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Abstract: Tool wear will reduce workpieces’ quality and accuracy. In this paper, the vibration signals
of the milling process were analyzed, and it was found that historical fluctuations still have an
impact on the existing state. First of all, the linear fractional alpha-stable motion (LFSM) was inves-
tigated, along with a differential iterative model with it as the noise term is constructed according
to the fractional-order Ito formula; the general solution of this model is derived by semimartingale
approximation. After that, for the chaotic features of the vibration signal, the time-frequency do-
main characteristics were extracted using principal component analysis (PCA), and the relationship
between the variation of the generalized Hurst exponent and tool wear was established using multi-
fractal detrended fluctuation analysis (MDFA). Then, the maximum prediction length was obtained
by the maximum Lyapunov exponent (MLE), which allows for analysis of the vibration signal. Finally,
tool condition diagnosis was carried out by the evolving connectionist system (ECoS). The results
show that the LFSM iterative model with semimartingale approximation combined with PCA and
MDFA are effective for the prediction of vibration trends and tool condition. Further, the monitoring
of tool condition using ECoS is also effective.

Keywords: long-range dependence (LRD); linear fractional alpha-stable motion (LFSM); maximum
Lyapunov exponent (MLE); semimartingale

1. Introduction

In this paper, the aim is to use the LRD of data to develop a differential iterative model
based on LFSM, predicting the trend of tool’s vibration by the model’s general solution, which is
derived by semimartingale approximation. The monitoring of tool wear status is subsequently
implemented via ECoS. In this section, the background, literature review, formulation of the
problem, research in this paper, and the organization of this paper are provided.

1.1. Background

The tool, as a crucial basic component of the milling machine, is one of the most
important components in ensuring machining quality and lowering machining costs, but it
is also the most susceptible component [1]. According to research, tool wear is the most
common cause of milling process failures. As a result, the tool’s evaluation and prediction
is important. In this paper, the tool’s vibration signal data is employed for prediction.
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1.2. Literature Review

The tool degradation state can be divided into direct measurement methods and
indirect measurement methods. The direct methods refer to the measurement of param-
eters related to the tool’s volume, mainly optical measurements and computer image
processing [2]. Zhu et al. [3] proposed a tool wear surface area monitoring method, which
decomposed the original micro-milling tool image into the target tool image, background
image, and noise image. This method uses an area growth algorithm based on morphologi-
cal component analysis to detect defects and extract the wear area of the target tool image.
Szydowski et al. [4] proposed a wavelet transform-based image reconstruction method
to overcome the scatter phenomenon in tool imaging and to evaluate tool wear using
geometric information properties. This type of method is not applicable to industrial fields
because it requires interrupting the machining process while monitoring tool wear status.
It is difficult to achieve online real time work and the equipment is expensive. Therefore,
indirect methods are the main research method of scholars.

Indirect methods usually refer to the vibration, cutting force, acoustic signals, and
other data acquired by sensors. In this paper, we only investigate the relationship between
the vibration signal and tool degradation trend. Vibration has a strong connection with the
cutting force and has its own dynamic characteristics. As the wear of the tool increases or
the tool breaks, the frictional state of the contact part between the tool and the workpiece
changes, causing fluctuations in the signal of the cutting forces, which leads to variations
in frequency and amplitude of vibration. The vibration signal is highly sensitive to tool
wear and damage. Choudhury et al. [5] developed mathematical models of wear and
diffusion indices, wear coefficients, normal loads, and other factors for tool wear prediction.
Salgado et al. [6] used singular spectrum analysis (the method uses PCA to decompose
the time series into multiple independent sets), extracted information related to the tool
state, and then predicted the tool wear trend by constructing a neural network. Elangovan
et al. [7] used a data mining approach to predict degradation features in the vibration
signal that were extracted by using PCA, then compared with PCA feature transformation
and decision tree feature transformation to improve the robustness of the classifier. Gong
et al. [8] presented a method to decompose the vibration signal using FFT to obtain the
damping ratio and used it to predict the vibration trend of the tool.

Several common techniques are available. Refs. [9,10] created physics-based variance
analysis for tool wear prediction and regression analysis of cutting processes. Ref. [11]
developed a tool wear prediction method using artificial neural networks. Ref. [12] also
developed a support vector machine prediction method [11,12], which is also an indirect
method. Due to the fact that they are trained on historical data samples, these models
inherently acquire the characteristics of the training samples by default. They ignore the
long-range dependence (LRD) and self-similarity that the time series data has. The LFSM
iterative prediction model proposed in this paper adopts these shortcomings and thus is
more accurate than the above models and can be used with ECoS for more accurate tool
wear detection.

The concept of fractal geometry was first introduced by the mathematician B.B. Man-
delbrot in 1975 [13,14], but earlier work can be traced back to the nineteenth century. In
1875, K. Weierestrass constructed functions that are everywhere continuous but everywhere
infinitesimal. G. Cantor constructed stop-trivial Cantor sets with many singular properties
in 1883; in 1890, G. Peano constructed curves that fill spaces, and in 1904, H. Koch designed
a class of curves resembling snowflakes and the edges of islands. In 1915, W. Sierpinski de-
signed geometric maps, such as carpets and sponges. They all have self-similarity, i.e., they
consist of parts that are in some way similar to the whole. In 1978, Sayles and Thomas [15]
published a paper in Nature about the thickness variation of rough surface morphology as
a non-smooth stochastic process. Fractal parameters can be used to quantitatively charac-
terize rough surfaces. The feature is scale-independent and it provides information on the
full range of surface morphologies present on fractal surfaces at all scales [15]. Thomas [15]
and Majumdar [16] were the first to apply fractal theory to the study of rough surfaces,
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using the fractal dimension D to quantitatively characterize rough surfaces. Inspired by
the above experts, in this paper, we used fractal theory to research the wear condition
of rear tool face. By analyzing the tool vibration signal, it is concluded that it has fractal
characteristics and that the relationship between D and the Hurst index has been proven.

In 1974, applied chemist K. B. ldham and mathematician J. Spanier collaborated
to publish the first monograph on fractional-order calculus [17]: Fractional Calculus:
Theory and Applications, Differentiation, and Integration to Arbitrary Order. It is the first
detailed explanation of the basic theory of fractional-order calculus and its applications.
Fractional-order control was first introduced by Tustin in a paper on multi-objective position
control, and some other studies were summarized by S. Manabe in the 1960s [18]. In 1993,
French scholar A. Oustaloup designed the first generation of fractional-order from the
view of fractional-order robust CRONE (robust control of non-integer order) controllers
and was the first to successfully apply them [19]. In 1999, Slovakian scholar I. Podlubny
published a book about fractional-order differential equations [20], which introduced the
calculation of fractional-order calculus and the solution of fractional-order differential
equations, providing a fractional-order differential and fractional-order integral. It also
introduces some common engineering tools, such as Laplace and Fourier, which transform
into fractional-order control systems, providing a physical explanation of fractional-order
differentiation and fractional-order integration, making a fundamental contribution to the
development of fractional-order control theory.

1.3. Formulation of the Problem

The vibration signal has LRD, and the prediction accuracy of current methods is
not sufficient. There are difficulties in determining the maximum prediction length of a
chaotic signal. It is neither a Markov process nor a semimartingale, so the differential
iterative model based on LFSM does not satisfy the conditions for the solutions of the Ito
formula. The vibration signal contains many time-frequency domain factors, which require
simpler operations in the case of large amounts of data. Finally, signs need to be found
that can reflect the state of tool wear. Therefore, to achieve tool wear detection, firstly, the
LFSM differential iterative model must be built and solved. Secondly, the degradation
characteristics and maximum prediction length must be determined. Finally, the signs of
tool wear states must be analyzed.

1.4. Researches in This Paper

In recent years, it has been demonstrated that many stochastic sequences do not
follow Markov processes not only during the most recent point of time, but can also
influence future events earlier. This phenomenon is referred to as LRD. Studies in [21,22]
demonstrate that LRD can provide better predictions than current techniques by taking into
account both the past and future conditions. LFSM [23,24] is a stochastic process prediction
approach where historical data must satisfy LRD. The most popular forecasting technique
among those who use LRD properties is the fractional Brownian motion (fBm) [25,26]. The
LRD characteristic of fBm is defined by just one parameter, H (Hurst index). The LRD
properties of LFSM are established by two parameters, H and α, in contrast to fBm, where
H specifies the global properties and α specifies the local properties. When αH > 1, the
LRD phenomenon occurs in LFSM [27,28]. This phenomenon allows LFSM to handle more
complex situations than fBm and provides a more suitable description of LRD processes.
As a result, we use an LFSM-based differential iterative prediction model for tool vibration
signal prediction.

In this paper, an Ito integral [29,30] driven by LFSM with Riemann–Liouville type
leads to construction of a differential iterative formula. Its relationship with noise is
obtained from the fractional-order Taylor formula [31], and is generalized to the fractional-
order Maruyama representation, constructing a semimartingale approximation for LFSM
that converges consistently on L2(Ω), resulting in the general solution for the differential
iterative formula.
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The small data method [32] is used to analyze MLE. By raising the time step of each
iteration, the accuracy and speed of calculating are increased. This gives the maximum
prediction length of the LFSM differential iterative model. In this paper, PCA is used to
extract the main factors which influence the vibration trend in order to reduce the amount
of calculation. Ten basic features based on time and frequency domain were selected:
mean of absolute values, variance, kurtosis, margin factor, crest factor, impulse factor,
waveform factor, vibration velocity energy, vibration intensity, and mean of power spectrum.
The traditional dimensionless feature can accurately extract the weak degradation of the
initial stage, but the extraction accuracy gradually decreases as degradation increases; the
dimensional feature is highly influenced by energy and is insensitive to the weak trend
of the initial degradation stage; the new dimensionless feature is insensitive to energy,
however it can only properly extract the weak trend of the early deterioration stage. These
variables may be related and have a clear impact on the outcome [33,34]. After forecasting
the vibration trend, the MDFA algorithm is used to obtain the relationship between the
generalized Hurst index and the wear state. The EClfoS system learned to enable earlier
monitoring of tool wear.

This paper uses multi-sensor vertical mill monitoring data from the 2010 Prognostics
and Health Management (PHM) Challenge for verification [35]. The prediction model in
this paper is more flexible than the widely used fBm model and enables earlier prediction
of vibration signals or wear states than existing methods. This paper uses an innovative
method of constructing semimartingales to approximate the general solution, proving the
uniqueness of the solution and reducing the difficulty of simulation. It is shown that the
LFSM model can describe stochastic processes with LRD.

1.5. Advantages of the Paper

The methods presented in Section 1.2 mostly use historical data to train the model,
so the predicted results present the characteristics of the training sample. The model
in this paper takes full account of the LRD and self-similarity between historical and
future data and can present longer and more accurate prediction distances. Finally, the
existence and uniqueness of the model’s solution under research is proven by establishing
the semimartingale, which in turn proves the validity of simulating random paths with
this model. The model can be applied to many situations that require consideration of the
LRD of data.

1.6. Organization of the Paper

This paper is organized as follows. In Section 2, the LFSM with LRD and self-similarity
is researched and proved; Section 3 investigates the numerical simulation of LFSM, con-
structing a semimartingale with consistent convergence on L2(Ω). Section 4 investigates
the differential iterative model of LFSM, proves that the model has a unique solution by
the semimartingale in Section 2, and estimates the LFSM model’s parameters; Section 5
presents PCA and MLE. Firstly, PCA is used to obtain the health factors, which mainly
affect the degradation trend, and MLE is used to obtain the maximum predicted length;
Section 6 describes the method for calculating the fractal dimension; Section 7 investigates
the LFSM model to predict tool vibration data and compares it with some existing methods,
which have a higher accuracy; Section 8 gives conclusions.

2. Linear Fractional Stable Motion in Alpha-Stable Case
2.1. Linear Alpha-Stable Motion

An alpha-stable motion is defined as follows [24,36]:

ϕ(ϑ : α, β, µ, δ) = E
[
ejϑx
]
=


exp

{
jµϑ− δ|ϑ|α

[
1− jβ ϑ

|ϑ| tan
(

πα
2
)]}

, α 6= 1

exp
{

jµϑ− δ|ϑ|α
[
1 + jβ ϑ

|ϑ|
2
π ln|ϑ|

]}
, α = 1

(1)
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where the index α ∈ (0, 2] is the stability index and indicates the degree of local influence.
The random sequence is skewed if the parameter β ∈ [−1, 1] is not satisfied by β = 0,
where a positive skewness is in the right tail and a negative skewness is in the left tail.
The effects of α and β are shown in Figure 1. The parameter µ ∈ R controls the location
property of the distribution. The parameter δ ≥ 0 indicates how discrete the distribution is
from the mean. The effects of µ and δ are shown in Figure 2. Being X, the random variables
that obey the Equation (1) as X ∼ Sα(β, µ, δ).
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2.2. A Type of LFSM

The LFSM is defined as follows [37]:

LH,α(t) =
∫ +∞

−∞
{a[(t− v)H−1/α

+ − (−v)H−1/α
+ ] + b[(t− v)H−1/α

− − (−v)H−1/α
− ]}N(dv) (2)

where a and b are real constants, and N ∈ R is an alpha-stable measure in the Lebesgue
measure.

The incremental process is described below:

XH,α(t) = LH,α(t + 1)− LH,α(t)

XH,α(t) =
∫ ∞

−∞
{a[(t + 1− s)H−1/α

+ − (−s)H−1/α
+ ] + b[(t + 1− s)H−1/α

− (−s)H−1/α
− ]}ωα(s)

(3)

where ωα(s) is the Lévy white noise. XH,α(t) is known as the LFSM noise. LFSM is a
self-similarity process where H 6= 1/α, and its incremental process, the noise XH,α(t) is a
self-similarity process too. The proof of the self-similarity of LFSM is given below:
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Define an integral kernel function,

fα,H(a, b; t, s) = a[(t− s)H−1/α
+ − (−s)H−1/α

+ ] + b[(t + 1− s)H−1/α
− − (−s)H−1/α

− ] (4)

Define a function x〈α〉 =
{

xα, x ≥ 0
−|x|α, x < 0

, then

cc−aH
∫ ∞

−∞

{[
d

∑
j=1

θj
(

fα,H
(
a, b; ctj + h, s

)
− fα,H(a, b; h, s)

)]}〈α〉
β(s)ds

=
∫ ∞

−∞

{[
d

∑
j=1

θj( fα,H(a, b; ts, s)− fα,H(a, b; 0, s))

]}〈α〉
β(cs + h)ds

(5)

where θ, t, h ∈ R,c > 0, d ≥ 1, j = 1, . . . , d and β(x) is skewness intensity.
If H = 1/α, the function fα,H(a, b; t, s) becomes a constant; when H 6= 1/α, the

function fα,H(a, b; t, s) consistently describes the current state similarly to all past states.
LFSM satisfies the definition of self-similarity property, X(at) = aHX(t), at H 6= 1/α.

LFSM has LRD only at αH > 1 [38]. It was notable that when α ∈ (0, 1), the model
based on LFSM is not LRD. In order to describe the LRD data, α ∈ (1, 2) is limited to ensure
the reasonableness of the LFSM model for predictions. Additionally, it is required that
0.5 < H < 1.

3. Numerical Simulation of LFSM and Approximation of Semimartingale

Using semimartingale to simplify Equation (2), the numerical simulation of LFSM is
performed using the following two steps:

Step 1: The Lévy noise is convolved with the fractional-order integrator to obtain the
fractional noise;

Step 2: The obtained fractional noise is integrated or accumulated to obtain the
numerical expression of LFSM. Figure 3 depicts the generation process.
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Therefore, the expression of the LFSM model simulation sequence can be obtained below:

Lα,H(t) =
1

Γ(a + 1)

∫ t

0
(t− s)adW =

1
Γ(a + 1)

∫ t

0
(t− s)aw(s)ds (6)

where a = H − 1
α , H ∈ (0, 1), α ∈ (0, 2), so a ∈ (−0.5, 0.5), W indicates linear alpha-stable

motion. Accordingly, the LFSM noise and LFSM can be simulated according to Equation (6)
(see Figure 4).

In fractional stochastic calculus, we can use Lt =
∫ t

0 (t− s)adWs instead of Lα,H for the
approximate calculation. Obviously, Lα,H is not a semimartingale. Lt = Γ(a + 1)Lα,H is
also not a semimartingale.
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To solve the fractional-order stochastic differential equations, we build a semimartin-
gale Lε

t that converges consistently with LFSM Lt on the L2(Ω) area, as explained in
Corollary 1 and 2.

Corollary 1.

Lε
t =

∫ t

0
(t− s + ε)adWs (7)

wherea = H − 1
α ,H 6= 1

2 , 0 < H < 1,t ≥ 0, for everyε > 0,Lε
t is a semimartingale.

Proof. Define a stochastic process Φε
t that satisfies

Φε
t =

∫ t

0
(t− s + ε)a−1dWu (8)

Integrating Equation (8),∫ t

0
Φε

t ds =
∫ t

0

∫ s

0
(s− u + ε)a−1dWuds =

∫ t

0

[∫ s

u
(s− u + ε)a−1ds

]
dWu

=
1
a

[∫ t

0
(t− u + ε)adWu − εaWt

]
=

1
a
(Lε

t − εaWt)

(9)

Therefore,

Lε
t = a

∫ t

0
Φε

t ds + εaWt (10)

So, Lε
t is a semimartingale. �

Corollary 2. Lε
t converges uniformly to Lt in L2(Ω) when the case of ε→ 0 and t ∈ [0, T].

Proof. According to the finite increment theorem∣∣(t− s + ε)a − (t− s)a∣∣ ≤ |a|ε sup
0≤γ≤1

|t− s + γε|a−1 = |a|ε(t− s)a−1 (11)

According to the theory of isometry of Ito integrals

E|Lε
t − Lt|2 = E

∣∣∣∣∫ t

0

[
(t− s + ε)a − (t− s)a]dWs

∣∣∣∣2 =
∫ t

0

∣∣(t− s + ε)a − (t− s)a∣∣2ds

=
∫ t−ε

0

∣∣(t− s + ε)a − (t− s)a∣∣2ds +
∫ t

t−ε

∣∣(t− s + ε)a − (t− s)a∣∣2ds

(12)
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According to the Equation (10), the Equation (12)’s left part:∫ t−ε

0

∣∣(t− s + ε)a − (t− s)a∣∣2ds ≤ a2ε2
∫ t−ε

0
(t− s)2a−2ds (13)

The Equation (12)’s right part:∫ t

t−ε

∣∣(t− s + ε)a − (t− s)a∣∣2ds ≤ a2ε2
∫ t

t−ε
(t− s)2ads (14)

According to Equations (13) and (14), we can get:

|Lε
t − Lt|2 ≤ a2ε2

∫ t−ε

0
(t− s)2a−2ds + a2ε2

∫ t

t−ε
(t− s)2ads ≤ C(a)ε1+2a (15)

We know that the Euclidean norm ‖Lε
t − Lt‖ = (E(|Lε

t − Lt|2))
1/2

, so

sup
0≤t≤T‖Lε

t − Lt‖2 ≤ C(a)ε1+2a (16)

Corollary 2 is proved. �

4. Differential Iterative Model Based on LFSM
4.1. The Forecasting Model

The relationship between the degradation of the tool and the number of runs is
described by the Black–Scholes formula for the stochastic process sequence {X(t), t > 0}. It
is easy to derive a differential iterative formula based on linear alpha-stable motion, which
can be expressed as follows:

dX(t) = µX(t)dt + δX(t)dL(t) (17)

where dX(t) is the increment of the stochastic process, µ is the drift function, δ is the
diffusion function, µ and δ depict nonlinear degradation with power-law variation, X(0) is
the initial state, and dL(t) denotes the increment of linear alpha-stable motion.

However, Equation (17) is only predicted favorably when it is satisfied that the degra-
dation process has independent step increments. Obviously, it does not apply well to tool
vibration with LRD. The LFSM is therefore introduced by modifying the diffusion term,
and the results are shown below:

dXα,H(t) = µXα,H(t)dt + δXα,H(t)dLα,H(t) (18)

Let the function Y(t) = f (t, XH,α(t)), Taylor expansion of a obtains

Y(t + ∆t)−Y(t) = [ f ′t (t, Xα,H(t)) + µ f ′x(t, Xα,H(t))]∆t

+∑n−1
j=1

[δ(t,XH,α(t))]
j

j! f (j)
x (t, Xα,H(t))[Lα,H(t + ∆t)− Lα,H(t)]

j + o(|∆t|)
(19)

According to Equation (19), the discrete form of Equation (18) can be obtained as

∆Xα,H(t) = µXα,H(t)∆t + δXα,H(t)∆Lα,H(t) (20)

Using Maruyama formula:∫
f (τ)(dτ)ρ = ρ

∫
(t− τ)ρ−1 f (τ)dτ (21)

dx = f (t)(dt)ρ (22)
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In turn, the discrete increments of the LFSM can be obtained:

dLα,H(t) = wa(t)(dt)H (23)

where wa(t) is linear fractional alpha-stable motion noise.
Expressing Equation (23) by a differential discrete form

∆Lα,H(∆t) = Lα,H(t + ∆t)− Lα,H(t) = wa(t)(∆t)H (24)

Finally, the iterative difference prediction model based on the LFSM model is obtained
in Equation (25). Figure 5 shows the numerical simulation of the model.

Lα,H(t + 1) = Lα,H(t) + µLα,H(t)∆t + δLα,H(t)wa(t)(∆t)H (25)
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4.2. Existence and Uniqueness for the Solution of the Model

Since the accuracy of the actual measured initial data cannot be guaranteed and it
is not certain that the tested initial data can be used as the true solution, this subsection
discusses the Cauchy problem of Equation (25) or Equation (18), by proving the existence
and uniqueness of its solution to the initial value problem. Furthermore, if the initial
value creates a negligible small change or its solution similarly produces a negligible small
change, the solution’s consistent convergence must be considered.

To ensure that Equation (18) can describe the uncertain variation of a random sequence,
the process should be guaranteed to have a unique solution. We abbreviate Equation (18)
as follows: {

dSt = St(µdt + δdLt)
St=0 = S0

(26)

where Lt =
∫ t

0 (t− s)adWs follows the definition in Section 3 and a semimartingale Lε
t =∫ t

0 (t− s + ε)adWs that consistently converges to Lt has been obtained. Substituting the
semimartingale Lε

t into Equation (26) provides:{
dSε

t = Sε
t(µdt + δdLε

t)
Sε

t=0 = S0
ε > 0 (27)

We have obtained the following two Corollaries.
Since Equation (27) is a semimartingale process, its solution may be obtained using

the Ito formula.
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Corollary 3. The solution of Equation (27) is

Sε
t = S0 exp

(
δεa +

1
2

δ2ε2at +
∫ t

0
hε

sds
)

(28)

where a = H − 1
α , hε

s = µ + aδ
∫ t

0 (t− s + ε)a−1dWs, assuming that the initial value Sε
t=0 is a

bounded random variable.

Corollary 4. When the stochastic process is in L2(Ω), and ε→ 0 ,

S∗t = S0 exp(µt + δLt) (29)

This is the solution of Equation (26).

Proof. According to Equation (27), we can get

dLε
t = d

(
a
∫ t

0
Φε

t ds + εaWt

)
=

(∫ t

0
a(t− s + ε)a−1dWs

)
dt + εadWt

(30)

Substitute Equation (30) into Equation (28)

dSε
t = Sε

t

[
µ + aδ

∫ t
0 a(t− s + ε)a−1dWs

]
dt + εaδSε

t dWt

= Sε
t hε

tdt + εaδSε
t dWt

(31)

Obviously, here is

hε
t = µ + aδ

∫ t

0
(t− s + ε)a−1dWs (32)

Equation (20) can be written as

dSε
t

Sε
t
= hε

tdt + εaδdWt (33)

Using Ito formula for the above equation

log Sε
t = log Sε

0 +
∫ t

0

dSε
t

Sε
t
+

1
2

∫ t

0
− 1

(Sε
s)

2 (ε
aδSε

s)
2ds (34)

From the above equation, we get

Sε
t = S0 exp

(
δεa +

1
2

δ2ε2at +
∫ t

0
hε

sds
)

(35)

Therefore, Corollary 3 is proved. �

Proof. According to Equation (35), in order to further simplify, it takes∫ t

0
hε

sds = µt + δa
∫ t

0

∫ s

0
(s− u + ε)a−1dWuds (36)

∫ t

0

∫ s

0
(s− u + ε)a−1dWuds =

∫ t

0

[∫ s

u
(s− u + ε)a−1ds

]
dWu

=
1
a

[∫ t

0
(s− u + ε)adWu − εaWt

]
=

1
a
(

Lε
t − εa) (37)
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Gathering Equations (36) and (37), we obtain∫ t

0
hε

sds = µt− δεa + δLε
t (38)

So that
Sε

t = S0exp(
1
2

δ2ε2at + µt + δLε
t) (39)

By putting ε→ 0 in the above equation, we can get:

S∗t = S0exp(µt + δLt) (40)

According to Equation (40), after obtaining the approximation solution, it is necessary
to verify that the solution consistently converges to Equation (39) to ensure that when a
small change in S∗t occurs in the L2(Ω) region, a small change in Sε

t can follow accordingly.
In the following, we will prove that Sε

t converges uniformly to S∗t .

‖Sε
t − S∗t ‖ =

∥∥∥∥S0exp
(

1
2

δ2ε2at + µt + δLε
t

)
− S0exp(µdt + δLt)

∥∥∥∥
=

∥∥∥∥S0exp(µdt + δLt)

[
exp

(
1
2

δ2ε2at + δ(Lε
t − Lt)

)
− 1
]∥∥∥∥ (41)

According to Lt =
∫ t

0 (t− s)adWs, we can get

‖Lt‖2 = E(
∫ t

0
(t− s)adWs)

2
=

t1+2a

1 + 2a
(42)

From the above equation, in t ∈ [0, T], we can see that

‖exp(µdt + δLt)‖ ≤ eµt exp(δ‖Lt‖) ≤ eµT exp

(
δ

T
1
2+a

√
1 + 2a

)
(43)

According to the equation eA − 1 = A + o(A), the other half of Equation (41) has the
following relationship∥∥∥∥exp

(
1
2

δ2ε2at + µ(Lε
t − Lt)

)
− 1
∥∥∥∥ ≤ 1

2
δ2ε2at + δ‖Lε

t − Lt‖+ o‖Lε
t − Lt‖ (44)

Combining Equation (15)∥∥∥∥exp
(

1
2

δ2ε2at + µ(Lε
t − Lt)

)
− 1
∥∥∥∥ ≤ δ2ε2aT +

√
C(a)ε1+2a (45)

Considering Equations (41), (43), and (45) together, the following results can be obtained

sup
0≤t≤T ‖Sε

t − S∗t ‖ ≤
[

eµT exp

(
δ

T
1
2+a

√
1 + 2a

)[
δ2ε2aT +

√
C(a)ε1+2a

]]
→ 0 (46)

So, Corollary 4 is proved. �

It is also important to demonstrate the uniqueness of Equation (18)’s solution in order
to verify that it can be merged with a random sequence of fractional-order stable Lévy
white noise.

‖S∗t (1)− S∗t (2)‖ ≤ ‖S∗t (1)− Sε
t ‖+ ‖S∗t (2)− Sε

t ‖ → 0 a.s.ε→ 0 (47)

If S∗t (1) and S∗t (2) are limits of Sε
t in L2(Ω), then this solution is unique.
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In summary, Equation (25), the solution of the LFSM differential iterative model pro-
posed in this paper, is demonstrated in this section using a semimartingale approximation,
proving that the model is reasonable at the theoretical level and can describe the uncertain
variation of stochastic sequences.

4.3. Parameter Estimation of LFSM Degradation Model

The algorithms for estimating the values of H are primarily divided into two categories:
time domain analysis methods, which generally calculate the sample series directly and
then obtain the estimated values of Hurst parameters by curve fitting, primarily the variance
method, rescaled polar difference method, and absolute value method, etc.; and frequency
domain analysis methods, which primarily use Fourier changes to transform the sample
data into the frequency domain. The rescaled polar difference method is used in this paper
to estimate H, because the implementation process is very simple, and the calculation is
simple and easy to understand; the specific process is as follows:

Step 1: The sample input data {Xt, t = 1, 2, . . .} of length n is divided into h sub-
modules of equal length (all of which are a), and the mean value of each submodule is
determined;

〈X〉a =
1
a ∑d

i=1 Xi (48)

Step 2: Calculate the cumulative deviation for each submodule;

X(i, a) = ∑d
p=1

(
Xp − 〈X〉a

)
(49)

Step 3: Calculate the extreme differences for each submodule;

R(a) =
max

1≤i≤aX(i, a)−
min

1≤i≤aX(i, a) (50)

Step 4: Calculate the standard deviation of each submodule;

S(a) =

√
1
a ∑d

p=1

(
Xp − 〈X〉a

)2 (51)

Step 5: Divide the polar deviation of each submodule by the standard deviation and
average it to get the rescaled polar deviation of each submodule;

R
S
(a) =

1
h
× R(a)

S(a)
(52)

Step 6: The supplied sample data is rescaled into submodules. As long as h× a = n is
met, a can take different values, and then Steps 1–5 can be repeated to achieve different
rescaled polar deviations;

Step 7: Logarithmize each submodules’ length a and the accompanying R
S (a) to

produce log R
S (a) and log a, and then fit them using least squares, as shown in Figure 6.

log
R
S
(a) = log(c) + H×loga + ω (53)

Figure 6 shows the slope’s H, which is the projected value required in this paragraph.
There are still four parameters with values to be estimated, which are diffusion param-

eter δ, stability index α, skewness index β, and drift coefficient µ. In this paper, we use the
new eigenfunction estimation method. The specific steps are shown in [39,40].
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The LFSM model, in contrast with the standard Gaussian process that obeys the central
limit theorem, is a non-Gaussian process that obeys the modified central limit theorem and
lacks a PDF expression in the usual sense of a restricted form. The LFSM model includes
an explicit eigenfunction to address the issue of difficult parameter solutions caused by
the PDF’s lack of a restricted form. The PDF of the LFSM model may be produced by
applying Fourier transforms on the eigenfunctions. As a result, the parameter estimate
may be increased using the eigenfunctions. There is one point you should keep in mind,
θ1 = 1. This is because the absolute values of the eigenfunctions are equivalent at location
θ1 = 1, regardless of the eigenfunction parameters’ values.

ϕ(1; α, β, δ, µ) = e−δ (54)

Additionally, there is a crucial point θ2 that calculates using α = 1 and α = 2, which
stands for the Cauchy and Gaussian eigenfunctions.

d
dθ

∣∣∣e−δθ2 − eδθ
∣∣∣ = 0 (55)

2θe−δθ2
= eδθ (56)

Assuming that the input sequence is X = {x1, x2, . . . , xn}:
Step 1: Estimate the value of δ, Equation (54)’s logarithmic likelihood estimate;

δ̂ = −ln|ϕ̂(1; α, β, δ, µ)| = −ln
1
N

∣∣∣∑N
i=1 ejxi

∣∣∣ (57)

Step 2: Estimate the value of α, combining Equation (56) and Equation (55);
α̂ = logθ2

(
ln|ϕ̂(θ2; α, β, δ, µ)|
ln|ϕ̂(1; α, β, δ, µ)| ) ∗

ln|ϕ̂(θ2;α,β,δ,µ)|
ln|ϕ̂(1;α,β,δ,µ)|

lnθ2

ϕ̂(θ2; α, β, δ, µ) =
1
N

∣∣∣∑N
i=1 ejxi

∣∣∣
(58)

Step 3: Estimate the value of µ, the logarithmic version of the characteristic function
which is used to obtain the estimate of the drift coefficient.

lnϕ(θ; α, β, δ, µ) = j
[

µθ + |θ|αδβ
θ

|θ| tan
(πα

2

)]
− δ|θ|α (59)
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With the help of the two points θ1 and θ2, the estimated value can be obtained

µ̂ =
Im{θα̂

2 ln|ϕ̂(1; α, β, δ, µ)| − ln|ϕ̂(θ2; α, β, δ, µ)|
}

θα
2 − θ2

(60)

Since the LFSM model used in this work has a symmetric driving function, β̂ = 0 in
this model.

5. Feature Extraction Using PCA and MLE

PCA is a multivariate statistics-based analytic approach whose basic principle is to
orthogonally convert information from high-dimensional to low-dimensional subspaces
and reorganize the original indicators into a new set of uncorrelated composite indicators.

The steps of the method are as follows:
Step 1: Use the z-score to standardize the original data;
Step 2: Calculate the sample matrix’s covariance matrix;
Step 3: Solve the covariance matrix’s eigenroots and eigenvectors;
Step 4: Determine the primary element matrix.
In brief, the determination of principal components is divided into the following

processes, as seen in Figure 7.
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Following PCA data fusion, a typical feature degradation sequence is created, and the
MLE is used to determine the maximum prediction length appropriate for that curve.

The principle of modelling the Lyapunov Exponent using the small data size method
is as follows:

For a time series {y(i), i = 1, 2, . . . , n} with embedding dimension my, time delay τy,
and average period Py, the reconstructed phase space is

Y(i) =
[
y(i), y

(
i + τy

)
, . . . , y

(
i +
(
my − 1

)
τy
)]

, i = 1, 2, . . . , My (61)

For each reference point Y(j), the distance to its nearest neighbor Y(j′) after the
ni(n = 1, 2, 3, . . .) discrete time step is calculated as

djj′(ni) =
∥∥Y(j)−Y

(
j′
)∥∥ (62)

where i = 1, 2, . . . , min
(⌈

My−j
n

⌉
,
⌈

My−j′

n

⌉)
, |j− j′| > Py, Py is the average period of the

time series.
Assume that the reference point Y(j)’s exponential divergence from its nearest neigh-

bor Y(j′) is ℵ1, then
ln djj′(ni) = ln djj′(0) + ℵ1(i ∗ ∆t) (63)

Fixing i for every ln djj′(ni) is averaged and divided by ∆t to produce the average
divergence index

s(i) =
1

q∆t∑
q
k=1 ln djk j′k (ni) (64)

where q is non-zero djk j′k (k = 1, 2, ..., q) in number. Using the least squares method to make
the regression straight, the LLE can be found by calculating the slope of the line as ℵ1.
Figure 8 shows the upper part with s(i) and the lower part with the slope.
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Figure 8. The least-squares regression and slope of s(i).

Calculation of maximum Lyapunov coefficient by small data method ϑ:

ϑ =
ln djj′(ni)− ln djj′(0)

i ∗ ∆t
(65)

The maximum prediction range ℵ of the degenerate feature sequence can be obtained
by the inverse of the maximum Lyapunov coefficient ϑ

ℵ =
1
ϑ

(66)

The calculation steps are shown in Figure 9:
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After determining the degradation sequence and maximum prediction length, the
degradation trend may be forecasted using the LFSM model, which is explained in the
following section.

6. Fractal Dimension and MDFA

Grassberger and Procaccia proposed a calculation method in 1983 based on the idea
of phase space reconstruction [41]. The method is based on the idea of using distances to
characterize the degree of points correlation in a set. For set X{x1, x2, . . . , xn}, the steps of
the method are as follows:

Step 1: Calculation of correlation function

S(τ) =
1
n2 ∑n

i 6=j s
(
τ −

∥∥xi − xj
∥∥) (67)

where
∥∥xi − xj

∥∥ is Euclidean parametrization, τ is constant, and;

h
(
τ −

∥∥xi − xj
∥∥) = {1, τ ≥

∥∥xi − xj
∥∥

0, τ <
∥∥xi − xj

∥∥ (68)

Step 2: Fractal dimension D is

D = lim
τ→0

log H(τ)

log(τ)
(69)

The MDFA is as follows:
Step 1: Calculate the sum of xi and the mean value;

y(i) = ∑n
i=1 (xi −

−
x), n = 1, 2, . . . , N (70)
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Step 2: Divide y into independent subsequences of length s, with a total of m, m =
int(N/s). Use least squares to fit the local trend of the subsequences;

yv(i) = a0 + a1i + a2i2 + . . . + akik, i = 1, 2, . . . ; k = 1, 2, . . . (71)

Step 3: To eliminate local trends, calculate the mean square error function;

F2(u, s) =
1
s ∑s

i=1 (y((v− 1)s + i)− yv(i))
2, u = 1, 2, . . . , m (72)

F2(u, s) =
1
s ∑s

i=1 (y(N − (v− 1)s + i)− yv(i))
2, u = m + 1, m + 2, . . . , 2m (73)

Step 4: Calculating the q-order fluctuation function. It has a power-law relationship
with the generalized hurst exponent, Fq(s) ∼ sh(q).

Fq(s) =
(

1
2m∑2m

u=1

(
F2(u, s)

)q/2
)1/q

(74)

7. Case Study

The LFSM differential iterative model is verified with multi-sensor end mill monitoring
data (Cut 6) from the Roders Tech RFM760 high-speed CNC milling machine during the
PHM 2010 Challenge [35]. The experimental platform is shown in Figure 10, with 315 tool
walks and 69,139,039 data points. Table 1 provides the essential instrument specifications.
Figure 11 is the initial vibration signal.
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Table 1. Basic parameters of the tools.

Basic Parameter Parameter Value Basic Parameter Parameter Value

Platform Roders Tech RFM 760 Total cuts 315

Depth of cut 0.125 mm Spindle speed 10,400 rpm/min

Types of sensors Vibration Material Stainless steel

Sampling frequency 50 kHz Type of tool Carbid ball Φ 6 mm



Fractal Fract. 2023, 7, 325 17 of 26

Fractal Fract. 2023, 7, x FOR PEER REVIEW 17 of 26 
 

 

 
Figure 11. The original vibration signals. 

 
Figure 12. The value of bandwidth at different stages. 

When the tool is in the steady stage, the contact area between the workpiece and the 
tool surface increases and the tool gradually hardens. The compressive stress is also re-
duced. The cutting process is more stable, the surface of the workpiece is smoother, and 
the amount of vibration generated is less. Figure 12 depicts those conclusions under the 
steady stage, as the tool wear curve has a modest slope, a steady wear rate, and a long 
usage time. 

Figure 12 shows that as the machining time is increased, the tool wears more quickly, 
the slope of the rapid wear period curve increases, and the tool eventually reaches the 
failure state. 

In order to ensure correct machining and increase efficiency, the vibration signal is 
used to monitor the state of wear in order to detect and replace new tools in a timely 
manner before the sharp stage arrives. 

Therefore, in Figure 12, the maximum average wear VB value of 0.15 mm is set as the 
failure threshold, and the number of tool walks to 70 to enter the steady stage and 200 to 
enter the sharp stage. The condition of the tool is determined by the amount of wear de-
scribed in ISO 3685, ISO 8688, and ANSI/ASME B94.55M [42]. In [42], the VB value reaches 
half of the tool’s radius when it is worn blunt. Figure 13 depicts the prediction process 
utilized in this paper. 

y-axis vibration 
signal

PCA
Degenerate 

feature sequence
Estimation of 

parameters

MLE
Maximum 

prediction step

fLsm prediction 
modelError anaysis

 
Figure 13. The prediction technique. 

O
rig

in
al

 d
eg

ra
de

d 
vi

br
at

io
n 

si
gn

al
To

ol
 w

ea
r v

al
ue

 V
B/

m

Figure 11. The original vibration signals.

The wear of end mills can be distinguished into three different stages depending on the
rapid change in wear rate: initial stage, steady stage, and sharp stage. The offline measurement
of the tool wear value VB on the cutting edge during the process from cutting into the
workpiece to full cutting out is shown in Figure 12 using a LEICA MZ12 HD microscope.
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Figure 12. The value of bandwidth at different stages.

When it is in the initial stage, the cutting edge is sharp, and the tool often vibrates
violently. Figure 12 shows that the slope of the curve at this stage is greater, indicating a
faster rate of wear. This is mainly caused by the insufficiently steady contact between the
tool and the workpiece during this time, which indirectly contributes to the instability of
the cutting process and causes the tool to wear out more quickly during this time. The wear
during this period is minimal, averaging between 0.05 and 0.1 mm.

When the tool is in the steady stage, the contact area between the workpiece and
the tool surface increases and the tool gradually hardens. The compressive stress is also
reduced. The cutting process is more stable, the surface of the workpiece is smoother, and
the amount of vibration generated is less. Figure 12 depicts those conclusions under the
steady stage, as the tool wear curve has a modest slope, a steady wear rate, and a long
usage time.

Figure 12 shows that as the machining time is increased, the tool wears more quickly,
the slope of the rapid wear period curve increases, and the tool eventually reaches the
failure state.
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In order to ensure correct machining and increase efficiency, the vibration signal is
used to monitor the state of wear in order to detect and replace new tools in a timely
manner before the sharp stage arrives.

Therefore, in Figure 12, the maximum average wear VB value of 0.15 mm is set as
the failure threshold, and the number of tool walks to 70 to enter the steady stage and 200
to enter the sharp stage. The condition of the tool is determined by the amount of wear
described in ISO 3685, ISO 8688, and ANSI/ASME B94.55M [42]. In [42], the VB value
reaches half of the tool’s radius when it is worn blunt. Figure 13 depicts the prediction
process utilized in this paper.
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Figure 13. The prediction technique.

7.1. Extracting Feature Parameters

In Figure 14, 10 time-frequency domain parameters are chosen and calculated: mean
of absolute values, variance, kurtosis, margin factor, crest factor, impulse factor, waveform
factor, vibration velocity energy, vibration intensity, and mean of power spectrum. Figure 11
has undergone a total of 315 walks. In order to quickly predict the wear of the tool, this
paper calculates the above ten characteristics’ quantities from the vibration data for each
tool walk. At this point, the tool wear degradation is analyzed by using the 315 data trends
for each of the ten characteristics’ quantities.
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Figure 14. Time and frequency domain characteristics.

In this study, the above time-domain features were characteristically fused using PCA,
and the analysis results are shown in Figure 15. According to Figure 15, the first five main
components account for 95% of the entire contribution, indicating that the deterioration
trend can be described by the feature information of the first five principal components.
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Table 2 displays the dimensionality reduction findings for each primary component,
and Figure 15 displays the histogram. The degraded feature sequence for feature fusion is
shown in Figure 16.

Table 2. The outcomes of each primary component’s dimensionality reduction.

Portions F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Eigenvalues 5.5896 1.3370 1.2006 0.8816 0.4928 0.3649 0.1258 0.0078 0 0

Contribution 0.5590 0.1337 0.1201 0.0882 0.0493 0.0365 0.0126 0 0 0
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Figure 16. Feature sequences.

Smoothing the degradation sequence shown in Figure 16 into Figure 17, it can be seen
from Figure 12 that we will predict the degradation trend from initial wear to normal wear
(starting at a tool walk count of 70) and from normal wear to sharp wear (starting at a tool
walk count of 200).
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Figure 17. The smoothing feature sequences.

7.2. Fractal Dimension Calculation

According to Section 6, the fractal dimension of the vibration signal can be obtained
by using Equations (67)–(69). The relationship between log H(τ) and log τ is shown in
Figure 18.
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Figure 18. The relationship between log H(τ) and log τ.

As in Figure 18, the fractal dimension can be obtained as 1.3984, and the results show
that the evolution of the tool wear condition shows self-similarity. In Section 2.2, the LFSM
has the same characteristic. Additionally, the LFSM has LRD, which takes full account of
historical data to allow for tmore accurate predictions of vibration signals.

7.3. Degradation Process Prediction

Firstly, the vibration signal from the initial stage to the steady stage is predicted, and
it is known that the tool starts to enter the steady stage when the number of tool walks
reaches 70, at which point the MLE is shown in Table 3, giving a maximum prediction step
size of 97. The prediction is fully achievable. Figure 19 shows a comparison with the fuzzy
neural network (FNN) method from the literature [35], the LSTM method traditionally
used for predicting time series, and the fBm method, which is most commonly used in
the field of LRD. In order to show the results more visually, this paper only shows the
predicted part. The parameters of the LFSM differential iterative model and the fBm model
are shown in Table 4, and Table 5 shows the analysis of the performance. Five evaluation
criteria were used to compare the results: maximum error (MAX), mean error (MEAN),
standard error (STD), Score of Accuracy (SOA), and Health Degree (HD).
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Table 3. Maximum Lyapunov exponent parameters from the initial stage to the steady stage.

my τy ℵ Maximum Prediction Step

8 6 0.0103 97
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Figure 19. Predicted results from the initial stage to the steady stage.

Table 4. Parameters of the LFSM and the fBm model from the initial stage to the steady stage.

Models H α β µ δ

LFSM 0.8339 1.3121 0 2.6911 0.0405

fBm 0.8339 \ \ 2.4967 0.0241

Table 5. Performance analysis from the initial stage to the steady stage.

Models MAX MEAN STD SOA HD

LFSM 0.5891 0.0404 0.0172 0.9154 0.9862

fBm 0.5705 0.1122 0.1439 0.8573 0.9431

FNN 0.4956 0.0199 0.1887 0.4922 0.8940

LSTM 3.1050 0.2079 0.6576 0.2658 −2.4910

Let xi refers to real data, x̂I refers to predicted data, and xI refers to the real data’s
mean. The total number is n, and i = 1, 2, . . . , n.

(1) maximum error (MAX), indicates the maximum value of the relative error:

Max = |max(xi − x̂I)| (75)

(2) mean error (MEAN), indicates the mean of relative error:

Mean =
1
n∑n

i=1|xi − x̂I| (76)

(3) standard error (STD)

Std =

(
1

n− 1∑n
i=1(xi − xI)

2
)1/2

(77)
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(4) Score of Accuracy (SOA), indicates the fit ratio of model, SOA is the mean of all of
SOAi:

SOAi =

{
exp(ln(0.5)Eri/20), Eri > 0
exp(− ln(0.5)Eri/5), Eri < 0

(78)

Eri = 100× xi − x̂I

xi
(79)

(5) Health Degree (HD), a health index closer to 1 indicates better performance of the
prediction model:

HD = 1− ∑n
i=1 (xi − x̂I)

∑n
i=1 (xi − xI)

(80)

From Figure 19 and Table 5, it can be seen that the LFSM prediction model is better
than fBm and other methods in predicting from the initial stage to the steady stage.

Next, predicting the pattern from the steady stage to the sharp stage. When the number
of tool steps reaches 200, the tool enters the condition of sharp stage, and the maximum
Lyapunov index at this time is indicated in Table 6, which obtained the highest prediction
step of 90. Table 7 shows the parameters of the two prediction models, LFSM and fBm, and
Table 8 evaluates the prediction models’ qualities. Figure 20 depicts the results; again, only
the predicted part is shown.

Table 6. Maximum Lyapunov exponent parameters from the steady stage to the sharp stage.

my τy ℵ Maximum Prediction Step

9 9 0.0119 90

Table 7. Parameters of the LFSM and the fBm model from the steady stage to the sharp stage.

Models H α β µ δ

LFSM 0.8713 1.7602 0 7.1098 0.0760

fBm 0.8713 \ \ 4.3101 0.0172

Table 8. Performance analysis from the steady stage to the sharp stage.

Models MAX MEAN STD SOA HD

LFSM 0.1991 0.0293 0.0039 0.9154 0.9854

fBm 0.1819 0.0597 0.0734 0.9918 0.9356

FNN 0.2762 0.0193 0.1145 0.5635 0.8547

LSTM 0.4048 −0.0596 0.1791 0.3908 −0.8486

Similarly, using Figure 20 and Table 8, it is possible to conclude that the LFSM pre-
diction model is more accurate than the fBm prediction model and other models in the
transition from the steady stage to the sharp stage.

From Tables 4 and 7, it can be seen that the Hurst index of the vibration signal is
different at various wear stages, and it is calculated that at the initial stage, its Hurst
index is 0.7873, therefore, the Hurst index can reflect the failure state of the tool. In a
one-dimensional space, the relationship between the Hurst index and fractal dimension D
is H + D = 2.
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Figure 20. Predicted results from the steady stage to the sharp stage.

7.4. Monitoring the Value of VB

According to Section 7.3, the Hurst index can reflect the wear state. In this section,
Multiple Fractal Detrended Fluctuation Analysis (MDFA) [43] is used to analyze the vibra-
tion signals obtained from previous predictions, obtain the eigenvectors reflecting changes
in VB values, i.e., the generalized Hurst index, and train the ECoS neural network with
the health factor from Section 7.1 for wear detection. The data from PHM 2010 is still
used in this case to monitor the VB value of cut 1 with cut 6. Figure 21 shows the flow of
MDFA. The results of cut 6 are shown in Figure 22. According to the MDFA algorithm, the
parameters of the initial stage, steady stage, and sharp stage are found out, respectively,
and Figure 22 shows the parameters of the sharp stage.

The data obtained from cut 6 was substituted into the ECoS model that was trained to
monitor the wear of cut 1, and the results in Figure 23 were obtained. It was verified that
the correct rate reached 98.7%, which is much higher than the accuracy of the traditional
neural network.
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8. Conclusions

The prediction of tool wear can increase efficiency and save costs. This paper uses
PCA and MLE to analyze the data, constructing LFSM differential iterative models to
implement predicted vibration signals. Firstly, the general solution of the stochastic integral
is obtained by constructing a semimartingale, and the model has theoretically proved
to integer order the Ito stochastic integral. Then, the maximum prediction step derived
by MLE, estimated model parameters, and the LFSM differential iterative model were
constructed using historical end mill tool vibration data. Using PCA signal fusion, the key
component signals influencing tool vibration were identified, and the prediction results
were compared with the fBm approach, FNN method, and LSTM method. The LFSM-based
prediction model was proven to be useful and effective. From the experimental results,
it can be seen that the LFSM prediction method studied in this paper not only has better
accuracy than the FNN method in [26], or the traditional time series prediction method
LSTM, or the fBm method, which is widely used in long related fields nowadays, but the
LFSM iterative prediction model can better accomplish the prediction. Moreover, the α
parameter was added to be compared with the fBm method, which makes the model more
flexible. Finally, this paper uses MDFA on the vibration signals predicted in the previous
paper to obtain the association between the generalized Hurst index and the wear state,
and utilizes the ECoS model for VB value prediction.

The suggested model improves upon the degradation trend prediction approach,
although it still has limitations, and the prediction experiments were acquired through
degradation testing on an experimental rig in a simulated real-world operating environ-
ment. The actual plant equipment functions in a more complicated environment, despite
the setting of various operational parameters. In a multi-state situation, the data preprocess-
ing approach suggested in this paper cannot achieve optimal feature extraction, and further
analysis of the raw data is necessary. Furthermore, this study only uses one set of degraded
data to evaluate the suggested prediction model, although it may be helpful to incorporate
many various types of degraded data to test the model’s prediction performance.
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Acronyms and Abbreviations

LFSM Linear fractional alpha-stable motion
PCA Principal component analysis
MLE Maximum Lyapunov exponent
MDFA Multifractal detrended fluctuation analysis
ECoS Evolving connectionist system
LRD Long-range dependence
FNN Fuzzy neural network
LSTM Long-short term memory
fBm Fractional Brownian motion
VB Value of bandwidth
H Hurst index
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