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Abstract: Coexisting attractors and the consequent jump in a harmonically excited smooth and
discontinuous (SD) oscillator with double potential wells are studied in detail herein. The intra-well
periodic solutions in the vicinity of the nontrivial equilibria and the inter-well periodic solutions
are generated theoretically. Then, their stability and conditions for local bifurcation are discussed.
Furthermore, the point mapping method is utilized to depict the fractal basins of attraction of
the attractors intuitively. Complex hidden attractors, such as period-3 responses and chaos, are
found. It follows that jumps among multiple attractors can be easily triggered by an increase in the
excitation level or a small disturbance of the initial condition. The results offer an opportunity for a
more comprehensive understanding and better utilization of the multistability characteristics of the
SD oscillator.
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1. Introduction

Mechanical oscillators play a vital role in many fields, such as engineering [1], lattice
dynamics [2], and biology [3]. Due to the changes in geometric configuration, strong
irrational nonlinearities occur in many oscillators [4–6]. A typical example is the smooth
and discontinuous (SD) oscillator proposed by Cao et al. [7,8]. It is geometrically nonlinear,
with an irrationally nonlinear restoring force. Whether it is smooth or discontinuous
depends on the value of its smoothness parameter. Representing the snap-through truss
system, this oscillator has been found to exhibit a large variety and complexity of responses
and phenomena [9–11], thus receiving much attention in recent years.

Many studies have been conducted to provide a fundamental basis for understanding
the dynamics of the SD oscillator. Tian et al. [12] investigated the universal unfolding
for codimension-two bifurcation near the equilibria of the SD oscillator, such as pitch-
fork, Hopf and double Hopf, and double-connected homoclinic and closed-orbit bifur-
cations. Li et al. [13] obtained periodic solutions of the SD oscillator by applying the
four-dimensional averaging method and the complete Jacobian elliptic integrals [13]. On
this basis, the stick–slip vibrations and complex equilibrium bifurcations of a self-excited
SD oscillator with Coulomb friction were discussed [14]. Santhosh et al. [15] carried out the
frequency domain analysis of a harmonically excited SD oscillator semi-analytically and
found that saddle-node bifurcation leads to jumping phenomena and symmetry-breaking
bifurcations. Chen et al. [16] derived all possible bifurcations of the SD oscillatory system,
including degenerate Hopf, homoclinic, double limit cycle, Bautin, and Bogdanov–Takens
bifurcations. In terms of the stochastic case, Yue et al. [17] studied the stochastic bifurca-
tions of the SD oscillator with additive and/or multiplicative bounded noises by using the
generalized cell mapping method and digraph analysis algorithm. Considering delayed
displacement and velocity feedback control, Yang and Cao [18] analyzed the primary reso-
nance and the noise-induced stochastic resonance of a quasi-zero-stiffness SD oscillator via
the average method.

Fractal Fract. 2023, 7, 314. https://doi.org/10.3390/fractalfract7040314 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7040314
https://doi.org/10.3390/fractalfract7040314
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-5267-183X
https://doi.org/10.3390/fractalfract7040314
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7040314?type=check_update&version=1


Fractal Fract. 2023, 7, 314 2 of 16

In engineering practice, the SD oscillator has been utilized for vibration absorption
and vibration energy harvesting. For the former purpose, Hao and Cao [19] employed the
SD oscillatory system with a stable-quasi-zero-stiffness characteristic as a vibration isolator.
For the latter, Yang et al. [20] proposed an electromagnetic vibration energy harvester based
on the SD oscillator and driven by stochastic environmental fluctuation. Zhang et al. [21]
applied the SD oscillator in designing an electromagnetic bistable vibration energy harvester
with an elastic boundary and experimentally verified its higher probability for inducing
favorable inter-well responses than normal energy harvesters.

Up to now, studies on the SD oscillator have shown that multistability is common in
this type of oscillatory system. As it is well known, this initial sensitive dynamical behavior
is a double-edged sword in engineering applications: it is unwanted for achieving globally
stable mechanical vibration but helpful for achieving desired deformations with small
energy input. For instance, by making use of the multistability characteristics of some types
of energy harvesters, better energy harvesting performance can be achieved due to the
absence of the requirement for a constant supply of energy but with a small perturbation of
the initial conditions. Therefore, extending the study on the initial conditions for jumps
among the multiple responses of the SD oscillator is essential for its practical applications.
Currently, research on the initial conditions is still very limited. Most of the discussions on
the multistability of this oscillator focus on the mechanism of multistability triggered by
system parameters.

Based on the above statement, the goal of this study is to present the mechanism of
jump among the coexisting attractors of the SD oscillator analytically and to classify the
fractal basins of attraction of the multiple attractors quantitatively. This paper is organized
as follows. In Section 2, the unperturbed dynamics of the presented archetypal dynamical
model are discussed. In Section 3, the amplitude–frequency characteristics of the steady
solutions of the dimensionless system are derived. In Section 4, numerical explorations
are performed to verify the validity of the analytical prediction; meanwhile, the basins of
attraction of the coexisting attractors are presented. Some conclusions are drawn thereafter.

2. Dynamical Model and Unperturbed Dynamics

The harmonically excited smooth and discontinuous (SD) oscillator can be represented
geometrically as a conventional linear mass–spring–damper system subject to harmonic
excitation, as shown in Figure 1. The loaded mass m is attached to two springs pinned to
rigid supports on the horizontal plane. It is also subjected to the actions of the harmonic-
driven force and the viscous damping force. Since the motion of the mass is in the X
direction, applying the equation of motion, we have

m
..
X + c

.
X + 2kX− 2kXL√

X2 + l2
= F0 cos(Ωt). (1)
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Figure 1. Schematic diagram of the harmonically excited SD oscillator. 
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Here, X represents the displacement of the mass, k is the linear stiffness of each spring,
L is the unstretched length of each spring, l is the half-distance between the pivots of the
inclined springs, and c is the damping coefficient of the viscous damper. F0 and Ω are the
amplitude and frequency of the harmonically excited driven force, respectively. As can
be seen in Equation (1), due to the geometric configuration, the resultant of the restoring
resistances of the two springs is strongly and irrationally nonlinear even though each spring
has a linear stiffness. If we let

x =
X
L

, ω2
0 =

2k
m

, ξ =
c

2mω0
, T = ω0t, ω =

Ω
ω0

, α =
l
L

, f0 =
F0

2kL
, (2)

we rewrite system (1) as the following dimensionless system:

.
x = y,

.
y = −2ξy− x(1− 1√

x2 + α2
) + f0 cos ωT. (3)

System (3) is smooth when α > 0. When α = 0, it becomes a discontinuous system
given by

.
x = y,

.
y = −2ξy− x+sign(x) + f0 cos ωT. (4)

Since the distance l in Figure 1 is positive, we have α > 0 and a smooth system (3).
The unperturbed system of system (3) is

.
x = y,

.
y = −x +

x√
x2 + α2

. (5)

Note that the number, position, and stability of its equilibria are determined by the
value of the smoothness parameter α. For 0 < α < 1, there are three equilibria, i.e., a saddle
point O(0, 0) and two centers C±(±xc, 0) where xc =

√
1− α2. For α ≥ 1, there is only one

equilibrium O(0, 0). Equation (5) is a Hamilton system with the Hamiltonian H(x, y) and
the function of potential energy V(x) in the following form:

H(x, y) =
1
2

y2 +
1
2

x2 −
√

x2 + α2 + α, V(x) =
1
2

x2 −
√

x2 + α2 + α. (6)

On this basis, the potential function and the phase portraits of the unperturbed
system (5) for different values of the smoothness parameter α are depicted in Figures 2
and 3, respectively. The thick curves in Figure 3 show that there are symmetrically double
potential wells in the system when α is 0.5 or 0.8. Comparatively, each potential well
for α = 0.8 is much smaller than that for α = 0.5. In Figure 3a,b, closed orbits near the
non-trivial equilibria C±(±xc, 0) are within the domains surrounded by homoclinic orbits,
while closed orbits near the trivial equilibrium O(0, 0) are outside of these domains. At
α = 1, there is only one center O(0, 0) (see Figure 3c). It follows that the unperturbed system
(5) undergoes a subcritical pitchfork bifurcation at α = 1. Since bistability is common in the
double-well case [21,22], using the parameters

α = 0.8, ξ = 0.01, (7)

we may observe the interaction among the coexisting attractors of the system (3) with the
variation of the excitation parameters.
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3. Multiple Responses of the SD Oscillator
3.1. Periodic Responses in the Vicinity of Nontrivial Equilibria

The periodic solutions of the system (3) that perturb from the two nontrivial equilibria
C±(±xc, 0) are intra-well ones within the domains surrounded by homoclinic orbits. Hence,
it is convenient for us to apply the method of multiple scales (MMSs) to complete the
analytical prediction of these periodic motions. Considering that the excitation amplitude
f0 and the damping coefficient ξ are small, we introduce a small parameter ε, thereby
satisfying 0 < ε � 1 to rescale the parameters of the dimensionless system (3) in the
following form:

ξ = εξ̃, f0 = ε2 f̃ , x = ±xc + x̂. (8)

Equation (3) can be rewritten as

..
x̂ + x̂± xc = −2εξ̃

.
x̂ + ε2 f̃ cos ωT +

±xc + x̂√
1 + (x̂2 ± 2xc x̂)

. (9)

Expanding the fractional terms of the above system as a Taylor series of x̂ in the
neighborhood of C±, and neglecting the higher-order-than-three terms of x̂, yields

..
x̂ + ω̂2 x̂ = −2εξ̃

.
x̂∓Q2 x̂2 + Q3 x̂3 + ε2 f̃ cos ωT (10)

where
ω̂ = xc, Q2 =

3xc

2
(1− x2

c ), Q3 =
1
2
(5x2

c − 1)(1− x2
c ). (11)
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Rescaling the dimensionless excitation frequency ω, the displacement x̂ and time
scales of the system (10) are

ω2 = ω̂2 + εσ,

x̂ =
n
∑

i=0
εi x̂i(T0, T1, T2, · · · ),

Ti = εiT, d
dT =

n
∑

i=0
εiDi, Di =

∂
∂Ti

,

(12)

and comparing the coefficients of ε, ε2, and ε3 of the system (10), respectively, we have

ε : D2
0 x̂1 + ω2 x̂1 = 0, (13)

ε2 : D2
0 x̂2 + ω2 x̂2 = −2D0D1 x̂1 − 2ξ̃D0 x̂1 + σx̂1 + f̃ cos ωT ∓Q2 x̂2

1, (14)

and

ε3 : D2
0 x̂3 + ω2 x̂3 = −D2

1 x̂1 − 2D0D2 x̂1 − 2D0D1 x̂2 − 2ξ̃(D0 x̂2 + D1 x̂1) + σx̂2 ∓ 2Q2 x̂1 x̂2 + Q3 x̂3
1. (15)

Without loss of generality, we express the periodic solution of Equation (13) as

x̂1 = A(T1, T2)eiωT0 + A(T1, T2)e−iωT0 , (16)

where

A(T1, T2) =
a(T1, T2)

2
eiϕ(T1,T2), (17)

a(T1, T2) and ϕ(T1, T2) represent the amplitude and phase difference of the solution x̂1,
respectively. Substituting Equations (16) and (17) into Equation (14), and eliminating the
secular terms, yields

D1 A = − f̃ i
4ω
− σAi

2ω
− ξ̃ A. (18)

Equation (14) herein becomes

D2
0 x̂2 + ω̂2 x̂2 = ∓Q2(A2e2iωT0 + AA) + cc (19)

and its solution can be given by

x̂2 = ±(Q2 A2

3ω2 e2iωT0 − Q2 AA
ω2 ) + cc. (20)

In a similar manner, by substituting Equations (16), (18), and (20) into Equation (15)
and eliminating the secular terms, we obtain

D2 A =
ξ̃ f̃

8ω2 −
(3A2 AQ3 + ξ̃2 A)i

2ω
−

(σ f̃ + 2σ2 A + 80
3 Q2

2 A2 A)i
16ω3 . (21)

Let â = εa. Based on Equations (12), (16), and (20), the periodic solution in the vicinity
of the nontrivial equilibria C± may be written as

x = ±xc + â cos(ωT + ϕ)± Q2 â2

3ω2 cos2(ωT + ϕ)∓ 2Q2 â2

3ω2 (22)

where â and ϕ represent the approximate amplitude and phase angle of the periodic
solution, respectively. Considering

.
A ≈ D0 A + εD1 A + ε2D2 A and Equations (17), (18),
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and (21), it is, therefore, possible to write the differential equations of â and ϕ by using the
original dimensionless parameters, namely,

.
â = (ω̂2−5ω2) f0 sin ϕ

8ω3 + ξ f0 cos ϕ

4ω2 − ξ â,

â
.
ϕ = (ω̂2−5ω2) f0 cos ϕ

8ω3 − ξ f0 sin ϕ

4ω2 − âξ2

2ω + â(ω̂2−5ω2)(ω2−ω̂2)
8ω3 − (10Q2

2+9ω2Q3)

24ω3 â3.
(23)

Letting the right side of Equation (23) be zero, we can solve the frequency ω and the
amplitude â from the following equation:

(ω̂2 − 5ω2) f0 sin ϕ + 2ξ f0ω cos ϕ = 8ξω3 â,

(ω̂2 − 5ω2) f0 cos ϕ− 2ξ f0ω sin ϕ = 4ω2ξ2 â− (ω̂2 − 5ω2)(ω2 − ω̂2)â + (
10Q2

2
3 + 3ω2Q3)â3.

(24)

Eliminating the triangulation functions of Equation (24) yields

(ω̂2 − 5ω2)
2

f0
2 + 4ξ2 f0

2ω2 = 64ξ2ω6 â2 + (4ω2ξ2 + (ω̂2 − 5ω2)(ω̂2 −ω2) + (
10Q2

2
3

+ 3ω2Q3)â2)

2

â2. (25)

The amplitude â can be determined analytically from the above equation.
Using the Jacobian matrix of Equation (23), we carry out the local stability and bifurcation

analysis of the periodic solution. The eigenvalues are computed by the following equation:

λ2 + 2ξλ + γ = 0 (26)

where

γ = ξ2 + (
ξ2

2ω
− (ω̂2 − 5ω2)(ω2 − ω̂2)

8ω3 +
(10Q2

2 + 9ω2Q3)

8ω3 â2)(
ξ2

2ω
− (ω̂2 − 5ω2)(ω2 − ω̂2)

8ω3 +
(10Q2

2 + 9ω2Q3)

24ω3 â2). (27)

Since the coefficients ξ and γ are real numbers, there is no purely imaginary solution
in Equation (26). The stability of the periodic solutions in the neighborhood of C± may be
changed only if λ = 0 in the above equation, namely, γ = 0, implying the occurrence of
saddle-node bifurcation.

Based on the above analysis and the symmetry of the periodic responses around the
two nontrivial equilibria, the variation in the amplitude of the periodic response with the
excitation parameters is illustrated in Figure 4, where the stable and unstable periodic
branches are represented by the solid and dashing curves, respectively. The quantitative
analysis of the amplitudes of stable periodic responses is carried out via the fourth-order
Runge–Kutta approach in the dimensionless system (5) via MATLAB. The time step T is
0.01. As can be seen in Figure 4, the analytical prediction is in good agreement with the
numerical results.

The frequency response of the dimensionless system (3) is shown in Figure 4a, where
the periodic solution branches for f 0 = 0.001 and f 0 = 0.005 are noticeably different. For
f 0 = 0.001, the amplitude of the periodic response changes continuously with the dimen-
sionless excitation frequency ω. In contrast, for f 0 = 0.005, as ω increases, the branches
bend to the left and yield multivalued solutions. Apparently, for f 0 = 0.005, when reversely
sweeping the frequency ω from 0.8 to 0.4, one can observe a saddle-node bifurcation point,
as depicted by the small red circle in Figure 4a, on the left side of which the intra-well
periodic response may jump down to the lower stable branch. This implies that, due to
the saddle-node bifurcation, when decreasing the value of ω, the dynamics in the neigh-
borhood of each nontrivial equilibrium varies from a single intra-well periodic attractor to
bistable periodic attractors. For instance, at ω = 0.54 and ω = 0.55, two values on different
sides of the critical value of ω for the saddle-node bifurcation, the numerical results shown
in Figure 5a,b are different: for the former, there are two different periodic attractors under
different initial velocities; for the latter, there is only one periodic attractor.
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Similarly, as can be seen in Figure 4b, there are saddle-node bifurcation points on
the branch of ω = 0.5, implying that jumps between bistable periodic branches may be
triggered by the increase in the excitation amplitude f 0. As f 0 is increased from 0 to the
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horizontal abscissa of the left saddle-node bifurcation point, there is only one stable branch.
Given f 0 = 0.0032, the numerical results in Figure 5c illustrate that there is only one intra-
well periodic attractor in the system (3). As f 0 is further increased, a higher-amplitude
stable branch will appear and coexist with the lower-amplitude one, which matches the
numerical simulation in Figure 5d. When f 0 exceeds the horizontal abscissa of the right
saddle-node bifurcation point, the periodic solution will jump up to the higher-amplitude
branch through the saddle-node bifurcation. Instead of bistable periodic attractors, there is
only one attractor in the neighborhood of each nontrivial equilibrium.

It follows from Figure 4 that due to the saddle-node bifurcations, jumps between two
intra-well periodic attractors in the vicinity of each non-trivial equilibrium may be incurred
by varying the excitation amplitude or frequency when f 0 and ω are relatively small.

3.2. Periodic Solution around the Trivial Equilibrium O(0, 0)

To be different from the periodic solutions around the non-trivial equilibria, a periodic
solution in the vicinity of the origin O(0, 0) will be outside of the potential wells surrounded
by homoclinic orbits. Hence, it will be an inter-well one with a large amplitude. Considering
the limitation of the method of multiple scales in approximating periodic solutions in the
vicinity of equilibria, it is unsuitable to employ this method for the analysis of the inter-well
solution. We herein apply the average method [13,23].

Expressing the inter-well periodic solution by the slowly varying amplitude b and
frequency ω, we have

x = b cos(ωT + ψ),
.
x = −bω sin(ωT + ψ) (28)

Substituting the above forms of x and
.
x into the dimensionless system (3) yields

.
b cos(ωT + ψ) = b

.
ψ sin(ωT + ψ), −

.
bω sin(ωT + ψ)− bω

.
ψ cos(ωT + ψ) = P1(a, ψ, T). (29)

Here,

P1(a, ψ, T) = bω2 cos(ωT + ψ) + 2ωξb sin(ωT + ψ)− b cos(ωT + ψ)(1− 1√
b2 cos2(ωT + ψ) + α2

) + f0 cos ωT. (30)

Based upon Equations (28)–(30), the slowly varying amplitude and phase angle can be
described by the following equation:

.
b = −P1(a, ψ, T)

ω
sin(ωT + ψ),

.
ψ = −P1(a, ψ, T)

bω
cos(ωT + ψ). (31)

Integrating Equation (31) over one period of [0, 2π
ω ] yields

.
b =
−2ξbω− f0 sin ψ

2ω
,

.
ψ =

−b(ω2 − 1)− f0 cos ψ

2bω
+

2α2

πb2ω
√

b2 + α2
E1(

b√
b2 + α2

)− 2
√

b2 + α2

πb2ω
E2(

b√
b2 + α2

). (32)

Here, the functions E1(
b√

b2+α2 ) and E2(
b√

b2+α2 ) are the complete elliptic integrals of
the first and second kind, respectively, given by

E1(r) =
∫ π

2

0

1√
1− r2 sin2 θ

dθ, E2(r) =
∫ π

2

0

√
1− r2 sin2 θdθ. (33)

Letting the right side of Equation (32) be zero, we can solve the amplitude of the
inter-well periodic solution from P2(b, ω, α) = 0 where

P2(b, ω, α) = 4ξ2ω2b2 + (ω2 − 1− 4α2

πb2
√

b2 + α2
E1(

b√
b2 + α2

) +
4
√

b2 + α2

πb2 E2(
b√

b2 + α2
))

2

b2 − f0
2. (34)
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Whether the inter-well periodic solution is stable depends on the signs of the real
parts of the solutions of the corresponding characteristic equation of the linearized average
equation [13]. According to our derivation, the inter-well periodic solution is asymptoti-
cally only if its amplitude b is more than the maximum of the horizontal abscissas of the
homoclinic orbits and

∂P2(b, ω, α)

∂b
> 0, 1 +

1
α

+∞

∑
n=0

(
(2n− 1)!!
(2n)!!

)
2

(2n + 1)(
b
α
)

2n
> 0. (35)

The variation in the inter-well solution branches with the dimensionless excitation is
displayed in Figure 6, where the given values of the excitation parameters are the same as
those in Figure 4. As can be seen in Figure 6a, under a low excitation amplitude, there is no
stable branch. With an increase in the excitation amplitude, given the values of the excitation
frequency of ω = 0.5 and ω = 0.6, there is a stable solution branch (see Figure 6b), which
can also be ascribed to saddle-node bifurcation. In Figure 6b, the theoretical prediction
perfectly matches the numerical results, thus validating the prediction. It is worth noting
that the amplitude of the inter-well response is much greater than that of the intra-well
periodic response discussed in the last section. Observing Figures 4b and 6b, it is not
difficult for us to find the coexistence of four intra-well periodic attractors around the two
nontrivial equilibria and an inter-well periodic attractor for f0 ≥ 0.013.
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4. Attractors and Their Fractal Basins of Attraction

Apart from the variation in the excitation amplitude and frequency, the initial con-
ditions can also lead to jumps among multiple attractors, thus having a significant ef-
fect on the dynamical behavior of the SD oscillator. This also suggests the necessity
of classifying the basins of attraction (BA) of the attractors, namely the union of ini-
tial conditions triggering the same response [1,19]. The point mapping method [24,25]
is utilized to depict the BA of the SD oscillatory system (3) on the initial-value plane
−1.5 ≤ x(0) ≤ 1.5, −1.0 ≤ y(0) ≤ 1.0 consisting of 401× 401 array of points, which
respects the initial conditions. For the same attractor, all initial conditions leading to it are
marked in the same color. The sequences of the coexisting attractors and their BA with
the variation in the excitation parameters are presented in Figures 7 and 8. There are two
columns in each figure: the left and right columns show the phase maps of the coexisting
attractors and their BA, respectively. Here, the color to mark each attractor is the same as
that of its BA.
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Figure 8. Evolution of attractors and their BA with an increase in f 0 for ω = 0.5: (a) phase map of the
attractors for f0 = 0; (b) basins of attraction for f0 = 0; (c) phase map of the attractors for f0 = 0.003;
(d) basins of attraction for f0 = 0.003; (e) phase map of the attractors for f0 = 0.004; (f) basins of
attraction for f0 = 0.004; (g) phase map of the attractors for f0 = 0.009; (h) basins of attraction for
f0 = 0.009; (i) phase map of the attractors for f0 = 0.011; (j) basins of attraction for f0 = 0.011;
(k) phase map of the attractors for f0 = 0.0128; (l) basins of attraction for f0 = 0.0128; (m) phase map
of the attractors for f0 = 0.013; (n) basins of attraction for f0 = 0.013; (o) phase map of the attractors
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(r) basins of attraction for f0 = 0.0143; (s) phase map of the attractors for f0 = 0.015; and (t) basins of
attraction for f0 = 0.015.

Given f0 = 0.005, the evolution of the responses and their BA with an increase in
the dimensionless excitation frequency ω are shown in Figure 7, where ω varies within
the range of [0.2, 0.6]. As shown in Figure 7, there is no inter-well attractor, which is in
agreement with the prediction of Figure 6a. For ω = 0.2, there are two intra-well attractors
around the symmetric nontrivial equilibria C±(±xc, 0), which are marked in red and black,
respectively (see Figure 7a). The neighborhood of each nontrivial equilibrium is single-
colored, meaning that the intra-well periodic attractors are locally stable. Comparatively,
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outside of the neighborhood of C±(±xc, 0), the BA of the attractors are intermingled,
indicating a high probability of a jump between two attractors.

As the value of ω is increased to 0.45 (see Figure 7c), these intra-well attractors still
coexist, and their amplitudes are enlarged. Additionally, two new intra-well attractors
with higher amplitudes appear, which can be ascribed to the saddle-node bifurcation
depicted in Figure 4a. As shown in Figure 4d, even though the BA boundaries of the two
lower-amplitude periodic attractors are fractal, these attractors are still locally stable. In
contrast, the BA of the two higher-amplitude attractors, which are marked in yellow and
blue, respectively, are too fractal and discrete to be detected, showing that their occurrence
probability is pretty low. Thus, they are the so-called rare attractors [26]. Since their BA are
not in the vicinity of C±(±xc, 0), they can also be named as the hidden attractors [27,28].

As ω is further increased (see Figure 7e–h), the four intra-well attractors still coexist,
but their amplitudes are changed: the amplitudes of the smaller intra-well ones become
enlarged, while the amplitudes of the bigger ones become smaller. Meanwhile, the BA of
the two smaller attractors are eroded by the BA of the bigger ones steadily, as depicted
in Figure 7f–h, illustrating an increase in the occurrence probability of the two bigger
attractors. During this period, jumps among the four attractors can be triggered easily by a
small change in the initial condition.

When the value of ω reaches 0.60 (see Figure 7i,j), the two lower-amplitude attractors
vanish, and the higher-amplitude ones are no longer rare or hidden attractors. Figure 6
suggests that with an increase in ω, the higher-amplitude intra-well attractors may replace
the lower-amplitudes ones steadily, thus verifying the validity of the analytical results in
the last section.

For ω = 0.50, the sequences of the coexisting attractors and the extent of their BA with
an increase in the dimensionless excitation amplitude f 0 can be observed in Figure 8, which
is more complicated than the evolution in Figure 7.

To begin with, for f0 = 0, there is no excitation in the system (3) and the nontrivial
equilibria C±(±xc, 0) are stable (see Figure 8a). The boundary separating their BA is
smooth, as shown in Figure 8b. An initial condition point chosen in the vicinity of C+(xc, 0)
or C−(−xc, 0) will surely lead to the corresponding nontrivial equilibrium. Comparatively,
a small disturbance of the initial condition in the vicinity of O(0,0) may lead to a jump from
one equilibrium attractor to the other.

As f0 increases, the two nontrivial equilibria lose their stability; instead, there are
two intra-well periodic attractors around the two equilibria. For instance, for f0 = 0.003
and f0 = 0, the BA for the bistable attractors are similar, while those of the corresponding
attractors are totally different (see Figure 8a–d).

For f0 = 0.004, two new intra-well periodic attractors appear which amplitudes are
higher than the former ones (see the yellow attractor and the blue one in Figure 8e). It
follows from Figure 8f that the new attractors are rare and hidden attractors. As f0 further
increases from 0.004 to 0.011 (see Figure 8e–j), the BA of these four intra-well attractors are
broken into discrete pieces and points.

For f0 = 0.0128, in addition to these four intra-well periodic attractors, two symmetric
intra-well period-3 attractors surrounding C±(±xc, 0) appear (see the purple and grey
phases in Figure 8k). Simultaneously, the BA of the six intra-well attractors are severely
fractal (see Figure 8l), demonstrating the high initial-condition sensitivity of the final
behavior of the system (3).

As f0 increases to 0.013, besides the six attractors, an inter-well periodic attractor near
O(0, 0) appears, as displayed in the light blue phase and the BA in Figure 8m,n, respectively.
This agrees perfectly with the prediction in Figure 6b. Since its BA is small and beyond the
vicinity of O(0,0), it is also a rare and hidden attractor. It is worth mentioning that the BA
of this inter-well attractor has a smooth boundary.

For f0 = 0.014 (see Figure 8o), the period-3 attractors vanish; instead, an inter-well
complex attractor traveling around the two nontrivial equilibria appears. Moreover, based
on the nature of the BA in Figure 8r, this attractor and the four intra-well attractors are
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all hidden attractors. As f0 further increases, the BA of the inter-well periodic attractor
and the complicated one expands. Since the BA of the latter is discrete and mixed with
the BA of the intra-well attractors, a jump among these attractors is easily incurred by a
small disturbance of the initial condition. For f0 = 0.15, two intra-well attractors vanish
(see Figure 8s), which is in agreement with the prediction in Section 3. In this case, only the
BA of the inter-well periodic attractor is continuous with a smooth boundary, showing a
higher occurring probability of this attractor.

Finally, when f0 reaches 0.02, the intra-well attractors vanish, and only two inter-well
attractors coexist in the system (3), i.e., a large-amplitude periodic attractor and a chaotic
one, as depicted by the phase map, Poincare map, and frequency spectrum in Figure 9a–c,
respectively. Note that the boundary that separates the BA of the chaotic attractor and the
large-amplitude periodic attractor is smooth (see Figure 9d).
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5. Conclusions and Discussion

In this paper, the multistability and the consequent jump of the harmonically excited
SD oscillator were investigated. For the case wherein the nonlinearity of the oscillatory
system is continuous, the intra-well periodic responses perturbed from the non-trivial
equilibria and the inter-well responses near the trivial equilibrium were predicted, which
results are in great agreement with the numerical results.

Given the value of the dimensionless smoothness parameter within the range (0, 1),
there are double potential wells in the SD oscillatory system, thus exhibiting multistability.
On this basis, we employed two analytical methods, namely, the method of multiple scales
and the average method, to present the forms of the intra-well periodic solutions and the
inter-well ones, respectively. It was found that, owing to the saddle-node bifurcation of
the intra-well periodic solution, jumps between stable intra-well solution branches can be
triggered by the excitation-frequency sweep or the increase in the excitation amplitude,
leading to bistability in the vicinity of each non-trivial equilibrium. Moreover, the inter-well
response can also be induced by increasing the excitation amplitude due to the saddle-node
bifurcation of the inter-well solution.
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The difference between the two theoretical methods is worth noting. When applying
the method of multiple scales, it is not difficult to observe the decay between the analytical
results of the intra-well responses and the numerical simulations under a higher excitation
amplitude or a much lower excitation frequency. This can be ascribed to the limitation
of this method, i.e., the prediction of this method can be quantitatively accurate if the
excitation frequency is within a small vicinity of natural frequency and the excitation
amplitude is low. Yet, this method is useful, considering its valid qualitative analysis
and the convenience of presenting the analytical form of the periodic solutions through it.
Comparatively, when utilizing the average method, we can predict more accurate periodic
solutions. However, there are complete elliptic integrals in the form of inter-well periodic
solutions, implying that the results are semi-analytical.

When increasing the excitation amplitude, we can also observe complex attractors,
such as period-3 ones and chaotic ones, coexisting with the periodic attractors. According
to the sequences of basins of attraction, with an increase in the excitation parameters,
jumps among multiple attractors can be easily incurred by a tiny disturbance of the initial
condition. An increase in the excitation frequency or amplitude may break the basins of
attraction into discrete pieces and points, thus leading to hidden attractors.

Moreover, for a higher excitation amplitude, bistable inter-well attractors, namely,
a chaotic attractor and a large-amplitude periodic attractor, can also be found in the SD
oscillatory system. It is worth mentioning that the boundary separating their BA is not
fractal but smooth.

Since jumps among multiple attractors could be catastrophic or desirable in prac-
tice, the results obtained in this study may provide potential values in the design and
applications of oscillatory systems with strong geometric nonlinearities.
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