0,T)
=
(

Dδ/2
0+ w, Dδ/2

T− v
)

L2(0,T)
.

(11)

The weak formulation of the problem (1)–(8) has the form u = (u1, u2), ui ∈ H
1,δj/2
0 ,

such that
a(u, v) = l(v), ∀v = (v1, v2), vj ∈ H

1,δj/2
0 , j = 1, 2,

where

a(u, v) = a1(u1, v1) + a2(u2, v2) + a3(u, v),

aj(uj, vj) = β3−j

(
D

δj/2
− ui, D

δj/2
+ vj

)
L2(Qj)

+ β3−j

(
pj

∂uj

∂x
,

∂vj

∂x

)
L2(Qj)

, j = 1, 2,

a3(u, v) =

T∫
0

[
β2α1u1(b1, t)v1(b1, t) + β1α2(a2, t)v1(a2, t)

−β1β2[u1(b1, t)v2(a2, t) + u2(a2, t)v1(b1, t)]
]
dt,

l(v) = ( f , v)L2 = β2( f1, v1)L2(Q1)
+ β1( f2, v2)L2(Q2)

.
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The following assertion holds.

Theorem 1. Let the conditions (6) be satisfied. Then, the problem (1)–(8) is well-posed and the
following a priori estimate holds

‖u1‖H1,δ1/2 + ‖u2‖H1,δ2/2 ≤ C
(
‖ f1‖L2(Q1)

+ ‖ f2‖L2(Q2)

)
.

Proof. We use formula (11) of integration by parts and ([29], Lemmas 1–3) . Then, we apply
Cauchy-Schwarz and Poincaré inequalities [39] and, taking into account the inequality
β1β2 ≤ α1α2 in (6), we prove that the bilinear form a(u, v), together with linear functional
l(·) satisfy the requirements of the Lax-Milgram lemma [39].

4. Solution of the Semidiscrete Direct and Inverse Problem

In this section, we develop a decomposition technique for solving inverse problems
IP[1a]–IP[3]. The more efficient way to realize this approach is to decouple the discrete
system at each time level. In this case, we have to solve four small discrete systems-two in
each discretized interval Ω1 = [a1, b1] and Ω2 = [a2, b2]. Otherwise, without a decoupling
procedure, at each time level, we have to solve three large systems on the discretized
interval Ω1 ∪Ω2.

The problem of decoupling the discrete system can be tackled in different ways. For
example, using the left and right Thomas method for the numerical solution of the discrete
equations [4,22], or utilizing measurement data [4]. In this work, the decoupling is based
on implicit-explicit time stepping.

4.1. Time Semidiscretization of the Direct Problem

The starting point for our decomposition method is the temporal semi-discretization
of the direct problem (1)–(8).

Let us define the nonuniform temporal mesh ωτ : 0 = t0 < t1 < · · · < tM = T with
step size τn+1 = tn+1 − tn, n = 0, 1, . . . , M− 1, τn < τn+1 and τ = max

0≤n≤M
τn. Denote by

un
j = un

j (x) = uj(tn, x), j = 1, 2. The Caputo fractional derivative of the function un+1
j is

approximated by L1 formula on non-uniform mesh [16,17]

∂δj un+1
j (x)

∂tδj
≈ 1

Γ(1− δj)

n

∑
s=0

us+1
j (x)− us

j (x)

τs+1

ts+1∫
ts

(tn+1 − η)−δj dη

=
n

∑
s=0

(us+1
j − us

j )ρ
j
n,s,

where

ρ
j
n,s =

(tn+1 − ts)
1−δj − (tn+1 − ts+1)

1−δj

Γ(2− δj)τs+1
and ρ

j
n,n =

τ
−δj
n+1

Γ(2− δj)
.

We consider the following semi-implicit time discretization of the problem (1)–(8)
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ρ1
n,nun+1

1 − ∂

∂x

(
p1(x)

∂un+1
1

∂x

)
= f n+1

1 (x) + G1
nun

1 (x), x ∈ Ω1 = (a1, b1), (12)

ρ2
n,nun+1

2 − ∂

∂x

(
p2(x)

∂un+1
2

∂x

)
= f n+1

2 (x) + G2
nun

2 (x), x ∈ Ω2 = (a2, b2), (13)

un+1
1 (a1) = ϕn+1

1 , un+1
2 (b2) = ϕn+1

2 , (14)

p1(b1)
∂un+1

1
∂x

(b1) + α1un+1
1 (b1) = β1un

2 (a2) + γn+1
1 , (15)

−p2(a2)
∂un+1

2
∂x

(a2) + α2un+1
2 (a2) = β2un

1 (b1) + γn+1
2 , (16)

together with initial conditions (8). Here

Gj
nun

j (x) :=
n

∑
s=1

(
ρ

j
n,s − ρ

j
n,s−1

)
us

j (x) + ρ
j
n,0u0

j (x), n = 0, 1, . . . , M− 1.

The direct semidiscrete problem is defined by (8) and (12)–(16), where the unknown
solution is un+1

j (x), j = 1, 2, n = 0, 1, . . . , M− 1 and all input data—coefficient functions,
right-hand sides, initial and boundary conditions—are known.

Note that at each time level n = 0, 1, . . . , M, we solve the problems (12), (14), (15), (8)
(first equations) in Ω1 and (13), (14), (16), (8) (second equations) in Ω2 separately.

4.2. Solving the Inverse Problems

The semidiscrete inverse problem is to find the solution un+1
j (x), j = 1, 2, ϕn+1

1 and/or

ϕn+1
2 (in convention with IP[1a]–IP[3]), n = 0, 1, . . . , M− 1, solving the problem (8)–(12),

where left or/and right external boundary conditions (14) are not known and we have
additional observations un+1

1 (x∗) = ψn+1
1 (x∗) or/and un+1

2 (x∗) = ψn+1
2 (x∗), depending on

the inverse problem IP[1a]-IP[3].
To find approximate solution (un+1

1 , un+1
2 ), we consider the following solution

decomposition

un+1
1 = vn+1

1 + ϕ̃n+1
1 wn+1

1 , (17)

un+1
2 = vn+1

2 + ϕ̃n+1
2 wn+1

2 , (18)

where ϕ̃n+1
j , j = 1, 2 are unknown and

ϕ̃n+1
1 = ϕn+1

1 , vn+1
2 = un+1

2 , ϕ̃n+1
2 = 0 for IP[1a],

ϕ̃n+1
2 = ϕn+1

2 , vn+1
1 = un+1

1 , ϕ̃n+1
1 = 0 for IP[1b],

ϕ̃n+1
1 = ϕ̃n+1

2 = ϕn+1
2 , for IP[2a],

ϕ̃n+1
1 = ϕ̃n+1

2 = ϕn+1
1 , for IP[2b],

ϕ̃n+1
1 = ϕn+1

1 , ϕ̃n+1
2 = ϕn+1

2 , for IP[3].

Let us turn to the IP[3]. Substituting (17) and (18) in (12)–(16) and in view of (8), we
get four independent (at each time level) direct problems

ρ1
n,nvn+1

1 − ∂

∂x

(
p1(x)

∂vn+1
1

∂x

)
= f n+1

1 (x) + G1
nun

1 (x), x ∈ Ω1,

vn+1
1 (a1) = 0,

p1(b1)
∂vn+1

1
∂x

(b1) + α1vn+1
1 (b1) = β1un

2 (a2) + γn+1
1 ,

u0
1 = u0

1(x).

(19)



Fractal Fract. 2023, 7, 326 8 of 22

ρ2
n,nvn+1

2 − ∂

∂x

(
p2(x)

∂vn+1
2

∂x

)
= f n+1

2 (x) + G2
nun

2 (x), x ∈ Ω2,

− p2(a2)
∂vn+1

2
∂x

(a2) + α2vn+1
2 (a2) = β2un

1 (b1) + γn+1
2 ,

vn+1
2 (b2) = 0,

u0
2 = u0

2(x).

(20)

ρ1
n,nwn+1

1 − ∂

∂x

(
p1(x)

∂wn+1
1

∂x

)
= 0, x ∈ Ω1,

wn+1
1 (a1) = 1,

p1(b1)
∂wn+1

1
∂x

(b1) + α1wn+1
1 (b1) = 0.

(21)

ρ2
n,nwn+1

2 − ∂

∂x

(
p2(x)

∂wn+1
2

∂x

)
= 0, x ∈ Ω2,

− p2(a2)
∂wn+1

2
∂x

(a2) + α2wn+1
2 (a2) = 0,

wn+1
2 (b2) = 1.

(22)

Further, from additional data given for IP[3], namely the observations un+1
j (x∗j ) = ψn+1

j ,
x∗j ∈ Ωj, j = 1, 2, we derive

ϕn+1
j =

ψn+1
j − vn+1

j (x∗j )

wn+1
j (x∗j )

, j = 1, 2. (23)

For solving IP[1a] and IP[1b] we apply the decomposition only in one of the domains-Ω1
or Ω2, where is the point of measurement. Namely, to recover ϕ1 in IP[1a], at each time level
we solve (13), (14) (second equation), (16), starting with the corresponding initial condition
(8), and (19), (21). Then, we use (23), j = 1 to find the left external boundary condition.

In the same manner, we deal with IP[1b]. At each time level we solve consequently
direct problems: (12), (14) (first equation), (15) with the corresponding initial condition (8),
and (20), (22). To restore the right external boundary condition, we utilize (23), j = 2.

Regarding IP[2a] and IP[2b], we proceed as follows. To identify ϕ1 (IP[2a]), we
solve (20), (22) and then problems similar to (19), (21), but with modified boundary
conditions, namely

ρ1
n,nvn+1

1 − ∂

∂x

(
p1(x)

∂vn+1
1

∂x

)
= f n+1

1 (x) + G1
nun

1 (x), x ∈ Ω1,

vn+1
1 (a1) = ϕn+1

1 ,

p1(b1)
∂vn+1

1
∂x

(b1) + α1vn+1
1 (b1) = β1vn+1

2 (a2) + γn+1
1 ,

u0
1 = u0

1(x).

(24)

ρ1
n,nwn+1

1 − ∂

∂x

(
p1(x)

∂wn+1
1

∂x

)
= 0, x ∈ Ω1,

wn+1
1 (a1) = 0,

p1(b1)
∂wn+1

1
∂x

(b1) + α1wn+1
1 (b1) = β1wn+1

2 (a2).

(25)
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The boundary condition at x = b1 in (24) and (25) is obtained, representing un
2 (a2)

by (18). Then, we find ϕ2 from (23), j = 1. Quantities vn+1
2 (a2) are wn+1

2 (a2) are known,
since we first solve the problems (20), (22).

The decomposition method for IP[2b] is obtained similarly. To recover ϕ2, we first
solve (19), (22) and then problems similar to (20), (22), but with modified boundary con-
ditions, utilizing the decomposition (17) also at old time layer. Finally, we determine ϕ1
from (23), j = 2.

Further, we are concentrated on solving IP[3].
The crucial moment at the application of the proposed decomposition method is the

validation of formula (23). A sufficient condition is given by the following assertion.

Proposition 1 (Correctness). Let in addition to the requirements (6), we have αj ≥ 0, j = 1, 2.
Then,

wn
j (x∗j ) 6= 0, j = 1, 2, n = 1, . . . , M.

Proof. Maximum principle for (21), (22), left boundary condition of (21) and right boundary
condition of (22), implies wn+1

j (xj) > 0, xj ∈ Ωj, j = 1, 2, n = 0, 1, . . . , M.

Proposition 1 guarantees the existence of the semi-discrete solution of IP[3]. With the
next statement we establish uniqueness.

Theorem 2. Let the conditions of Proposition 1 be fulfilled. Then the solution of the inverse
problem (17)–(23) is unique.

Proof. Suppose that the problem (17)–(23) has two solutions (ϕ1
j )

n+1, (ϕ2
j )

n+1 and (u1
j )

n+1,

(u2
j )

n+1, j = 1, 2, n = 0, 1, . . . , M− 1, obtained for one and the same measured data ψn+1
j .

Then, from (23) follows that at least one of the problems (19)–(22) has two solutions, denoted
by (v1

j )
n+1, (v2

j )
n+1, (w1

j )
n+1, (w2

j )
n+1, j = 1, 2, respectively. So, we have to prove that for

one and the same initial data, problem (19)–(22) has a unique solution.
Let zn+1

j = (v1
j )

n+1 − (v2
j )

n+1, yn+1
j = (w1

j )
n+1 − (w2

j )
n+1, zn+1

j = (u1
j )

n+1 − (u2
j )

n+1,
j = 1, 2. Substitute each of the solutions in the corresponding problems and subtract the
equivalent problems, we get

ρ1
n,nzn+1

1 − ∂

∂x

(
p1(x)

∂zn+1
1

∂x

)
= G1

nzn
1 (x), x ∈ Ω1,

p1(b1)
∂zn+1

1
∂x

(b1) + α1zn+1
1 (b1) = β1zn

2 (a2), zn+1
1 (a1) = 0, z0

1 = 0.

(26)

ρ2
n,nzn+1

2 − ∂

∂x

(
p2(x)

∂zn+1
2

∂x

)
= G2

nzn
2 (x), x ∈ Ω2,

− p2(a2)
∂zn+1

2
∂x

(a2) + α2zn+1
2 (a2) = β2zn

1 (b1), zn+1
2 (b2) = 0, z0

2 = 0.

(27)

ρ1
n,nyn+1

1 − ∂

∂x

(
p1(x)

∂yn+1
1

∂x

)
= 0, x ∈ Ω1,

yn+1
1 (a1) = 0, p1(b1)

∂yn+1
1

∂x
(b1) + α1yn+1

1 (b1) = 0.

(28)



Fractal Fract. 2023, 7, 326 10 of 22

ρ2
n,nyn+1

2 − ∂

∂x

(
p2(x)

∂yn+1
2

∂x

)
= 0, x ∈ Ω2,

− p2(a2)
∂yn+1

2
∂x

(a2) + α2yn+1
2 (a2) = 0, yn+1

2 (b2) = 0.

(29)

Note that, at each time level, we have boundary value problems for second-order
ordinary differential equations. In (28), (29) the corresponding equations and boundary
conditions are homogeneous. Taking into account that ρ

j
n,n > 0, αj ≥ 0, j = 1, 2, and in

view of (6), we conclude that yn+1
1 = yn+1

2 = 0, n = 0, 1, . . . , M− 1.

Consider the problems (26), (27). Let n = 1. Since z0
j = 0, we have Gj

nz1
j (x) = 0

and z0
2(a2) = z0

1(b1) = 0, j = 1, 2. Thus we obtain homogeneous differential equations
with homogeneous boundary conditions. Therefore, z1

1 = z1
2 = 0. In the same manner

we get z2
1 = z2

2 = 0, since Gj
nz1

j (x) = 0 and z1
2(a2) = z1

1(b1) = 0, j = 1, 2. We apply the

same considerations advancing layer by layer in time to deduce that zn+1
1 = zn+1

2 = 0,
n = 0, 1, . . . , M− 1.

5. Numerical Realization

In this section, we construct a fully discrete numerical scheme for solving inverse
problem IP[3] and an algorithm for computational realization.

5.1. Full Discretizations

Since at every time layer, each of the problems (19), (20) will be solved numerically in
its domain, and the problems (21), (22) are fully decoupled and independent, we introduce
two uniform spatial meshes in Ωj, j = 1, 2

ω j = {xj,ij : xj,ij = aj + ijhj, ij = 0, 1, . . . , Nj, hj = (bj − aj)/Nj}, j = 1, 2.

The function yj(x, t) at grid node (xj,ij , tn) is denoted by yn
j,ij

.
For the spatial approximation of (19)–(22), we apply the finite volume method. To

this aim, we consider dual meshes of cell-centered grid nodes xj,ij−1/2 = xj,ij −
hj
2 , ij =

0, 1, . . . , Nj + 1, where xj,−1/2 = xj,0, xj,Nj+1/2 = xj,Nj , j = 1, 2.
Consider the problem (19). Integrating the first equation over the volumes (x1,i1−1/2,

x1,i1+1/2), i1 = 1, 2, . . . , N1 − 1, we obtain the discretization at inner grid nodes. Then
we integrate the first equation in (19) over the volume (x1,N1−1/2, x1,N1) and using the
boundary condition at x = b1 we get the approximation at right boundary. In the same
fashion we deal with problems (20)–(22). The resulting full discrete problems are

ρ1
n,nvn+1

1,i1
− 1

h1

(
p1,i1+1/2vn+1

1,xi1
− p1,i1−1/2vn+1

1,xi1

)
= f n+1

1,i1
+ G1

nun
1,i1 , i1 = 1, 2, . . . , N1 − 1,

vn+1
1,0 = 0,(
ρ1

n,n +
2α1

h1

)
vn+1

1,N1
+

2
h1

p1,N1−1/2vn+1
1,xN1

=
2β1

h1
un

2,0 +
2
h1

γn+1
1 + f n+1

1,N1
+ G1

nun
1,N1

,

u0
1,i1 = u0

1(x1,i1).

(30)

ρ2
n,nvn+1

2,i2
− 1

h2

(
p2,i2+1/2vn+1

2,xi2
− p2,i2−1/2vn+1

2,xi2

)
= f n+1

2,i2
+ G2

nun
2,i2 , i2 = 1, 2, . . . , N2 − 1,(

ρ2
n,n +

2α2

h2

)
vn+1

2,0 −
2
h2

p2,1/2vn+1
2,x0

=
2β2

h2
un

1,N1
+

2
h2

γn+1
2 + f n+1

2,0 + G2
nun

2,0

vn+1
2,N2

= 0,

u0
2,i2 = u0

2(x2,i2).

(31)
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ρ1
n,nwn+1

1,i1
− 1

h1

(
p1,i1+1/2wn+1

1,xi1
− p1,i1−1/2wn+1

1,xi1

)
= 0, i1 = 1, 2, . . . , N1 − 1,

wn+1
1,0 = 1,(
ρ1

n,n +
2α1

h1

)
wn+1

1,N1
+

2
h1

p1,N1−1/2wn+1
1,xN1

= 0,

(32)

ρ2
n,nwn+1

2,i2
− 1

h2

(
p1,i2+1/2wn+1

2,xi2
− p2,i2−1/2wn+1

2,xi2

)
= 0, i2 = 1, 2, . . . , N2 − 1,(

ρ2
n,n +

2α2

h2

)
wn+1

2,0 −
2
h2

p1,1/2wn+1
2,x0

= 0,

wn+1
2,N2

= 1.

(33)

Here, we use the notations

vj,xij
=

vn+1
j,ij+1 − vn+1

j,ij

hj
, vj,xij

=
vn+1

j,ij
− vn+1

j,ij−1

hj
, pj,ij±1/2 = pj(xj,ij±1/2).

Further, we use the numerical solution of the direct problem (1)–(5) to verify the
accuracy of the corresponding solution of the inverse problem and as perturbed data at
points of the measurement. The full discretization of (1)–(5), obtained by finite volume
method is

un+1
1,0 = ϕn+1

1 ,

ρ1
n,nun+1

1,i1
− 1

h1

(
p1,i1+1/2un+1

1,xi1
− p1,i1−1/2un+1

1,xi1

)
= f n+1

1,i1
+ G1

nun
1,i1 , i1 = 1, 2, . . . , N1 − 1,(

ρ1
n,n +

2α1

h1

)
un+1

1,N1
+

2
h1

p1,N1−1/2un+1
1,xN1

=
2β1

h1
un

2,0 +
2
h1

γn+1
1 + f n+1

1,N1
+ G1

nun
1,N1

,(
ρ2

n,n +
2α2

h2

)
un+1

2,0 −
2
h2

p2,1/2un+1
2,x0

=
2β2

h2
un

1,N1
+

2
h2

γn+1
2 + f n+1

2,0 + G2
nun

2,0,

ρ2
n,nun+1

2,i2
− 1

h2

(
p2,i2+1/2un+1

2,xi2
− p2,i2−1/2un+1

2,xi2

)
= f n+1

2,i2
+ G2

nun
2,i2 , i2 = 1, 2, . . . , N2 − 1,

un+1
2,N2

= ϕn+1
2 ,

u0
1,i1 = u0

1(x1,i1), u0
2,i2 = u0

2(x2,i2).

(34)

5.2. Correctness

We need to prove that wn
j,ij
6= 0, ij = 0, 1, . . . , Nj, j = 1, 2, n = 1, 2, . . . , M in order to

apply (23) at points of measurement.

Theorem 3. Let the condition (6) be fulfilled. If αj ≥ 0, j = 1, 2, the solution of (32) and (33) is
bounded and 0 < wn

j ≤ 1, j = 1, 2, n = 1, 2, . . . , M.

Proof. Consider the problem (32) and rewrite it in the form, i1 = 1, 2, . . . , N1 − 1,

−
p1,i1−1/2

h1
wn+1

1,i1−1 +

(
ρ1

n,n +
p1,i1+1/2 + p1,i1−1/2

h1

)
wn+1

1,i1
−

p1,i1+1/2

h1
wn+1

1,i1+1 = 0,

wn+1
1,0 = 1,(
ρ1

n,n +
2α1

h1
+

2p1,N1−1/2

h1

)
wn+1

1,N1
− 2

h1
p1,N1−1/2wn+1

1,N1−1 = 0.

(35)
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Obviously, the coefficient matrix is strictly diagonally dominant with positive main
diagonal elements and nonpositive off-diagonal entries and therefore its inverse is
non-negative [40]. Consequently, since the right-hand side is non-negative, we con-
clude that wn+1

1,i1
≥ 0 for i1 = 0, 1, . . . , N1, n = 0, 1, . . . , M. Moreover, we have the

following estimate

‖wn+1
1 ‖ ≤ 1, where ‖w1‖ = max

0≤i1≤N1
|w1,i1 |.

From the first equation in (35) for i1 = 1, we get(
ρ1

n,n +
p1,3/2 + p1,1/2

h1

)
wn+1

1,1 =
p1,1/2

h1
+

p1,3/2

h1
wn+1

1,2

and
wn+1

1,1 ≥
p1,1/2

h1ρ1
n,n + p1,1/2 + p1,3/2

> 0.

Similarly, for i1 = 2, we derive

wn+1
1,2 ≥

p1,3/2

h1ρ1
n,n + p1,3/2 + p1,5/2

wn+1
1,1 > 0.

In the same fashion, for i1 = 3, 4, . . . , N1 − 1, we obtain

wn+1
1,3 ≥

p1,5/2wn+1
1,2

h1ρ1
n,n + p1,5/2 + p1,7/2

> 0, . . . , wn+1
1,N1−1 ≥

p1,N1−3/2wn+1
1,N1−2

h1ρ1
n,n + p1,N1−3/2 + p1,N1−1/2

> 0.

Finally, from the last equation in (35), we get

wn+1
1,N1
≥

2p1,N1−1/2

h1ρ1
n,n + 2p1,N1−1/2 + α1

wn+1
1,N1−1 > 0.

Applying the same line of considerations for the problem (22), we prove that
0 < wn+1

2,i2
≤ 1, i2 = 0, 1, . . . , N2, j = 1, 2, n = 0, 1, . . . , M− 1.

In the same manner, as for the semidiscrete problem, we establish the uniqueness of
the solution of the full discrete inverse problem.

Theorem 4. Let the conditions of Theorem 3 be fulfilled. Then the solution of the full discrete
inverse problem (17)–(18), (30)–(33) is unique.

Proof. We follow the same line of considerations as in Theorem 2. We suppose that each of
the systems (30)–(33) has two solutions and consider their differences. Then, subtracting
the corresponding systems, we derive that these differences are solutions of homogeneous
systems of algebraic equations at each time level. Further, since their coefficient matrices
are M-matrices, we conclude that they have only trivial solutions.

5.3. Implementation

Numerical solving of IP[3] performs by the following steps (Algorithm 1):
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Algorithm 1 Inverse problem IP[3]

Require: u0
j (xij), ψj(t), j = 1, 2.

Ensure: ϕn+1
j , un+1

j , j = 1, 2, n = 0, 1, . . . , M,

n← 0, u0
j,ij
← u0

j (xij), xij ∈ ω j, j = 1, 2,

while n < M do
un+1

j (x∗j )← ψn+1
j ;

Find wn+1
1 , solving (32);

Find wn+1
2 , solving (33);

Find vn+1
1 , solving (30);

Find vn+1
2 , solving (31);

Find ϕn+1
j , j = 1, 2 from (23);

Find un+1
j , j = 1, 2 from (17) and (18);

n← n + 1;
end while

6. Extension to 2D Problem

Let Ωj = (aj, bj)× (c, d), Ωj = Ωj ∪ ∂Ωj, where ∂Ωj is the boundary of the domain Ωj,
j = 1, 2. We introduce the two-dimensional problem

∂δ1 u1

∂tδ1
− ∂

∂x

(
p1(x, y)

∂u1

∂x

)
− ∂

∂y

(
q1(x, y)

∂u1

∂y

)
= f1(x, y, t), (x, y) ∈ Ω1, 0 < t ≤ T,

∂δ2 u2

∂tδ2
− ∂

∂x

(
p2(x, y)

∂u2

∂x

)
− ∂

∂y

(
q2(x, y)

∂u2

∂y

)
= f2(x, y, t), (x, y) ∈ Ω2, 0 < t ≤ T,

u1(a1, y, t) = ϕ1(y, t), u2(b2, y, t) = ϕ2(y, t), y ∈ (c, d), 0 < t ≤ T,

u1(x, c, t) = u1S (x, t), x ∈ [a1, b1], u2(x, c, t) = u2S (x, t), x ∈ [a2, b2], 0 < t ≤ T,

u1(x, d, t) = u1N (x, t), x ∈ [a1, b1], u2(x, d, t) = u2N (x, t), x ∈ [a2, b2], 0 < t ≤ T, (36)

p1(b1, y)
∂u1

∂x
(b1, y, t) + α1u1(b1, y, t) = β1u2(a2, y, t) + γ1(y, t), y ∈ (c, d), 0 < t ≤ T,

−p2(a2, y)
∂u2

∂x
(a2, y, t) + α2u2(a2, y, t) = β2u1(b1, y, t) + γ2(y, t), y ∈ (c, d), 0 < t ≤ T,

u1(x, y, 0) = u0
1(x, y), (x, y) ∈ Ω1, u2(x, y, 0) = u0

2(x, y), (x, y) ∈ Ω2.

We consider 2D inverse problem, analogical to IP[3], for identifying external boundary
conditions ϕj(y, t) = ϕj(t)λj(y), j = 1, 2. It is defined by (36) for unknown ϕ̃j(t) and
additional point observations

uj(x∗j , y∗j , t) = ψj(t), (x∗j , y∗j ) ∈ Ωj, j = 1, 2, (37)

Similarly to the 1D case, first we discretize the problem (36) in time, using the L1
formula for approximation of the Caputo derivatives, then we apply the decomposition

un+1
j = vn+1

j + ϕn+1
j wn+1

j , j = 1, 2. (38)

Further, introducing the uniform partition of the spatial domain also ω j ×ω
y
j , where

ω
y
j = {ys : ys = c + sk, s = 0, 1, . . . , Ny, k = (d− c)/Ny},

we discretize the decoupled problems in space by a finite difference scheme to obtain
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ρ1
n,nvn+1

1,i1,s − Lx
1vi1,s − Ly

1vi1,s = f n+1
1,i1,s + G1

nun
1,i1,s, i1 = 1, . . . , N1 − 1, s = 1, . . . , Ny − 1,

vn+1
1,0,s = 0, s = 1, 2, . . . , Ny − 1,

vn+1
1,i1,0 = un+1

1S ,i1
, vn+1

1,i1,Ny
= un+1

1N ,i1
, i1 = 0, 1, . . . , N1,(

ρ1
n,n +

2α1

h1

)
vn+1

1,N1,s +
2
h1

p1,N1−1/2,svn+1
1,xN1,s

− Ly
1,N1,s

=
2β1

h1
un

2,0,s +
2
h1

γn+1
1,s + f n+1

1,N1,s + G1
nun

1,N1,s, s = 1, 2, . . . , Ny − 1,

u0
1,i1,s = u0

1(x1,i1), i1 = 0, 1, . . . , N1, s = 0, 1, . . . , Ny,

(39)

ρ2
n,nvn+1

2,i2,s − Lx
2vi2,s − Ly

2vi2,s = f n+1
2,i2

+ G2
nun

2,i2 , i2 = 1, 2, . . . , N2 − 1,(
ρ2

n,n +
2α2

h2

)
vn+1

2,0,s −
2
h2

p2,1/2,svn+1
2,x0,s
− Ly

2v0,s

=
2β2

h2
un

1,N1,s +
2
h2

γn+1
2,s + f n+1

2,0,s + G2
nun

2,0,s, s = 1, 2, . . . , Ny − 1,

vn+1
2,N2,s = 0, s = 1, 2, . . . , Ny − 1

vn+1
2,i2,0 = un+1

2S ,i2
, vn+1

2,i2,Ny,2
= un+1

2N ,i2
, i2 = 0, 1, . . . , N2,

u0
2,i2,s = u0

2(x2,i2,s), i2 = 0, 1, . . . , N2, s = 0, 1, . . . , Ny,

(40)

ρ1
n,nwn+1

1,i1,s − Lx
1wi1,s − Ly

1wi1,s = 0, i1 = 1, 2, . . . , N1 − 1, s = 1, 2, . . . , Ny − 1,

wn+1
1,0,s = λ1,s, s = 1, 2, . . . , Ny − 1,

wn+1
1,i1,0 = wn+1

1,i1,Ny
= 0, i1 = 0, 1, . . . , N1,(

ρ1
n,n +

2α1

h1

)
vn+1

1,N1,s +
2
h1

p1,N1−1/2,svn+1
1,xN1,s

− Ly
1wN1,s = 0, s = 1, 2, . . . , Ny − 1,

(41)

ρ2
n,nwn+1

2,i2,s − Lx
2wi2,s2 − Ly

2wi2,s2 = 0, i2 = 1, 2, . . . , N2 − 1,(
ρ2

n,n +
2α2

h2

)
vn+1

2,0,s2
− 2

h2
p2,1/2,swn+1

2,x0,s
− Ly

2w0,s = 0, s = 1, 2, . . . , Ny − 1,

wn+1
2,N2,s = λ2,s, s = 1, 2, . . . , Ny − 1,

wn+1
2,i2,0 = wn+1

2,i2,Ny
= 0, i2 = 0, 1, . . . , N2,

(42)

where

Lx
j vij ,s =

1
hj

(
pj,ij+1/2,sj

vn+1
j,xij

,s − pj,ij−1/2,svn+1
j,xij ,s

)
,

Ly
j vij ,s =

1
k j

(
qj,ij ,s+1/2vn+1

1,yij
,s − qj,ij ,s−1/2vn+1

j,yij ,s

)
,

vj,xij ,s
=

vn+1
j,ij+1,s − vn+1

j,ij ,s

hj
, vj,xij ,s

= vj,xij−1,s , pj,ij±1/2,s = pj(xj,ij±1/2,s),

vj,yij ,s
=

vn+1
j,ij ,s+1 − vn+1

j,ij ,s

k j
, vj,yij ,s

= vj,yij ,s−1 , qj,ij ,s±1/2 = qj(xj,ij ,s±1/2).
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Finally, the external boundary conditions are determined from (38) and (37).

ϕn+1
j =

ψn+1
j − vn+1

j (x∗j , y∗j )

wn+1
j (x∗j , y∗j )

, j = 1, 2. (43)

The correctness of the numerical method (38)–(43) is proved in the same fashion as in
Theorem 3.

Proposition 2 (Correctness). Let pj(x, y) ≥ pj(x, y) > 0, qj(x, y) ≥ qj(x, y) > 0, (x, y) ∈ Ωj,
j = 1, 2, β1β2 ≤ α1α2, αj ≥ 0, λj,s ≥ 0, λj,s 6≡ 0. Then wn

j,ij ,s
6= 0, ij = 1, 2, . . . , Nj,

n = 1, 2, . . . , M, j = 1, 2,

Proof. It is enough to represent the unknowns wn
j,ij ,s
6= 0 in (41), (42) as vectors with length

NjNy in a system with coefficient matrix of size NjNy × NjNy. Then, from maximum
principle, with similar considerations as in Theorem 3, we derive 0 < wn

j,ij ,s
≤ max

0≤s≤Ny
λj,s,

ij = 1, 2, . . . , Nj, n = 1, 2, . . . , M, j = 1, 2.

Theorem 5. Let the conditions of Proposition 2 be fulfilled. Then, the solution of the inverse
problem (38)–(43) is unique.

Proof. The proof follows the same arguments as in Theorem 4. We suppose that each of the
problems (39)–(42) has two solutions. Then, their differences are solutions of homogeneous
systems with coefficient matrices, which are M-matrices.

7. Numerical Simulations

In this section, we verify the efficiency of the proposed method. We illustrate the
accuracy for the test with weak singular exact solution u = (u1, u2) of (1)–(8), and (36),
namely with respect to time, there exists a constant C, such that∣∣∣∣∣∂kuj

∂tk (x, t)

∣∣∣∣∣ ≤ C(1 + tδj−k), j = 1, 2, k = 0, 1, 2, for all (x, t) ∈ (Ω1 ∪Ω2)× (0, T]. (44)

For 1D case, errors of the solution uj (denoted by Ej), ϕj (denoted by ε j) and order of
convergence in time of ϕj (CRϕ

j ), uj (CRτ
j ) and spatial convergence rate of uj (CRh

j ) are
given by

Ej = Ej(M, Nj) = max
0≤ij≤Nj

max
0≤n≤M

|uj(xj,ij , tn)− un
j,ij
|, j = 1, 2,

ε1 = ε1(M) = max
0≤n≤M

|u1(a1, tn)− ϕn
1 |, ε2 = ε2(M) = max

0≤n≤M
|uj(b2, tn)− ϕn

2 |,

CRτ
j = log2

Ej(M, Nj)

Ej(2M, Nj)
, CRh

j = log2
Ej(M, Nj)

Ej(M, 2Nj)
, CRϕ

j = log2
ε j(M)

ε j(2M)
.

In the case of a 2D problem, we define the errors analogically

Ej = max
0≤ij≤Nj

max
0≤s≤Ny

max
0≤n≤M

|uj(xj,ij , ys, tn)− un
j,ij ,s|, j = 1, 2,

ε1 = max
0≤n≤M

|u1(a1, tn, ys)− ϕn
1 |, ε2 = max

0≤n≤M
|uj(b2, tn, ys)− ϕn

2 |.

In the case, when in Ej we take the exact solution to be the discrete solution of the
corresponding direct problem, we use the notation E h

j , j = 1, 2.
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We consider the following time grid

tn = T
( n

M

)r
, r ≥ 1, n = 0, 1, . . . , M. (45)

If r = 1, the mesh is uniform, otherwise the grid nodes are concentrated close to the
origin t = 0.

Applying similar considerations as in [16], we may deduce that for weak singular
solution (44) of (1)–(8) and (36), the order of convergence of the numerical solution, derived
by (34) and the corresponding discretization of (36), is

E = max{E1, E2} ≤ O
(

h2
1 + h2

2 + µk2 + M−min{2−δ1,rδ1} + M−min{2−δ2,rδ2}
)

≤ O

(
h2

1 + h2
2 + µk2 + M

−min
j=1,2
{min{2−δj ,rδj}}

)
,

(46)

where µ = 0 for 1D problem and µ = 1 for 2D problem.
In view of (46), in order to obtain optimal accuracy

E ≤ O

(
h2

1 + h2
2 + µk2 + M

−min
j=1,2
{2−δj}

)
, (47)

we suggest

r =
2− δ

δ
, δ = min{δ1, δ2}. (48)

All computations are performed with graded temporal mesh (45), (48).

First, we present computational results for the 1D problem. Let

a1 = 1, b1 = 2, p1(x) = 2x + 3, α1 = 3, β1 = 2,

a2 = 3, b2 = 5, p2(x) = 3x2 + 1, α2 = 1, β2 = 0.5, T = 1.
(49)

Example 1 (Direct problem). In this example, we verify the accuracy of the discretization for the
direct problem and choice of the temporal mesh.

For the test example, we determine functions f j(x, t), γj(t), j = 1, 2, such that

u1(x, t) = Eα1(−tα1) cos(πx/4), u2(x, t) = Eα2(−tα2) cos(πx/2),

to be the exact solution of the problem (1)–(8), (49). Here, Eαj , j = 1, 2 is the Mittag-Leffler

function, i.e., Eα(z) =
∞
∑

n=0

zn

Γ(nα+1) .

In order to verify the temporal order of convergence on graded mesh (45), (48), we
take N1 & 0.5M(2−max{δ1,δ2})/2, N2 = 2N1. In Table 1 we give the results for different values
of δ1, δ2, and M. Obviously the order of convergence in time is O

(
M−(2−max{δ1,δ2})

)
.

Next, we test the order of convergence in space. Let N2 = 2N1, M & N2/(2−δ1)
2 , δ1 =

δ2 = 0.5. In Table 2 we list the computational results, which confirm the second-order spatial
convergence. Therefore, we may conclude that the convergence of the discretization (34) is
the one, given in (47).
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Example 2 (Inverse problem: discrete data). Now, we illustrate the convergence of the numerical
solution of the inverse problem. The test problem is (1)–(8), (49) with the following right-hand side,
boundary, and initial conditions

u0
1(x) = cos

πx
4

, u0
2(x) = cos

πx
2

, ϕ1(t) =
√

2
2

Eδ1(−tα1) + 2


t
T

, t <
T
2

,

T − t
T

, t >
T
2

,

ϕ2(t) = 0, f1(x, t) = 2x2 + tδ1 + t2δ1 + t, f2(x, t) = 15Eδ2(−tα2),

γ1 = 0.5
(
Eδ1(−tα1) + Eδ2(−tα1)

)
, γ2 = 0.

Table 1. Errors and temporal convergence rate of the solution (u1, u2) of the direct problem (34).

δ1 δ2 M = 20 M = 40 M = 80 M = 160 M = 320 M = 640 M = 1280

0.5 0.5 E1 5.699 × 10−3 1.965 × 10−3 6.157 × 10−4 2.142 × 10−4 7.418 × 10−5 2.600 × 10−5 9.118 × 10−6

CRh
1 1.536 1.674 1.523 1.530 1.512 1.512

E2 1.844 × 10−2 6.665 × 10−3 2.213 × 10−3 7.720 × 10−4 2.653 × 10−4 9.398 × 10−5 3.286 × 10−5

CRh
2 1.468 1.591 1.519 1.541 1.497 1.516

0.3 0.6 E∞ 1.014 × 10−2 3.113 × 10−3 1.046 × 10−3 3.873 × 10−4 1.462 × 10−4 5.453 × 10−5 2.040 × 10−5

CR∞ 1.703 1.573 1.433 1.406 1.423 1.419

E2 3.166 × 10−2 1.075 × 10−2 3.496 × 10−3 1.333 × 10−3 4.911 × 10−4 1.859 × 10−4 6.930 × 10−5

CRh
2 1.559 1.620 1.391 1.441 1.401 1.424

0.9 0.4 E∞ 2.672 × 10−2 9.865 × 10−3 4.230 × 10−3 1.988 × 10−3 8.263 × 10−4 3.832 × 10−4 1.684 × 10−4

CR∞ 1.438 1.222 1.089 1.267 1.109 1.186

E2 9.591 × 10−2 3.127 × 10−2 1.535 × 10−2 6.830 × 10−3 2.907 × 10−3 1.331 × 10−3 6.159 × 10−4

CRh
2 1.617 1.026 1.168 1.232 1.127 1.112

Table 2. Errors and spatial convergence rate of the solution (u1, u2) of the direct problem (34).

N1 = 10 N1 = 20 N1 = 40 N1 = 80 N1 = 161 N1 = 320 N1 = 640

E1 1.037 × 10−3 2.583 × 10−4 6.445 × 10−5 1.610 × 10−5 4.022 × 10−6 1.005 × 10−6 2.512 × 10−7

CRh
1 2.005 2.003 2.002 2.001 2.000 2.000

E2 3.725 × 10−3 9.320 × 10−4 2.330 × 10−4 5.822 × 10−5 1.455 × 10−5 3.637 × 10−6 9.093 × 10−7

CRh
2 1.999 2.000 2.000 2.000 2.000 2.000

The exact solution (u1, u2) and the measurements ψ1, ψ2 are taken from the discrete
direct problem.

On Figures 1 and 2 we plot absolute errors of the identified functions ϕ1, ϕ1 for
different meshes M = N1 = N2, x∗1 = 1.5, x∗2 = 4 in the cases δ1 = δ2 = 0.5 and δ1 = 0.4,
δ2 = 0.8. We observe very good accuracy of the restored external boundary condition. As
can be expected the bigger error is at point t1.

In Table 3 we list errors of the solution u and restored functions ϕ1, ϕ2 for M = N1 =
N2 = 160, δ1 = δ2 = 0.5 and different points of measurements. We observe that the closer
the point of the measurement is to the corresponding external boundary, the better the
accuracy is. Even for the nonsmooth function ϕ1, the restored boundary conditions are
very precise. The numerical solution, obtained by the inverse problem is almost the same
as the one computed by the discrete direct problem.
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Figure 1. Absolute errors of the recovered ϕ1 (left) and ϕ2 (right), δ1 = δ2 = 0.5.
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Figure 2. Absolute errors of the recovered ϕ1 (left) and ϕ2 (right), δ1 = 0.4, δ2 = 0.8.

Table 3. Errors of the solution (u1, u2, ϕ1, ϕ2) of the inverse problem (19)–(23) for different points of
measurement.

Errors x∗1 = 1.2 x∗1 = 1.4 x∗1 = 1.5 x∗1 = 1.7 x∗1 = 1.8
x∗2 = 4.8 x∗2 = 4.5 x∗2 = 3.7 x∗2 = 3.5 x∗2 = 3.2

E h
1 1.681 × 10−13 5.189 × 10−13 1.708 × 10−11 1.098 × 10−10 3.389 × 10−10

E h
2 2.942 × 10−15 1.388 × 10−15 8.707 × 10−15 5.561 × 10−15 2.211 × 10−14

ε1 2.470 × 10−11 2.419 × 10−11 7.631 × 10−12 8.504 × 10−11 3.636 × 10−10

ε2 1.490 × 10−16 4.444 × 10−16 8.707 × 10−15 5.561 × 10−15 2.211 × 10−14

In Figure 3, we depict the numerical solution in the whole time-space computational
domain, of the inverse problem (Algorithm 1) for N1 = N2 = M = 40, δ1 = δ2 = 0.5.

Example 3 (Inverse problem: noisy data). We consider perturbed input data [3]

ψε
j (t

n∗) = ψj(tn∗) + 2εj(σj(tn∗)− 0.5), j = 1, 2,

where εn
j are noise levels and σj(t) is a random function, uniformly distributed on the interval

[0, 1]. The measurements are at x∗1 = 1.5, x∗1 = 4. In Figure 4, we plot the solution in the whole
computational domain of the direct problem and inverse problem with noise at all time levels, i.e.,
n∗ = n for M = 40, N1 = N2 = 80. In Figure 5, we depict the corresponding solution for noisy
data at 15 time levels, i.e., n∗ = 15. In order to obtain noisy values at all time levels and to smooth
the functions ψε

1, j = 1, 2, we apply linear and cubic spline interpolation. The resulting graphics are
given on the left and right plots.
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We observe much better results for the solution, obtained by linear interpolation of
the noisy data. Computations showed that to obtain more precise results a bigger number
of measurements should be taken near the initial time than near the final time.

1
2

3
4

5

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

x

t

(u
1
,u

2
)

Figure 3. Numerical solution on time-space grid of the inverse problem, δ1 = δ2 = 0.5.
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Figure 4. Discrete solution (u1, u2) of the direct problem (left) and the inverse problem with noisy
data at all time levels (right), δ1 = δ2 = 0.5.
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Figure 5. Discrete solution (u1, u2) of the inverse problem with measurements at 15 time levels, linear
(left) and spline (right) interpolation for smoothing the functions ψε

1 and ψε
2, δ1 = δ2 = 0.5.

Example 4 (2D inverse problem). We consider the inverse problem (36)–(37) for unknown ϕj,
j = 1, 2, with the following model parameters and functions a1 = 1, b1 = 2, a2 = 3, b2 = 4,
c = 0, d = 1, α1 = 3, α2 = 1, β1 = 2, β2 = 0.5, T = 1, N1 = N2 = Ny = M = 80,
p1(x, y, t) = 3 + 2x + y, p2(x, y, t) = 1 + 3x2 + 2y, q1(x, y, t) = 1 + x2 + y2, q2(x, y, t) =
1 + xy, ϕj(t) = Eαj(−tαj), j = 1, 2. To verify the efficiency of the method (38)–(43), we use a test
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with an exact solution. Functions γj, f j, λj, and Dirichlet boundary conditions are determined such
that the exact solution of the problem (36) is

u1(x, y, t) = Eα1(−tα1)(cos(πx/4) + cos(πy/4)),

u2(x, y, t) = Eα2(−tα2)(cos(πx/2) + sin(πy/2)).

In Table 4 we give errors of the restored functions ϕj and errors (with respect to the
exact solution and with respect to the discrete solution of the direct problem) of the solution
uj of the inverse problem, computed by (39)–(43) for δ1 = δ2 = 0.5 and different point of
measurements. The test also includes the case when at each time level, we choose random
point (x∗j , y∗j ), j = 1, 2 from the set of inner grid nodes, see Figure 6 (left). The values
of the measurements are equal to the numerical solution of the direct problem at points
(x∗j , y∗j , tn+1), j = 1, 2, n = 1, 2, . . . , M.

We observe that for measurements far away from the external boundaries the precision
of the restored ϕj is a little bit lower, but the error is still very small. Even, when the
measurements are at arbitrary points, we attain a very good fitting of the recovered ϕj
to the exact one. In Figure 6 (right), we plot the error of the numerical solution of the
inverse problem at the final time with measurements shown in Figure 6 (left), compared
with the exact solution of the direct problem. The bigger error is attained at the interface
boundaries, since the error of the restored external boundary conditions is almost zero. For
that reason, for all tests (Table 4), the error Ej is almost the same. We conclude that the
numerical solution of the inverse problem (u1, u2) is not so sensitive to the position of the
measurements.

Table 4. Errors of (u1, u2, ϕ1, ϕ2) of the inverse problem (39)–(43) for different points of measurement.

Errors x∗1 = 1.5, y∗
1 = 0.15 x∗1 = 1.65, y∗

1 = 0.85 random (x∗j , y∗
j ), j = 1, 2,

x∗2 = 3.5, y∗
2 = 0.65 x∗2 = 3.25, y∗

2 = 0.5 Figure 6

E1 7.587 × 10−4 7.587 × 10−4 7.587 × 10−4

E2 5.793 × 10−4 5.793 × 10−4 5.793 × 10−4

E h
1 5.120 × 10−13 3.036 × 10−12 5.623 × 10−12

E h
2 3.653 × 10−14 7.505 × 10−14 3.131 × 10−14

ε1 2.999 × 10−13 1.778 × 10−12 3.294 × 10−12

ε2 1.743 × 10−14 3.753 × 10−14 1.465 × 10−14
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Figure 6. Points of measurements (left) and error (right) between numerical solution of the inverse
problem (u1, u2) and exact solution of the direct problem at final time.

8. Conclusions

In this work, we considered 1D and 2D inverse problems for identifying external
boundary conditions in time-fractional parabolic problems on disjoint domains. We con-
struct a decomposition method, based on decoupling of the problem at each time level. We
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propose an efficient grading of the temporal mesh, such that it handles the weak singularity
of the solution in the case of different fractional orders of the equations in each domain.
Computational results showed very high accuracy of the restored boundary conditions,
even in the case when they are nonsmooth functions of the time. The closer the mea-
surements are to the corresponding external boundary, the more accurate the restored
boundary conditions are.

The computed by inverse method solution of the problem is not significantly in-
fluenced by the location of the points of the measurements. The solution, obtained by
numerically solving the inverse problem is almost the same, as the one computed by the
direct problem with the larger error at the interface boundaries, since the error of the
recovered external boundary is negligible. The method can be successfully applied in cases
where the measurements are not at each time level.

For the point observation, if we have to determine Neumann or Robin external bound-
ary conditions with an unknown right-hand side (source), the present approach can be
applied in the same manner. However, if we consider for example final time observation,
integral observation, etc., there are no such results in the literature for the present disjoint
problems and it requires further investigation. This is out of the frame of the present work,
and it will be subject of the future studies. Also, rigorous analysis of the existence and
uniqueness of the solution of the present differential inverse problem(s) will be investigated
in our forthcoming work.
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