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Abstract: In this paper, it is shown that a class of discrete Piece Wise Continuous (PWC) systems
with Caputo-type delta fractional difference may not have solutions. To overcome this obstacle, the
discontinuous problem is restarted as a continuous fractional problem. First, the single-valued PWC
problem is transformed into a set-valued one via Filippov’s theory, after which Cellina’s theorem
allows the restart of the problem into a single-valued continuous one. A numerical example is
proposed and analyzed.
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1. Introduction

PWC real-valued functions f : D ⊆ R×Rn → Rn are time-continuous but discontin-
uous with respect to the state variable, x, are defined in a finite domain D of an (n + 1)-
dimensional (t, x) space, where D consists of a finite number of domains, Di, i = 1, 2, ..., k,
in each of which f is continuous up to the boundary of the domains. We denote byM
the discontinuity set containing the boundary points. The considered discontinuity is of
the jump type when in the points ofM, the function jumps (switches) and left-hand and
right-hand limits exist and are different. Inside the domains, f is continuous [1].

Throughout the paper, discontinuity is considered only with respect to the state variable.
Dynamical systems modeled by this kind of PWC functions appear in many different

branches of engineering and applied sciences, such as dry friction, impacting machines,
systems oscillating due to earthquakes, impacts in mechanical devices, power circuits,
forced vibrations, elasto-plasticity, switching in electronic circuits, uncertain systems and
many others (see, e.g., [2–6] and their references). The vast majority of such systems are
defined by time-continuous Initial Value Problems (IVPs), modeled by ODEs of integer
order. The numerical integration of such IVPs is a difficult task for which only special
difference methods can be used (see, e.g., [4]). While the standard methods for continuous
systems rely heavily on linearization, in the case of PWC systems modeled by ODEs,
they do not require linearization in general. Another difficulty is that the underlying
IVP might not even admit solutions (see, e.g., [7]). Further, the PWC systems could have
trajectories colliding with the discontinuity surfaces, thereby generating a new kind of
bifurcation [8–10]. To overcome the problem of having no solutions, tools of differential
inclusions of integer order can provide a possible resolution (see, e.g., the method proposed
in [11–14]), where the discontinuous single-valued IVP is transformed to a set-valued IVP.
Next, to obtain a numerical solution, either special numerical schemes for differential
inclusions [15–18] can be utilized or, via the selection theory, continuous or even smooth
approximations in the neighborhood of discontinuity can be adopted [19–21].

On the other side, the main existing definitions of fractional order derivatives are based
on the formulae presented by Caputo, Riemann–Liouville and Grünwald–Letnikov [22–25].
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However, the number of proposed definitions based on these derivatives became huge
such that it represents an obstacle to the diffusion of fractional calculus in Science and
Engineering [26]. For practical applications, due to the considerable advantage of allowing
the coupling of differential equations with classical initial conditions as for differential
equations of integer order, compared to other non-integer derivatives, the Caputo derivative
is one of the most commonly used derivatives for solving fractional differential equations.

Equally interestingly, PWC systems modeled by Fractional Differential Equations
(FDEs) can be approached numerically via fractional differential inclusions [27]. Once
the set-valued IVP is transformed into a single-valued IVP, it can be numerically inte-
grated using one of the existing schemes for FDEs, such as the Adams–Bashforth–Moulton
method [28] (for fractional differential inclusions, see [29–33] and references therein).

In recent years, discrete fractional calculus has gained considerable interest, and
now the study of ordinary difference equations is widespread. However, the theory of
fractional difference equations, a very new area for scientists, is still evolving [34]. The left
and right Caputo fractional sums and differences, as well as their properties with relation
to Riemann–Liouville differences, are studied in [34] (an early paper on the theory of
fractional finite difference equations), initial value problems in discrete fractional calculus
are analyzed in [34–39], with existence results for nonlinear fractional difference equations
presented in [34,36,38,40–42]. For further reading of qualitative properties of fractional
difference equations, see [35,43–45], and for applications of discrete fractional calculus,
see [46,47].

Compared to PWC systems modeled by FDEs, which represent the subject of several
works, there are no results on discrete PWC systems modeled by fractional differences.
Therefore, we are motivated to propose a new class of fractional discrete PWC systems
modeled by Caputo delta differences. The existence of the solutions of the underlying IVPs
is also studied. Moreover, because the continuity is considered as a required property for
the existence of the solutions of fractional difference equations (see, e.g., [36,48]), in this pa-
per, the continuous approximation of the PWC function is proposed. One of the significant
advantages of the considered Caputo fractional difference operator over the other fractional
difference operators is that it includes traditional initial and boundary conditions in formu-
lating the problem. In addition, another advantage is the fact that the Caputo fractional
difference for a constant is zero. Because the systems modeled by the considered class of
discrete PWC problems might have no solutions, continuous approximation is proposed.

This paper is structured as follows: Section 2 presents the class of fractional discrete
PWC systems, modeled by Caputo-type delta fractional difference, and the existence of the
solutions. Section 3 deals with the approximation of the PWC function. While in Section 4,
some representative numerical simulations underline the theoretical results. In the end, we
give our conclusions.

2. PWC Systems Modeled with Caputo-Type Delta Fractional Difference Equations

In this paper, the considered systems are time-independent, i.e., autonomous systems.
Let us first consider a PWC system modeled by the following FDE [11]{

Dq
∗x = 2− 3 sgn(x),

x(0) = x0,
(1)

where Dq
∗ is Caputo’s derivative with starting point 0, q ∈ (0, 1), and the right-hand side is

a jumping PWC function.

Proposition 1. The IVP (1) has no classical solutions.

Proof. In this case, D1 := D− = (−∞, 0) and D2 := D+ = (0, ∞) and M = {0}. Since
Dq
∗(0) = 0 6= 2 = 2 − 3 sgn(0), x(t) = 0 is not a solution. Therefore, there are no

solutions starting from x(0) = 0. Further, if one chooses x0 ∈ D+, there exists a solution
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x(t) = x0 − tq/Γ(1 + q), but this is defined only on [0, T′) with T′ = (x0Γ(1 + q))1/q and,
because it tends to the line x = 0, cannot be extended onto larger intervals larger than
[0, T′). Similarly, for x0 ∈ D−, the solution x(t) = x0 + 5tq/Γ(q + 1) exists but, again,
only a finite interval [0, T′′), with T′′ = (x0Γ(1 + q)/5)1/q. In both cases, the obtained
solutions tend to the line x = 0 but, as seen above, they hold at points A(T′, 0) and B(T′′, 0),
respectively, and cannot extend along this line (see Figure 1a, where q = 0.8 and x′0 = 0.2,
x′′0 = −0.3).

Figure 1. Equation (1); (a) Solutions for q = 0.8, and x′0 = 0.2 (blue) and x′′0 = −0.3 (red). The solu-
tions are defined only for t ∈ [0, T′) and t ∈ [0, T′′), respectively; (b) Incorrect solution obtained by
solving numerically the not-approximated PWC problem.

Note that running this equation for some numerical scheme (such as an Adams–
Bashforth–Moulton scheme for FDEs [28]), one can obtain a numerical result, but due
to Proposition 1, this does not represent the correct numerical solution. For example,
for q = 0.8, Figure 1b presents the “solution” for x0 = 0. Due to the finite precision in
which computers perform calculations (see Section 2.1), the utilized numerical method can
pass through points A and B, i.e., at these points, x(t) is not (exactly) zero and, therefore,
one obtains a wrong solution.

To overcome this obstacle, the problem has to be restarted as a differential inclusion
and next as a continuous problem, which admits solutions (see details in [11–14]).

To introduce the class of discrete PWC fractional systems, some basic notions necessary
to introduce the class of fractional PWC systems are presented next.

Denote by Nc = {c, c + 1, c + 2, . . .} and Nd
c = {c, c + 1, c + 2, . . . , d}, for any real

numbers c and d such that d− c ∈ N1.

Definition 1. The Euler gamma function is defined by

Γ(z) =
∫ ∞

0
e−ttz−1dt, <(z) > 0.

Using its reduction formula, the Euler gamma function can also be extended to the half-plane
<(z) < 0 except for z ∈ {· · · ,−2,−1, 0}.

Definition 2. Assume u : Nb
a → R and N ∈ N1. The first-order forward difference of u is defined by

∆u(t) = u(t + 1)− u(t), t ∈ Nb−1
a ,
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and the Nth-order forward difference of u is defined recursively by

∆Nu(t) = ∆
(

∆N−1u(t)
)

, t ∈ Nb−N
a .

Finally, ∆0 denotes the identity operator.

Definition 3. Let u : Na → R and q > 0. The qth-order delta fractional sum of u based on a is
given by

∆−q
a u(t) =

1
Γ(q)

t−q

∑
s=a

Γ(t− s)
Γ(t− s− q + 1)

u(s), t ∈ Na+q.

Definition 4. Let u : Na → R, q > 0, and q /∈ N1. The qth-order Caputo delta fractional
difference of u based on a is given by

∆q
a∗u(t) = ∆−(N−q)

a

(
∆Nu(t)

)
, t ∈ Na+N−q,

where N = [q] + 1. If q = N ∈ N1, then

∆q
a∗u(t) = ∆Nu(t), t ∈ Na.

Consider now the class of fractional PWC systems with Caputo-type delta fractional
difference, modeled by the following IVP{

∆q
∗x(n) = f (x(n + q− 1)), n ∈ N1−q,

x(0) = x0,
(2)

where N1−q = {1− q, 2− q, 3− q, · · · }, ∆q
∗ represents the qth fractional Caputo-like differ-

ence in the usual case of a zero starting point a = 0, with q ∈ (0, 1) [34] and f is a jump
discontinuous scalar function of the following form

f (x) =

{
f1(x), x ∈ (−∞, a],
f2(x), x ∈ (a, ∞).

(3)

Function f1,2 is continuous in its domain, with f1(a) 6= f2(a).
If the solution of the fractional IVP (2) exists, it can be found with the following

integral [34,41] (see [38] for ∇q difference equations)

x(n) = x(0) +
1

Γ(q)

n−q

∑
r=1−q

Γ(n− r)
Γ(n− r− q + 1)

f (x(r + q− 1)), n ∈ N0. (4)

To obtain a convenable numerical form, consider in (4) the following substitution
r + q = s. Then, a convenient iterative numerical form of the sum of Equation (4) is given by

x(n) = x(0) +
1

Γ(q)

n

∑
s=1

Γ(n− s + q)
Γ(n− s + 1)

f (x(s− 1)), n ∈ N0. (5)

The example considered in this paper is a fractional order variant of the model pre-
sented in [49], with the right-hand side

f (x) =

{
m− px2, x ∈ (−∞, 0],
1− px2, x ∈ (0, ∞),

(6)



Fractal Fract. 2023, 7, 304 5 of 13

with D1 := D− = (−∞, 0] and D2 := D+ = (0, ∞), p is a real parameter, m ∈ (0, 1) and
M = {0}. For all considered m values, function f has a jump discontinuity at x = 0,
f1(0) = m 6= 1 = f2(0).

The PWC (2) becomes

∆q
∗x(n) =

{
m− px(n + q− 1)2, x(n + q− 1) ∈ (−∞, 0],
1− px(n + q− 1)2, x(n + q− 1) ∈ (0, ∞),

x(0) = x0, n ∈ N1−q.
(7)

Like in the case of the time-continuous PWC system (1), if one considers x0 = 0 ∈ D−,
one can see that, in this case, Equation (2) is not verified because ∆q

∗(0) = 0 6= 1 = 1− p× 0.
For other values of x0 6= 0, it is possible that after some iterations, the solution reaches the
line x = 0, which cannot be the solution (see the case of system (1)).

The same situation can happen in the case of the general IVP (2) with f given by (3):
it is possible that, for some x0, the orbit crosses the line x = a, which does not verify the
equation. Therefore, one can be deduced that the IVP (2) with f given by (3) might have
no solutions.

Remark 1. It is possible that, for some set of parameters and x0 and q, the orbit does not cross line
x = a and remains in the same domain of x0 (either D− or D+) when the IVP admits solutions (see
the example in Figure 4d, Section 4).

2.1. Computational Approach

Theoretically, it has been shown that it is possible that the solution to IVP (2) with
f given by (3) can reach line x = 0, i.e., x(n) becomes 0, where the problem has no
solution. However, a numerical method of calculation is an approximation that can be
stable (meaning that it tends to reduce rounding errors) or unstable (meaning that rounding
errors are magnified); therefore, very often, there are both stable and unstable solutions
for a problem [50]. Further, in computer hardware, a value is not necessarily exactly
computed, and the loss in precision could sometimes be inevitable. Moreover, considering
any numeric representation that is limited to finite precision, for example, operating a
decimal at 100,000,000 digits, which will be able to distinguish between the values that
differ in their hundred millionth decimal places, there would still be an infinite number
of values that would not be able to be exactly represented. In other words, considering
the Pigeon Hole Principle, or Dirichlet drawer principle, a simple yet powerful idea in
mathematics, which says that if you have n items to put into m containers where n > m, then
at least one container must have more than one item [51–53]. Hence, if you have an N-bit
representation of numbers, then at most 2N different numbers can be represented, and other
numbers cannot exactly exist within that system. Therefore, it is easy to understand that
the numerical schemes, such as integral (5), will not precisely meet the zero value, where
x(n) = 0 cannot be a solution. Namely it will either exceed the discontinuity or return to a
previous value.

Remark 2.

(i) Similar situations can arise in integer-order discrete systems, such as the system in [49],
defined by the following IVP{

x(n + 1) = f (x(n)), n ∈ N,
x(0) = x0,

where f is some PWC function defined by (3);
(ii) There are PWC systems with jump discontinuity, for which f is not defined at x = a (see,

e.g., [54]). In these cases, after some number of iterations, n = k, in the internal representation,
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as shown above, it is possible for x(k) to enter a sufficiently small neighborhood of a, where
x(k) cannot be determined, and the software considers an unpredictable value for x(k).

Concluding, to overcome this inconvenience, the continuous (even smooth) approxi-
mation of the PWC problem is proposed so that the underlying problem admits a solution.

3. Continuous Approximation of Map f

In this section, it is briefly shown how the PWC function, f , defined by (3), can be con-
tinuously approximated using Filippov’s approach [1,19,20] (details on the approximation
algorithm can be found in [11,14]).

The PWC function f is transformed into a set-valued map F : R ⇒ R via the Filippov
regularization [1], which is a map from R to the set of subsets of R. F can be defined in
several ways. One of the simplest forms of F is defined as follows

F(x) =
⋂
ε>0

⋂
µ(M)=0

conv( f (y ∈ R \ {0} : |y− x| ≤ ε)), (8)

where ε is the radius of the ball centered on x. At the points where f is continuous, F(x)
consists of one single point, i.e., F(x) = { f (x)}, while at the points x ∈ M, F(x) is given
by (8). The set-valued function F defined by (8) has values in the convex subsets of R.

To justify the use of the Filippov regularization in physical systems, the value of ε
must be chosen to be small enough so that the motion of the physical systems approaches a
certain solution (ideally, it coincides with the solution if ε→ 0).

In the sketch in Figure 2a, the graph of a set-valued function F is plotted, while in
Figure 2b, the closure of the convex hull is plotted in blue. The values of F(x) for x = x1 and
x = x3 are segments, while at x = x2, F(x2) is a single point (see Condition γ in [1] p. 68).

X X 

(a) (b)

Figure 2. (a) Sketch of a set-valued function F; (b) The convex hull of F (blue plot) and the values of
F at points x1, x2 and x3.

For function f given by (6), with the discontinuity set M = {0} and for m = 0.6
and p = 1.5, the graph is presented in Figure 3a. Consider a ε-neighborhood of x = 0.
For clarity of the graphical exposition, the ray of the neighborhood is considered as ε = 0.1
(Figure 3b). The set-valued map F : R ⇒ R defined with (8) is

F(x) =


f1(x), x < 0,
[A
′
,B
′
], x = 0,

f2(x), x > 0,
(9)

where A′ and B′ are the endpoints of the vertical segment at x = 0. Points A and B are the
intersections of the graph of f with the lines x = −ε and x = ε.
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Figure 3. (a) Graph of the discontinuous function f for m = 0.6 and p = 1.5; (b) The underlying
set-valued function F (green plot) defined on the neighborhood [−ε, ε] (yellow) together with a
continuous selection g connecting points A and B (red); (c) The graph of the obtained smooth
function f̃ : R→ R.

With the Filippov regularization, the fractional discrete difference (2) is restarted as a
set-valued fractional discrete difference (inclusion){

∆q
∗x(n) ∈ F(x(n + q− 1)), for almost all n ∈ N1−q,

x(0) = x0,
(10)

which is identical to (2) for those values of x for which F(x) = { f (x)}. For x = 0, points
A and B (Figure 3b) become A′(0, m) and B′(0, 1), respectively, and, for x = 0, system (7)
transforms into the fractional differential inclusion, ∆q

∗(0) ∈ [m, 1], i.e., ∆q
∗(0) could take

every value within the line [m, 1].
Solutions to the set-valued IVP (10) (absolutely continuous functions satisfying (10)

for almost all n ∈ N1−q) are not considered here (see, e.g., [1]).

Definition 5. A single-valued function h : R→ R is called the approximation (selection) of the
set-valued function F if h(x) ∈ F(x), for all x ∈ R.

Definition 6. As set-valued function F : R ⇒ R is upper semicontinuous at x0 ∈ R, if for any
open set B containing F(x0), there exists a neighborhood A of x0 such that F(A) ∈ B.

It is said that F is upper semicontinuous if it is so at every x0 ∈ R.

Remark 3. A set-valued function satisfies a property if and only if its graph satisfies it (i.e.,
symmetric interpretation of a set-valued function as a graph [19]). Therefore, a set-valued function
is said to be closed if and only if its graph is closed. Further, a set-valued function F : R ⇒ R whose
graph is closed is upper semicontinuous [19] p. 42.
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Finding the approximations, which are locally Lipschitz, is allowed by the Approxi-
mate Selection Theorem (Cellina’s Theorem), whose proof presents an explicit way (see [19]
p. 84 and [20] p. 358) to construct the approximation.

It is easy to see that the function defined by (9) has a closed graph and, therefore, it
is upper semicontinuous and admits a continuous (even smooth) selection g (Figure 2b,
red plot).

Theorem 1 ([21] (see also [19])). Let F : X ⇒ Y be an upper semicontinuous function from a
compact metric space X to a Banach space Y. If the values of F are nonempty and convex, then for
every ε > 0 there exists a locally Lipschitz single-valued map g : X → Y such that

Graph(g) ⊂ B(Graph(F), ε),

and for every x ∈ X, g(x) belongs to the convex hull of the image of F.

Next, the main result can be presented

Theorem 2. The set-valued map F : R ⇒ R, defined by (9), admits a locally Lipschitz selection
g : [−ε, ε]→ R.

Proof. From Remark 3 it follows that F defined by (9) is upper semicontinuous, nonempty
and convex. Therefore, Theorem 2 applies.

One of the simplest continuous approximations of the discontinuous function f (6) is
the cubic polynomial (There exists an infinity of smooth functions to approximate the PWC
function f ).

g(x) = c1x3 + c2x2 + c3x + c4, ci,∈ R, i = 1, 2, 3, 4.

The approximated function (2) becomes

f̃ (x) =


m− px2, x < −ε,
g(x), x ∈ [−ε, ε],
1− px2, x > ε.

Since f1 and f2 in (6) are smooth, to define g as connecting points A and B, the follow-
ing “gluing” conditions are to be set

f̃ (−ε) = g(−ε),
f̃ (ε) = g(ε),
f̃
′
(−ε− 0) = g

′
(−ε + 0),

f̃
′
(ε + 0) = g

′
(ε + 0),

which represents a system with unknown ci, i = 1, 2, 3, 4. f̃
′
(±ε± 0) and g

′
(±ε± 0) are

lateral limits of the derivatives f̃ and g at ±ε. Note that the last two equations represent
the smoothness conditions on points A and B.

Solving the system, one obtains

c1 =
m− 1

4ε3 ,

c2 = −p,

c3 = −3m− 3
4ε

,

c4 =
m + 1

2
.
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Finally, the obtained smooth discrete fractional system is

∆q
∗x(n) = f̃ (x(n)) :=


m− px(n + q− 1)2, x(n) < −ε,
g(x(n + q− 1)), x(n) ∈ [−ε, ε],
1− px(n + q− 1)2, x(n) > ε,

x(0) = x0, n ∈ N1−q.

(11)

The existence of the following numerical integral

x(n) = x(0) +
1

Γ(q)

n

∑
s=1

Γ(n− s + q)
Γ(n− s + 1)

f̃ (x(s− 1)), n ∈ N0, (12)

is ensured by the smoothness of the right-hand side of (11) [41,42,55].
To computationally implement integral (12), the entire orbit history (main characteris-

tic of fractional systems) must be taken into account. Therefore, a modality is inside the
cycle that calculates the sum, every step x(s− 1) is tested for which the domain belongs.

4. Dynamics of the Approximated Fractional System (11)

Before studying the dynamics of fractional system (11), recall the following important
result regarding continuous and discrete fractional systems [56,57].

Theorem 3. Autonomous, continuous-time and discrete fractional systems cannot admit non-
constant exact periodic solutions.

Proof. This result regarding continuous fractional systems modeled by fractional order
differential equations is proven in [56], while for discrete fractional systems, it is proven
in [57].

Remark 4. Due to Theorem 3, periodicity cannot be considered in continuous or discrete fractional
systems. Therefore, notions of stable cycles, bifurcation and even chaos (where unstable periodic
orbits form the skeleton of chaotic dynamics) represent a delicate problem. Thus, following the
definition given by, e.g., Wiggins in [58]: a non-constant solution x(t) of a system is periodic
if there exists T > 0 such that x(t) = x(t + T), for all t ∈ R, it follows that even using some
asymptotic approach, one cannot obtain periodic orbits in fractional systems. Instead, one can
consider numerically periodic orbits in the sense that the trajectory, from the numerical point of
view, up to some small error, can be considered in the state phase as a closed orbit. However, there
are particular cases when one can talk about periodicity in the case of continuous fractional systems
when the lower terminal of the fractional derivative is ±∞ (see, e.g., [59]). Further, in the case of
discrete fractional systems, there could exist S-asymptotically periodic orbits [57].

To obtain the numerical results in this section, a Matlab code has been written.
Consider first the not approximated system (7) with parameters m = 0.92, p = 1.556

and q = 0.6. Applying the integral, one obtains the chaotic orbit presented in Figure 4a.
The value of the orbits close to 0 is plotted in red. As can be seen, integral (5) gives a
numerical result (orbit), and x(n) is close to 0 (see Section 2.1) at the n0 ≈ 1200th iteration.
However, as shown in Section 2, the result is not correct.

If one considers the approximated fractional system (11), with ε = 10−3 and the
same parameters m = 0.92, p = 1.556 and q = 0.6, the obtained correct chaotic orbit is
presented in Figure 4b. Note that the approximation is performed only in a relatively large
neighborhood of the discontinuity. As can be seen in the images, as expected, the differences
between the non-approximated and approximated cases appear only after the intersection
with the line x = 0 and within the neighborhood of the ray ε, respectively (see the vertical
dotted red line at n0 in Figure 4a,b). Because, in the approximated case where the code also
considers the function g, once the orbit enters the neighborhood after n > n0, the orbits
are different.
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A numerically periodic orbit (Remark 4) can be obtained for q = 0.6, p = 1.2 and
m = 0.92, with ε = 10−3 (Figure 4c).

An example of when the orbit remains within one of the domains D− or D+, is
presented in Figure 4d, where the numerically periodic orbit, obtained for q = 0.6, p = 0.9,
m = 0.92, ε = 10−3 and x0 ∈ D+, remains in D+, while a numerically periodic orbit that
visits both D− and D+, obtained for ε = 65× 10−4 and q = 0.71, is presented in Figure 4e.
While the orbit in Figure 4d is not related to discontinuity x = 0 in the case presented in
Figure 4e, although the orbit does not seem to depend on the discontinuity, the transient
somehow meets the neighborhood of the discontinuity (red point).

Intensive numerical tests show that the smallest neighborhood size where the orbits
could be identified is of order ε = 10−3.

Figure 4. Orbits of the fractional systems (7) and (11); (a) Orbit of the fractional PWC (7) q = 0.6,
m = 0.92 and p = 1.556, without approximation; (b) Orbit of the continuous fractional system (11)
with q = 0.6, m = 0.92, p = 1.556 and ε = 10−3; (c) Numerically periodic orbit of the continuous
fractional system (11) with q = 0.6, m = 0.92, p = 1.2 and ε = 10−3 situated in D+; (e) Numerically
periodic orbit of the continuous fractional system (11) with q = 0.7, m = 0.95, p = 1.556 and ε = 65−4.
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5. Conclusions

In this paper, it is shown that the fractional PWC systems (7) might have no solutions.
Even if the use of the numerical integral (5) could offer a numerical solution, this could be
incorrect. This characteristic is also explained computationally. A possible solution is to
use the Cellina theorem, which allows the restarting of the PWC problem as a continuous
one, where integral (5) can be applied.
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