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Abstract: This article concentrates on a control system with a nonlocal condition that is driven by
neutral stochastic evolution hemivariational inequalities (HVIs) of Sobolev-type Hilfer fractional (HF).
In order to illustrate the necessary requirements for the existence of mild solutions to the required
control system, we first use the characteristics of the modified Clarke sub-differential and a fixed
point approach for multivalued functions. Then, we show that there are optimal state-control sets
that are driven by Sobolev-type HF neutral stochastic evolution HVIs utilizing constrained Lagrange
optimal systems. The optimal control (OC) results are created without taking the uniqueness of the
control system solutions into account. Finally, the main finding is shown by an example.
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1. Introduction

The hemivariational inequality (HVI) was invented by Panagiotopoulos in 1981 and is
a weak framework for a range of engine issues using non-smooth and non-convex energy
functionals [1,2]. The control issues with HVIs have recently drawn a lot of attention
from investigators. In 2000, Migórski and Ochal [3] investigated the OC problems of the
parabolic HVIs using the direct approach of the calculus of variations and the Galerkin
technique. The existence of the OC sets for a hyperbolic quasi-linear HVI was proven
in 2007 by researchers [4] employing the Faedo–Galerkin strategy and the iterative con-
cept of the logic of alteration. A fixed point principle for multivalued maps was recently
used by investigators [5] to investigate the approximate controllability of HVIs. Very
recently, Muthukumar et al. [6] dealt with the optimal control issue of second-order SE-
HVIs with Poisson jumps, applying the fixed point approach of multivalued maps and
Balder’s theorem. Harrat et al. [7] explored the OC and solvability of impulsive HF delay
evolution inclusions with Clarke sub-differential utilizing semigroup theory, fractional
calculus, the fixed point theorem, and multivalued evaluation, and the researchers proved
the existence of an optimal control pair for the Lagrange problem under an appropriate
set of sufficient conditions. Researchers [8] developed Hilfer fractional evolution hemi-
variational inequalities with nonlocal initial conditions and optimal controls by using the
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properties of generalized Clarke subdifferential and a fixed point theorem for condensing
multivalued maps.

On the other hand, over the previous few decades, fractional calculus has become
increasingly important in mathematics. For some physical problems, fractional-order differ-
ential equations are more appropriate than integer-order differential equations. Fractional
differential Equations (FDEs) have been a hot research topic due to their application for
control systems, chemical engineering, mechanical, natural sciences, dynamics, physical
science, viscoelasticity materials, electrical circuits, neural networks, and so on [9–15]. We
draw attention to the fact that over the past three decades, FDEs have developed signifi-
cantly (see, for instance [16–21]), and are an effective tool for describing certain materials
and processes [10,11].

Stochastic differential Equations (SDEs) are useful tools for characterizing diverse
phenomena and procedures with stochastic disturbances in many branches of science
and engineering. See the textbook [22] for details on the broad idea of SDEs. It should
be highlighted as well that stochastic discomfort or noise may be found in both natural
and artificial systems. SDEs are crucial for simulating real-world phenomena where
an element of unpredictability is required. As a result of their numerous uses in the
biological, physical, and pharmaceutical sciences (see [23–25]), SDEs have gained a lot of
interest. The unpredictable events studied in microbiology, including entropy, neurobiology,
and industrial engineering, are the inspiration for SEEs in infinite-dimensional spaces.
Numerous writers have discussed in great detail the existence of mild solutions for different
forms of SEEs and their OC in Hilbert spaces (see [26–28]).

The HFD, which also contains the R–L and Caputo fractional derivatives as special
instances, was introduced by Hilfer [10]. It is used in conceptual simulations of electromag-
netics in glass-forming components. Gu and Trujillo examined in [29] the possibility of mild
solutions to an evolution equation including HFD. The solvability and OC of impulsive HF
delay evolution systems with Clarke sub-differential were examined by Harrat et al. in [7].
Some intriguing results are presented for HF evolution equations under nonlocal situations.
For instance, Yang and Wang examined in [30] the approximation of controllability of
an HF differential system with nonlocal circumstances. Yang and Wang investigated the
possibility of mild solutions to an HF differential equation with nonlocal circumstances
in [31].

The mathematical structure of many physical processes, including the movement
of fluids through cracked rocks and entropy, frequently reveals the differential system
with Sobolev-type. The readers may refer to [32–34]. Neutral systems have gained more
attention recently due to their extensive use in several pragmatic mathematics domains.
Diverse neutral systems, including material’s thermal expansion, stretchability, surface
waves, and a number of biological advances, profit from neutral systems immediately
or later. For further details on the neutral system and its use, readers might refer to
the [21,24,35].

Numerous scientific fields, including ecology, quantum field theory, geography, and
pharmacology, where a consequence or delay must be considered, utilize integral-differential
equations. In practice, a model having hereditary properties is always denoted by an
integro-differential system. The authors Ahmed et al. [36] produced the HF stochastic
integro-differential equations by employing the ideas of fractional calculus, semigroups,
and Sadovskii’s fixed point principle. The existence and controllability of a fractional
integro-differential system of order 1 < r < 2 with infinite delay demonstrated using
the mathematical concepts connected to the fractional derivatives and the MNC were
recently studied by Mohan Raja et al. [37]. Researchers [24,35,38] have investigated the
HF integro-differential systems with almost sectorial operators by utilizing the fixed point
technique. Using the modified Clarke sub-differential and a fixed point principle for
multivalued maps, Sivasankar et al. [39] recently created the OC issues for HF neutral
stochastic evolution HVIs. Inspired by the above articles, the researchers developed the
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existence of Sobolev-type Hilfer fractional neutral stochastic evolution hemivariational
inequalities and optimal controls.

It appears that there are still a lot of intriguing concepts and open-ended questions
in the making, despite the fact that major advances have been made in the solvability
and control problems of HVIs and fractional SEEs. It is generally recognized that the
concept of controllability is important for the research and development of control systems.
Moreover, it is crucial to study HVIs with fractional derivatives since they are connected to
relevant fields such as selective memory entropy, thermoviscoelasticity, and water loss in
heat transfer. To our knowledge, however, there has not been any research on OC problems
for Sobolev-type HF neutral stochastic evolution HVI published in the literature as of yet.

This study proposes to close this gap by drawing inspiration from the above results.
This article’s goal is to demonstrate the existence of solutions and the optimal control
problems for Sobolev-type HF neutral stochastic evolution HVIs of the following form:

〈
Dλ,ζ

0+ [J z(t)− ψ(t, z(t))] + Ã[z(t)− ψ(t, z(t))] +Bu(t) + a(t, z(t)) dW(t)
dt , ω

〉
X

+G0(t, z(t); ω) ≥ 0, t ∈ V = [0, c̃], ∀ ω ∈ X,

I (1−λ)(1−ζ)
0+ [z(t)]t=0 + h̄(z) = z0,

(1)

where Dλ,ζ
0+ denotes the HFD, t ∈ V ′ = [0, c̃], λ ∈ [0, 1], ζ ∈ (0, 1). The state variables z(·)

takes the values in X is the Hilbert space with ‖ · ‖X and the inner product 〈·, ·〉X. The
almost sectorial operator of the strongly continuous semigroup operator {T (t), t ≥ 0} in
X is Ã : D(Ã) ⊂ X → X and J : D(J ) ⊂ X → X is the linear operator on X. A control
function is defined as u, and the collection of all admissible controls is classified as U, which
is a Hilbert space. Let the bounded linear operatorB : U→ X, the function a : V ×X→
2X\{∅} be a bounded, non-empty, closed convex multivalued map, and ψ : V ×X→ X

be the appropriate function. Assume that K is the another separable Hilbert space and
(f,F, P) is a complete probability space. Assume that the nuclear correlation operator
Q ≥ 0 and the finite trace of the Wiener process {W(t) : t > 0} are characteristics of the
K-Wiener process. The same expressions, ‖ · ‖, are used to represent the norm of L(K,X),
where L(K,X) signifies the region of all bounded operators from K → X. If K = X, then
L(K,X) = L(X). The representation G0(t, ·; ·) represents the Clarke sub-differential of a
universally Lipschitz function G(t, ·) : X → <. Consider that E represents the predicted
value of a random parameter or the Lebesgue integral with reference to the probability
function P, and letAad be the collection of such admissible state control sets (z, u). The cost
functional on the setAad is supplied by

K (z, u) = E
∫ c̃

0
L (t, zu(t), u(t))dt. (2)

The following are the main contributions of our article:

• We construct and apply a set of sufficient conditions that demonstrate the existence
and optimal control outcomes of Sobolev-type Hilfer fractional neutral stochastic
evolution hemivariational inequalities under simple and fundamental system operator
assumptions;

• In this study, we prove that the existence findings of Sobolev-type Hilfer fractional
neutral stochastic evolution hemivariational inequalities satisfy certain requirements;

• We further expand the finding to derive the Lagrange problem for optimal controls
findings for Sobolev-type Hilfer fractional neutral stochastic evolution hemivariational
inequalities;

• These optimal control results are created without taking the originality of the control
system’s solutions into account;

• In particular, the optimal control problem is derived from the Lagrange problem and
solved by the fixed point method.
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This paper’s outline is divided into five portions. In Section 2, we provide a list of
required conditions. We show that system (1) has a mild solution in Section 3, assuming a
few fair premises. We discuss the optimal control method governed by (1) under acceptable
requirements in Section 4. A concrete example is given to illustrate our main conclusions in
Section 5.1.

2. Preliminaries

The fundamental concepts, symbols, and lemmas of fractional derivatives that are
required to explore the key outcomes are provided in this part, along with the necessary
preliminary information.

Assume X is a separable Hilbert space and that ‖ · ‖X represents its norm. Consider that
(f,F, P) represent the complete probability field with the regular identification {Ft, t > 0}.
L2(F,X) = L2(f,F, P,X) indicates the Hilbert space of all highly F-measurable square inte-
grable X-valued random parameter fulfilling E‖z‖2

X < ∞. Suppose C(V , L2(F,X)) is the Ba-

nach space of all continuous maps fromV → L2(F,X) with ‖z‖L2 =
[

supt∈[0,c̃] E‖z(t)‖2
X

] 1
2 <

∞. L2
F(V ,X) will represent the Hilbert space of all stochastic processes Ft-adapted measur-

able, described on V using values in X and ‖z‖L2
F(V ,X) =

[ ∫ c̃
0 E‖z(t)‖2

Xdt
] 1

2 < ∞. The space

L2
F(V ,U) will stand for the Hilbert space of all stochastic processes Ft-adapted measurable

characterized on V assuming values in U and ‖u‖L2
F(V ,U) =

[ ∫ c̃
0 E‖u(t)‖2

Udt
] 1

2 < ∞.

We suppose ∃ an entire orthonormal system {en} in K, a bounded series of non-
negative real integers {βn} 3 Qen = βnen, n = 1, 2, · · · , and a series {µn} of independent
Wiener processes 3

〈W(t), ε〉 =
∞

∑
n=1

√
βn〈en, ε〉µn(t), ε ∈ K, t > 0.

Let σ ∈ L(K,X) and specified by

‖σ‖2
Q = Tr(σQσ∗) =

∞

∑
n=1

∥∥∥∥√βnσen

∥∥∥∥2

.

Suppose ‖σ‖Q < ∞, then σ is called a Q-Hilbert Schmidt operator. Let LQ(K,X)
serve as the specification of the space of all Q-Hilbert Schmidt operators σ : K→ X. The
satisfaction of the equation LQ(K,X) of L(K,X) with respect to the geometry resulting from
the expression ‖ · ‖Q, where ‖σ‖2

Q = 〈σ, σ〉 is a Hilbert space with the above norm geometry.

The operators Ã : D(Ã) ⊂ X → X and J : D(J ) ⊂ X → X fulfill the accompany-
ing assumptions:

(A1) Ã and J are closed linear operators;
(A2) D(J ) ⊂ D(Ã) and J is bijective;
(A3) J −1 : X→ D(J ) is continuous. Here, (A1) and (A2), together with the closed graph

theorem, imply the boundedness of the linear operator ÃJ −1 : X→ X. We designate
‖J ‖ ≤ MJ and ‖J −1‖ ≤ M′J .

The following presents the fundamentals of fractional calculus. (see [11,14]) for more
information.

Definition 1 (see [11,14]). The fractional integral of order λ > 0 with the lower bound zero is
specified as for the function g

Iλ
t g(t) =

1
Γ(λ)

∫ t

0
(t− ς)λ−1g(ς)dς, t > 0,
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if the RHS is given pointwise on the range [0,+∞), where Γ is the gamma function. We simply
assume that the gamma functions employed in this work are real without loss of generality.

Definition 2 (see [11,14]). The R–L derivative of order λ > 0 with lower limit zero may be
expressed as for the function g : [0,+∞)→ R

LDλ
t g(t) =

1
Γ(m− λ)

dm

dtm

∫ t

0

g(ς)
(t− ς)λ−m+1 dς, m− 1 < λ < m, m ∈ N.

Definition 3 (see [11,14]). The Caputo fractional derivative of order λ > 0 may be expressed by

Dλ
0+ g(t) =L Dλ

t

(
g(t)−

m−1

∑
n=1

tn

n!
gn(0)

)
, m = 1 < λ < m, m ∈ N,

where the derivative of the function g is absolutely continuous up to order m− 1.

Definition 4 (see [10]). The HFD of order 0 ≤ λ ≤ 1, 0 < ζ < 1 for the function z is specified as

Dλ,ζ
0+ g(t) = [Iλ(1−ζ)

0+ D(I (1−λ)(1−ζ)
0+ g)](t).

Remark 1 (see [11,14]).

(a) If g(t) ∈ Cm[0, ∞), then

Dλ
t g(t) =

1
Γ(m− λ)

∫ t

0

gm(ς)

(t− ς)λ−m+1 dς = I(m−λ)gm(t), t > 0, m = 1 < λ < m.

(b) The Caputo derivative of a constant is equal to zero;
(c) Suppose g is an arbitrary function with entries in E; then, the formulas in definitions 1 and 2

are interpreted in Bochner’s sense.

In the following, we discuss a number of essential properties of a multivalued map;
for more information, please refer to the books of [40,41].

In a Banach space Y with ‖ · ‖, Y∗ stands for Y’s dual, and 〈·, ·〉 represents the pairing
of Y and Y∗. We shall employ the accompanying representations for our contentment:

Pg(c)(Y) = {f ⊆ Y : f is non-empty, closed(convex)},
P(w)k(c)(Y) = {f ⊆ Y : f is non-empty, (weakly) compact (convex)}.

In the next section, we will discuss how to describe the extended Clarke gradient for a
globally Lipschitzian functional G : Y → R. We indicate by G0(z; ω) the Clarke geometric
gradient of G at z in the direction ω, i.e.,

G0(z, ω) = lim
z′→z

sup
β→0+

G(z′ + βω)− G(z′)
β

.

Recall also that the generalized Clarke sub-differential of G at z, represented by ∂G, is
a subset of Y∗ produced by

∂G(z) = {z∗ ∈ Y∗ : G0(z, ω) ≥ 〈z∗, ω〉, ∀ ω ∈ Y}.

Our main conclusions depend heavily on the preceding essential characteristics of the
generalized directional derivative and the generalized gradient.

Proposition 1 (see [42]). Suppose g : f→ R is a globally Lipschitz function on an open set f of
X, then



Fractal Fract. 2023, 7, 303 6 of 22

(i) ∀ z ∈ X, one has g0(z, ω) = max{〈z∗, ω〉 : ∀ z ∈ ∂g(z)};
(ii) ∀ z ∈ f, the derivative ∂g(x) is a convex, non-empty, weak∗-compact subset of X∗ and

‖z∗‖X∗ ≤ K ∀ z ∈ g(z) (where K is the Lipschitz constant of g near z);
(iii) the graph of the generalized derivative ∂g is closed in f×X∗v∗ topology, i.e., suppose {yn} ⊂ f

and {y∗n} ⊂ X are series 3 zn ∈ ∂g(zn) and zn → z in X, zn → weakly∗ in X, then
z ∈ ∂g(z) (where X∗v∗ represent the Banach space X related with the v∗-topology);

(iv) the multivalued function f 3 z→ ∂g(z) ⊆ X : f→ X∗v∗ is u.s.c.

Lemma 1 (see [43]). Let G : [0, c̃]×f→ L2
0 be a strongly measurable mapping3

∫ c̃
0 E‖G(t)‖p

L2
0
dt <

∞. Then

E
∥∥∥∥ ∫ c̃

0
G(ς)dW(ς)

∥∥∥∥p

≤ LG

∫ c̃

0
E‖G(ς)‖p

L2
0
dς,

∀ 0 ≤ t ≤ c̃ and p ≥ 2, where LG is the constant involving p and c̃.

Theorem 1 (see [44]). Let Y be a locally convex Banach space and G : Y → 2Y be a compact
convex valued, u.s.c. multivalued map 3 ∃ of a closed neighborhood V of 0 for which G(V) is a
relatively compact set. Assume the set

f = {z ∈ Y : fz ∈ G(z) for some λ > 1}

is bounded; then, G has a fixed point.

3. Existence

In this section, we investigate the existence of mild solutions for system (1). To achieve
this goal, we shall study the following system:

Dλ,ζ
0+ [J z(t)− ψ(t, z(t))] ∈ Ã[z(t)− ψ(t, z(t))] +B(t)u(t) + a(t, z(t)) dW(t)

dt
+∂G(t, z(t)), t ∈ V ′,

I (1−λ)(1−ζ)
0+ [z(t)]t=0 + h̄(z) = z0,

(3)

where ∂G represents the generalized Clarke sub-differential of a locally Lipschitz functional
G(t, ·) : X → R. B : U → X is a bounded linear operator, the control function u(·) is a
stochastic process provided in L2

F(V ,U) of admissible control functions, and the collection
U is a Hilbert space. a : V × X× X → L2

0 is a suitable function, and z0 is a quantifiable
X-valued random variable independent of W.

The fact that every solution to system (3) also resolves system (1) is obvious. Assume
that in reality, z(t) ∈ C(V , L2(F,X)) is true. If system (1) has a solution, then a function g(t)
exists in ∂G(t, z(t)), also known as t ∈ V , is a number that fulfills the following equation:

Dλ,ζ
0+ [J z(t)− ψ(t, z(t))] ∈ Ã[z(t)− ψ(t, z(t))] +B(t)u(t) + a(t, z(t)) dW(t)

dt
+∂G(t, z(t)), t ∈ V ′,

I (1−λ)(1−ζ)
0+ [z(t)]t=0 + h̄(z) = z0.

In view of the above equation, we obtain
〈

Dλ,ζ
0+ [J z(t)− ψ(t, z(t))] + Ã[z(t)− ψ(t, z(t))] +B(t)u(t) + a(t, z(t)) dW(t)

dt , ω
〉
X

+〈G(t), ω〉X = 0, a.e. t ∈ V ′, ∀ ω ∈ X,

I (1−λ)(1−ζ)
0+ [z(t)]t=0 + h̄(z) = z0.
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Since g(t) ∈ ∂G(t, z(t)) and 〈G(t), ω〉X ≤ G0(t, z(t); ω), we obtain
〈

Dλ,ζ
0+ [J z(t)− ψ(t, z(t))] + Ã[z(t)− ψ(t, z(t))] +B(t)u(t) + a(t, z(t)) dW(t)

dt , ω
〉
X

+G0(t, z(t); ω) ≥ 0, t ∈ V ′, ∀ ω ∈ X,

I (1−λ)(1−ζ)
0+ [z(t)]t=0 + h̄(z) = z0.

It is shown that we can investigate system (1) by the corresponding evolution inclusion
system (3).

Now, using the Wright function, we specify the mild solution to system (3):

Mζ(ϑ) =
∞

∑
n=1

(−ϑ)n−1

(n− 1)Γ(1− µn)
, 0 < µ < 1, ϑ ∈ C,

that fulfills the equality ∫ ∞

0
θιMζ(θ)dθ =

Γ(1 + ι)

Γ(1 + ζι)
, θ ≥ 0.

Lemma 2 (see [21]). The operatorsMλ,ζ , Nζ and Qλ admit the accompanying requirements:

(a) For every fixed t > 0,Mλ,ζ(t), Nζ(t) and Qλ(t) are bounded linear operators 3, ∀ z ∈ X,

‖Mλ,ζ(t)z‖ ≤ κ1t
−1+ζ−λζ+λϑ‖z‖, ‖Nζ(t)z‖ ≤ κ2t

λ(ϑ−1)‖z‖ and

‖Qζ(t)z‖ ≤ κ2t
λϑ−1‖z‖,

where κ1 = κ0Γ(ϑ)
Γ(ζ(1−λ)+λϑ)

, κ2 = κ0Γ(ϑ)
Γ(λϑ)

(b) {Mλ,ζ(t), t > 0}, {Nλ(t), t > 0} and {Qλ(t), t > 0} are strongly continuous;
(c) It T(t) is compact, then ∀ t > 0,Mλ,ζ(t), Nλ(t), and Qλ(t) are also compact operators.

Lemma 3 (see [43]). If {T (t)}t>0 is a compact C0-semigroup for t > 0, then for t > 0, it is
uniformly continuous.

Remark 2 (see [45]). A semigroup T (t) is uniformly continuous if lim
|ς−t|→0

‖T (t)− T (ς)‖ = 0.

Lemma 3, together with Lemma 4, proves that Mλ,ζ(t) and Qλ(t) are uniformly continuous
provided T (t) is compact for t > 0.

Proposition 2. Consider ζ ∈ (0, 1), q ∈ (0, 1] and ∀ z ∈ D(Ã), then ∃ a κq > 0 3

‖ÃqQζ(t)z‖ ≤
ζκqΓ(2− q)

tζqΓ(1 + ζ(1− q))
‖z‖, 0 < t < c̃.

Definition 5. For each u ∈ L2
F(V ,U), an Ft-adapted stochastic process z ∈ C(V , L2(F,X)) is

said to be a mild solution of the control system (3) if z(0) = z0 ∈ X and ∃ a g ∈ L2
F(V ,X) 3

g(t) ∈ ∂G(t, z(t)) a.e. t ∈ V and

z(t) = J −1Mλ,ζ(t)[J z(0)− h̄(z)− ψ(0, z(0))] + J −1ψ(t, z(t))

+
∫ t

0
J −1(t− ς)λ−1Qλ(t− ς)[g(ς) +Bu(ς)]dς

+
∫ t

0
J −1(t− ς)λ−1Qλ(t− ς)a(ς, z(ς))dW(ς),

where

Mλ,ζ(t) = Iζ(1−λ)ϑNλ(t), Nλ(t) = tλ−1Qλ(t) and Qλ(t) =
∫ ∞

0
ζξMζ(ξ)N (tζ ξ)dξ.
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In this paper, the following hypotheses are used:

(H0) For t > 0, the operatorM(t) is compact;
(H1) The function t → M(t) is continuous inB(X) ∀ t > 0, and ∃ a constant M > 1 3

‖M(t)‖ ≤ M;
(H2) The function G : V ×X → R meets the accompanying criteria:

(a) ∀ z ∈ X, G(·, z) is measurable;
(b) for a.e. t ∈ V , G(t; ·) is globally Lipschitz continuous;

(c) ∃ a function b ∈ L
1
δ (V ,R+), δ ∈ (0, 2ζ − 1) and a constant c ≥ 0 3

E‖∂G(t, z)‖2 = sup{E‖g(t)‖2 : g(t) ∈ ∂G(t, z)} ≤ b(t) + c‖z‖2

for a.e. t ∈ V and ∀ z ∈ X.

(H3) a : V ×X→ L2
0 is continuous in the second parameter for a.e. t ∈ V and ∃ a function

d ∈ L
1
δ (V ,R+), δ ∈ (0, 2ζ − 1) and a constant e ≥ 0 3

E‖a(t, z(t))‖2 ≤ d(t) + e‖z‖2.

(H4) ∃ a constant Lh̄ 3 ∀ z1; z2 ∈ C,

E‖h̄(z1)− h̄(z2)‖2 ≤ Lh̄‖z1 − z2‖2.

(H5) ψ : V ×X→ X is a continuous function and ∃ constants q ∈ (0, 1) and Mψ > 0 3 ψ is
Xq-valued and satisfies the following conditions:

E‖ψ(t, z)‖2 ≤ M2
ψ(1 + t2(1−ζ+λζλϑ)‖z‖2

X), z ∈ X, t ∈ V .

Define the admissible set as follows:

Uad =
{
u(·) ∈ Lp

F(V ,U); u(t) ∈ U a.e. t ∈ V
}

.

In addition,Uad is a bounded, convex, and closed subset of Lp(V ,U) with 1 < p < ∞.
This is shown by Proposition 2.1.7 and Lemma 2.3.2 of [41], Uad 6= ∅. Clearly, Bu ∈
Lp(V ,X) ∀ u ∈ Uad. Next, define an operator Υ : L2

F(V ,X) by

Υ(z) = {W ∈ L2
F(V ,X) : W(t) ∈ ∂G(t, z(t)) a.e. t ∈ V for z ∈ L2

F(V ,X)}.

In order to obtain the essential findings that we need, we also need the following
lemmas:

Lemma 4 (see [26]). Assume that (H2) holds, then ∀ z ∈ L2(V ,X), the set Υ(z) has non-empty,
convex, and weakly compact values.

Lemma 5 (see [26]). Suppose (H2) holds, Υ fulfills the following: if zn → z ∈ L2(V ,X), zk → z
weakly in L2(V ,X) and zk ∈ Υ(zk), then z ∈ Υ(z).

Lemma 6 (see [6]). Suppose (H2) holds and the operator Υ fulfills the following: if zn → z in
L2
F(V ,X), Wn →W weakly in L2

F(V ,X) and Wn ∈ Υ(zn), then we obtain W ∈ Υ(z).

Theorem 2. Suppose (H0)–(H5) holds, then the HF stochastic system (1) has a mild solution on
V provided by

S = 5c̃2(1−ζ+λζ−λϑ)M′2J

(
κ0Γ(ϑ)
Γ(λϑ)

)2 c̃2λ−1

2λ− 1
(c̃c + LGe) < 1.
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Proof. Let us assume that the operator of the multivalued map Ξ : C → 2C is as follows:
for any z ∈ C ⊂ L2(V , L2(F,X)), by corresponding Lemma (4),

Ξ(z) =


z ∈ C : z(t) = t1−ζ+λζ−λϑ

[
J −1Mλ,ζ(t)[J z(0)− h̄(z)− ψ(0, z(0))] + J −1ψ(t, z(t))

+
∫ t

0 J
−1(t− ς)λ−1Qλ(t− ς)[g(ς) +Bu(ς)]dς

+
∫ t

0 J
−1(t− ς)λ−1Qλ(t− ς)a(ς, z(ς))dW(ς)

]
, t ∈ (0, c̃].

It is now obvious that the major goal of our concentrated effort was to locate a sta-
tionary point of Ξ. In this section, we will show that Ξ fulfills each and every requirement
of Theorem 1. To make our findings more usable, we divided them into the six steps
listed below.
Step 1: We will now prove that ∀ z ∈ C, Ξ(z) has convex, non-empty, and weakly com-
pact values.

We can easily show that Ξ(z) has non-empty and weakly compact values by using
Lemma 4. Because Υ(z) has convex values, we can now draw a result for every α ∈ [0, 1] by
first providing χ1, χ2 ∈ Υ(z) and then αχ1 + (1− α)χ2 ∈ Υ(z). The function Ξ(z) is convex.
Step 2: For every q > 0, Dq = {z ∈ C : ‖z‖2 ≤ q}, and Ξ ⊆ C. The closed, convex,
and bounded set of C is undoubtedly Dq.

In fact, it suffices to show that ∃ a positive constant r∗ 3 ‖ϑ‖ ≤ r∗, ∀ Υ ∈ Ξ(z),
and z ∈ Dq. Assume ϑ ∈ Ξ(z), then ∃ a function g ∈ Υ(z) 3

κ(t) =t1−ζ+λζ−λϑ

[
J −1Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))] + J −1ψ(t, z(t))

+
∫ t

0
J −1(t− ς)λ−1Qλ(t− ς)g(ς)dς +

∫ t

0
J −1(t− ς)λ−1Qλ(t− ς)Bu(ς)dς

+
∫ t

0
J −1(t− ς)λ−1Qλ(t− ς)a(ς, z(ς))dW(ς)

]
, t ∈ V ′.

From (H0) to (H5), Lemma 1, and the Hölder inequality, we get

E‖κ‖2 ≤ 5t2(1−ζ+λζ−λϑ)

[
E‖J −1Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))]‖2 + E‖J −1ψ(t, z(t))‖2

+
∫ t

0
E‖J −1(t− ς)λ−1Qλ(t− ς)g(ς)dς‖2

+
∫ t

0
(t− ς)2(λ−1)E‖J −1Qλ(t− ς)Bu(ς)‖2dς

+ LG

∫ t

0
E‖J −1(t− ς)λ−1Qλ(t− ς)a(ς, z(ς))dς‖2

L2
0

]
≤ 5t2(1−ζ+λζ−λϑ)

[
M′2J

(
κ0Γ(ϑ)

Γ(ζ(1− λ) + λϑ)

)2

t2(−1+ζ−λζ+λϑ)
(
2M2
J E[‖z0‖2

+ ‖h̄(0)‖2] + Lh̄r + 2M2
ψ(1 + t2(1−ζ+λζ−λϑ)‖z0‖2)

)
+ M′2J M2

ψ(1 + t2(1−ζ+λζ−λϑ)‖z‖2) + M′2J

(
κ0Γ(ϑ)
Γ(λϑ)

)2( c̃2λ−1

2λ− 1

∫ t

0
E‖Bu(ς)dς‖2

+
∫ t

0
(t− ς)2(λ−1)[E‖g(ς)‖2 + LGE‖a(ς, z(ς))‖2

L2
0
]dς

)]
≤ 5t2(1−ζ+λζ−λϑ)

[
M′2J

(
κ0Γ(ϑ)

Γ(ζ(1− λ) + λϑ)

)2

t2(−1+ζ−λζ+λϑ)
(
2M2
J E[‖z0‖2

+ ‖h̄(0)‖2] + Lh̄r + 2M2
ψ(1 + t2(1−ζ+λζ−λϑ)‖z0‖2)

)
+ M′2J M2

ψ(1 + t2(1−ζ+λζ−λϑ)‖z‖2) + M′2J

(
κ0Γ(ϑ)
Γ(λϑ)

)2{( 1− δ

2λ− 1− δ

)δ−1

c̃2λ−1−δ
[
‖b‖

L
1
δ (V ,R+)

+ LG‖d‖
L

1
δ (V ,R+)

]
+

c̃2λ−1

2λ− 1
[
(c + LGe)q + ‖B‖2‖u‖2

L2
F(V ,U)

]}]
:= r∗.
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Thus, Ξ(Dq) is bounded in C(V , L2(F,X)).
Step 3: {Ξ(z) : z ∈ Dq} is equicontinuous.

Firstly, for all z ∈ Dq,

κ(t) =t1−ζ+λζ−λϑJ −1
{
Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t, z(t)) +

∫ t

0
(t− ς)λ−1Qλ(t− ς)g(ς)dς

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)Bu(ς)dς +

∫ t

0
(t− ς)λ−1Qλ(t− ς)a(ς, z(ς))dW(ς)

}
.

Next, given small enough ε > 0 and 0 < t1 < t2 ≤ c̃, we get

E‖κ(t2)−κ(t1)‖2

≤ E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
[
Mλ,ζ (t2)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t2, z(t2))

+
∫ t2

0
(t2 − ς)λ−1Qλ(t2 − ς)g(ς)dς +

∫ t2

0
(t2 − ς)λ−1Qλ(t2 − ς)Bu(ς)dς

+
∫ t2

0
(t2 − ς)λ−1Qλ(t2 − ς)a(ς, z(ς))dW(ς)

]
− t

1−ζ+λζ−λϑ
1 J −1

[
Mλ,ζ (t1)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t1, z(t1))

+
∫ t1

0
(t1 − ς)λ−1Qλ(t1 − ς)g(ς)dς +

∫ t1

0
(t1 − ς)λ−1Qλ(t1 − ς)Bu(ς)dς

+
∫ t1

0
(t1 − ς)λ−1Qλ(t1 − ς)a(ς, z(ς))dW(ς)

]∥∥∥∥2

≤ 5E
∥∥∥∥[t1−ζ+λζ−λϑ

2 J −1Mλ,ζ (t2)− t
1−ζ+λζ−λϑ
1 J −1Mλ,ζ (t1)](J z0 − h̄(z)− ψ(0, z(0)))

∥∥∥∥2

+ 5E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1ψ(t2, z(t2))− t
1−ζ+λζ−λϑ
1 J −1ψ(t1, z(t1))

∥∥∥∥2

+ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t1

0
(t2 − ς)λ−1Qλ(t2 − ς)g(ς)dς

− t
1−ζ+λζ−λϑ
1 J −1

∫ t1

0
(t1 − ς)λ−1Qλ(t2 − ς)g(ς)dς

∥∥∥∥2

+ 15E
∥∥∥∥t1−ζ+λζ−λϑ

1 J −1J −1
∫ t1

0
(t1 − ς)λ−1Qλ(t2 − ς)g(ς)dς

− t
1−ζ+λζ−λϑ
1 J −1

∫ t1

0
(t1 − ς)λ−1Qλ(t1 − ς)g(ς)dς

∥∥∥∥2

+ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t2

t1

(t2 − ς)λ−1Qλ(t2 − ς)g(ς)dς

∥∥∥∥2

+ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t1

0
(t2 − ς)λ−1Qλ(t2 − ς)Bu(ς)dς

− t
1−ζ+λζ−λϑ
1 J −1

∫ t1

0
(t1 − ς)λ−1Qλ(t2 − ς)Bu(ς)dς

∥∥∥∥2

+ 15E
∥∥∥∥t1−ζ+λζ−λϑ

1 J −1
∫ t1

0
(t1 − ς)λ−1Qλ(t2 − ς)Bu(ς)dς

− t
1−ζ+λζ−λϑ
1 J −1

∫ t1

0
(t1 − ς)λ−1Qλ(t1 − ς)Bu(ς)dς

∥∥∥∥2

+ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t2

t1

(t2 − ς)λ−1Qλ(t2 − ς)Bu(ς)dς

∥∥∥∥2

+ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t1

0
(t2 − ς)λ−1Qλ(t2 − ς)a(ς, z(ς))dW(ς)

− t
1−ζ+λζ−λϑ
1 J −1

∫ t1

0
(t1 − ς)λ−1Qλ(t2 − ς)a(ς, z(ς))dW(ς)‖2

+ 15E
∥∥∥∥t1−ζ+λζ−λϑ

1 J −1
∫ t1

0
(t1 − ς)λ−1Qλ(t2 − ς)a(ς, z(ς))dW(ς)

− t
1−ζ+λζ−λϑ
1 J −1

∫ t1

0
(t1 − ς)λ−1Qλ(t1 − ς)a(ς, z(ς))dW(ς)

∥∥∥∥2

+ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t2

t1

(t2 − ς)λ−1Qλ(t2 − ς)a(ς, z(ς))dW(ς)

∥∥∥∥2

=
11

∑
i=1

Ji .
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By the strong continuity ofMλ,ζ(t)(J z0 − h̄(z)− ψ(0, z(0))), we obtain

J1 → 0 as t2 → t1.

The equicontinuity of ψ assures that

J2 → 0 as t2 → t1.

By assumptions (H0)–(H4) and the same method applied in Lemma 3.1 of [23], we get

J3 ≤ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t1

0
(t2 − ς)λ−1Qλ(t2 − ς)g(ς)dς

− t
1−ζ+λζ−λϑ
1 J −1

∫ t1

0
(t1 − ς)λ−1Qλ(t2 − ς)g(ς)dς

∥∥∥∥2

≤ 15E
∥∥∥∥ ∫ t1

0

(
t
1−ζ+λζ−λϑ
2 (t2 − ς)λ−1 − t

1−ζ+λζ−λϑ
1 (t1 − ς)λ−1

)
J −1Qλ(t2 − ς)g(ς)dς

∥∥∥∥2

≤ 15
(

κ0Γ(ϑ)
Γ(λϑ)

)2[ ∫ t1

0

(
t
2(1−ζ+λζ−λϑ)
2 (t2 − ς)2(λ−1)

− t
2(1−ζ+λζ−λϑ)
1 (t1 − ς)2(λ−1)

)
M′2J (t2 − ς)2(λϑ−1)E‖g(ς)‖2dς

]
.

We obtain J3 → 0 as t2 → t1. Additionally,

J4 ≤ 15E
∥∥∥∥t1−ζ+λζ−λϑ

1 J −1
∫ t1

0

(
(t1 − ς)λ−1Qλ(t2 − ς)g(ς)− (t1 − ς)λ−1Qλ(t1 − ς)g(ς)

)
dς

∥∥∥∥2

≤ 15t2(1−ζ+λζ−λϑ)
1 M′2J

∫ t1

0
(t1 − ς)2(λ−1)‖Qλ(t2 − ς)−Qλ(t1 − ς)‖2E‖g(ς)‖2dς.

By Theorem 3 and strong continuity of Qλ(t), J4 → 0 as t2 → t1.

J5 ≤ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t2

t1

(t2 − ς)λ−1Qλ(t2 − ς)g(ς)dς

∥∥∥∥2

≤ 15
(

κ0Γ(ϑ)
Γ(λϑ)

)2

M′2J t
2(1−ζ+λζ−λϑ)
2 (t2 − t1)

2(λ−1)E‖g(ς)‖2.

Furthermore, in a similar way, we can get

J6 ≤ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t1

0
(t2 − ς)λ−1Qλ(t2 − ς)Bu(ς)dς

− t
1−ζ+λζ−λϑ
1 J −1

∫ t1

0
(t1 − ς)λ−1Qλ(t2 − ς)Bu(ς)dς

∥∥∥∥2

≤ 15E
∥∥∥∥ ∫ t1

0

(
t
1−ζ+λζ−λϑ
2 (t2 − ς)λ−1 − t

1−ζ+λζ−λϑ
1 (t1 − ς)λ−1

)
J −1Qλ(t2 − ς)Bu(ς)dς

∥∥∥∥2

≤ 15
(

κ0Γ(ϑ)
Γ(λϑ)

)2[ ∫ t1

0

(
t
2(1−ζ+λζ−λϑ)
2 (t2 − ς)2(λ−1)

− t
2(1−ζ+λζ−λϑ)
1 (t1 − ς)2(λ−1)

)
M′2J (t2 − ς)2(λϑ−1)‖B‖2E‖u‖2

L2
F(V ,U)

dς

]
.
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J7 ≤ 15E
∥∥∥∥t1−ζ+λζ−λϑ

1 J −1
∫ t1

0

(
(t1 − ς)λ−1Qλ(t2 − ς)Bu(ς)

− (t1 − ς)λ−1Qλ(t1 − ς)Bu(ς)

)
dς

∥∥∥∥2

≤ 15t2(1−ζ+λζ−λϑ)
1 M′2J

∫ t1

0
(t1 − ς)2(λ−1)‖Qλ(t2 − ς)−Qλ(t1 − ς)‖2‖B‖2E‖u‖2

L2
F(V ,U)

dς

≤ 15t2(1−ζ+λζ−λϑ)
1 M′2J

∫ t1

0
(t1 − ς)2(λ−1)‖Qλ(t2 − ς)−Qλ(t1 − ς)‖2‖B‖2E‖u‖2

L2
F(V ,U)

dς.

J8 ≤ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t2

t1

(t2 − ς)λ−1Qλ(t2 − ς)Bu(ς)dς

∥∥∥∥2

≤ 15
(

κ0Γ(ϑ)
Γ(λϑ)

)2

M′2J t
2(1−ζ+λζ−λϑ)
2 (t2 − t1)

2(λ−1)‖B‖2E‖u‖2
L2
F(V ,U)

.

J9 ≤ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t1

0
(t2 − ς)λ−1Qλ(t2 − ς)a(ς, z(ς))dW(ς)

− t
1−ζ+λζ−λϑ
1 J −1

∫ t1

0
(t1 − ς)λ−1Qλ(t2 − ς)a(ς, z(ς))dW(ς)

∥∥∥∥2

≤ 15E
∥∥∥∥ ∫ t1

0

(
t
1−ζ+λζ−λϑ
2 (t2 − ς)λ−1 − t

1−ζ+λζ−λϑ
1 (t1 − ς)λ−1

)
J −1Qλ(t2 − ς)a(ς, z(ς))dW(ς)

∥∥∥∥2

≤ 15LG

(
κ0Γ(ϑ)
Γ(λϑ)

)2[ ∫ t1

0

(
t
2(1−ζ+λζ−λϑ)
2 (t2 − ς)2(λ−1)

− t
2(1−ζ+λζ−λϑ)
1 (t1 − ς)2(λ−1)

)
M′2J (t2 − ς)2(λϑ−1)E‖a(ς, z(ς))‖2

L2
0
dς

]
.

J10 ≤ 15E
∥∥∥∥t1−ζ+λζ−λϑ

1 J −1
∫ t1

0

(
(t1 − ς)λ−1Qλ(t2 − ς)a(ς, z(ς))

− (t1 − ς)λ−1Qλ(t1 − ς)a(ς, z(ς))
)

dW(ς)

∥∥∥∥2

≤ 15LG M′2J t
2(1−ζ+λζ−λϑ)
1

∫ t1

0
(t1 − ς)2(λ−1)‖Qλ(t2 − ς)−Qλ(t1 − ς)‖2

E‖a(ς, z(ς))‖2
L2

0
dς

≤ 15LG M′2J t
2(1−ζ+λζ−λϑ)
1

∫ t1

0
(t1 − ς)2(λ−1)‖Qλ(t2 − ς)−Qλ(t1 − ς)‖2

E‖a(ς, z(ς))‖2
L2

0
dς.

J11 ≤ 15E
∥∥∥∥t1−ζ+λζ−λϑ

2 J −1
∫ t2

t1

(t2 − ς)λ−1Qλ(t2 − ς)a(ς, z(ς))dW(ς)

∥∥∥∥2

≤ 15LG

(
κ0Γ(ϑ)
Γ(λϑ)

)2

M′2J t
2(1−ζ+λζ−λϑ)
2 (t2 − t1)

2(λ−1)E‖a(ς, z(ς))‖2
L2

0
.

Hence, using LDCT, we deduce the RHS of the aforementioned constraints→ 0 as
t2 − t1 → 0. We conclude that Ξ(z)(t) is continuous from the right in (0, c̃]; a similar
argument shows that it is also continuous from the left in (0, c̃].

Similar to the previous case, we can show that E‖ϑ(t2)− z0‖2 → 0 operates indepen-
dently of z ∈ Dq for t2 → 0 and t1 = 0 and 0 < t2 ≤ c̃.
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The aforementioned justifications lead us to believe that {Ξ(z) : z ∈ Dq} is an equicon-
tinuous set of functions in C(V , L2(F,X)).
Step 4: Ξ is completely continuous.

Consider the case when t ∈ V is fixed. We demonstrate that the collection ψ(t) =
{ϑ(t) : ϑ ∈ Ξ(Dq)} is relatively compact in X. There is no doubt that ψ(0) = {z0}
is compact.

The only variable that has to be considered is t > 0. Assume 0 < t ≤ c̃ to be fixed and
∀ z ∈ Dq, ϑ ∈ Ξ(z), ∃ a g ∈ Υ(z) 3

ϑ(t) =t1−ζ+λζ−λϑJ −1
[
Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t, z(t))

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)[g(ς) +Bu(ς)]dς

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)a(ς, z(ς))dW(ς)

]
, t ∈ V .

For each ε ∈ (0, t), t ∈ (0, c̃] and any z ∈ Dq, we specify

ϑε(t) =t1−ζ+λζ−λϑJ −1
[
Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t, z(t))

+
∫ t−ε

0
(t− ς)λ−1Qλ(t− ς)[g(ς) +Bu(ς)]dς

+
∫ t−ε

0
(t− ς)λ−1Qλ(t− ς)a(ς, z(ς))dW(ς)

]
.

According to the boundedness of
∫ t−ε

0 (t− ς)λ−1Qλ(t− ς)[g(ς) +Bu(ς)]dς,
∫ t−ε

0 (t−
ς)λ−1Qλ(t− ς)a(ς, z(ς), (Hz)(ς))dW(ς), and the compactness ofMλ,ζ(t), Qλ, we obtain
that the set ψε(t){ϑε(t) : ϑ ∈ Ξ(Dq)} is relatively compact in X ∀ ε ∈ (0, t). Moreover, ∀
ϑ ∈ Ξ(Dq), we obtain

E‖ϑ(t)− ϑε(t)‖2 ≤E
∥∥∥∥t1−ζ+λζ−λϑJ −1

[
Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t, z(t))

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)[g(ς) +Bu(ς)]dς

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)a(ς, z(ς))dW(ς)

]
− t1−ζ+λζ−λϑJ −1

[
Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t, z(t))

+
∫ t−ε

0
(t− ς)λ−1Qλ(t− ς)[g(ς) +Bu(ς)]dς

+
∫ t−ε

0
(t− ς)λ−1Qλ(t− ς)a(ς, z(ς))dW(ς)

]∥∥∥∥2

≤2t2(1−ζ+λζ−λϑ)M′2J

(
κ0Γ(ϑ)
Γ(λϑ)

)2[
ε2λ−1

2λ− 1

∫ t

t−ε
E‖g(ς) +Bu(ς)‖2dς

+ LG

∫ t

t−ε
(t− ς)2(λ−1)E‖a(ς, z(ς))‖2

L2
0
dς

]
≤2t2(1−ζ+λζ−λϑ)M′2J

(
κ0Γ(ϑ)
Γ(λϑ)

)2[ 2ε2λ−1

2λ− 1
(ε1−δ‖b‖

L
1
δ (V ,R+)

+ cqε + ‖B‖2‖u‖2
L2
F(V ,U)

ε)

+ LG

(
1− δ

2λ− δ

)δ−1

ε2λ−1−δ‖d‖
L

1
δ (V ,R+)

+ LG
ε2λ−1

2λ− 1
eq
]

,

=⇒ the set ψε(t){ϑε(t) : ϑ ∈ Ξ(Dq)} is totally bounded, i.e., relatively compact in X.
The Ascoli–Arzela theorem allows us to prove Ξ is completely continuous.
Step 5: Ξ has a closed graph.
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Assume zn → z∗ in C(V , L2(F,X)), ϑn ∈ Ξ(zn) and ϑn → ϑ∗ in C(V , L2(F,X)). We’ll
demonstrate ϑ∗ ∈ Ξ(z∗). Accordingly, ϑn ∈ Ξ(zn) means that ∃ a gn ∈ Υ(zn) 3

ϑn(t) =t1−ζ+λζ−λϑJ −1
[
Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t, zn(t))

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)[gn(ς) +Bu(ς)]dς

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)a(ς, zn(ς))dW(ς)

]
. (4)

We can demonstrate that {(gn, f (·, zn))}n≥1 ⊆ L2
F(V ,X)× L2

0 is bounded by using
(H3)(iii) and (H4). In light of this, we may assume and go on to a related idea, if neces-
sary, that

(gn, f (·, zn))→ (g∗, f (·, z∗)) weakly in L2
F(V ,X)× L2

0. (5)

From the compactness of Qλ, (H4), 4 and 5, we get

ϑn(t)→t1−ζ+λζ−λϑJ −1
[
Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t, z∗(t))

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)[g∗(ς) +Bu(ς)]dς

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)a(ς, z∗(ς))dW(ς)

]
. (6)

It should be noticed that gn and ϑn → ϑ∗ in C(V , L2(F,X)) and gn ∈ Υ(zn), respec-
tively. In accordance with Lemma 6 and (6), we obtain g∗ ∈ Υ(z∗). Because of this, we have
shown that =⇒ Ξ has a closed graph for ϑ∗ ∈ Ξ(z∗). It follows from Proposition 3.3.12(2)
of [42] that Ξ is u.s.c.
Step 6: A priori estimate.

From Steps 1 to 5, we know that Ξ is a compact convex value and u.s.c., and Ξ(Dq) is
a relatively compact set. According to Theorem 1, we remain to prove the set

Π = {z ∈ C(V , L2(F,X)) : λz ∈ Ξ(z), λ > 1}

is bounded to obtain a fixed point of Ξ.
Let z ∈ Π and assume ∃ a f ∈ Υ(z) 3

ϑ(t) =λ−1t1−ζ+λζ−λϑJ −1Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))] + λ−1t1−ζ+λζ−λϑJ −1ψ(t, z(t))

+ λ−1t1−ζ+λζ−λϑJ −1
∫ t

0
(t− ς)λ−1Qλ(t− ς)[g(ς) +Bu(ς)]dς

+ λ−1t1−ζ+λζ−λϑJ −1
∫ t

0
(t− ς)λ−1Qλ(t− ς)a(ς, z(ς))dW(ς).
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By using hypotheses (H0)–(H5), Lemma 1 and the Hölder inequality, we get

E‖z(t)‖2 ≤ 5t2(1−ζ+λζ−λϑ)J −1
[

E‖Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))]‖2 + E‖ψ(t, z(t))‖2

+ E‖
∫ t

0
(t− ς)λ−1Qλ(t− ς)g(ς)dς‖2

+ E‖
∫ t

0
(t− ς)λ−1Qλ(t− ς)Bu(ς)dς‖2

+ E‖
∫ t

0
(t− ς)λ−1Qλ(t− ς)a(ς, z(ς))dW(ς)‖2

]
≤ 5t2(1−ζ+λζ−λϑ)

(
κ0Γ(ϑ)

Γ(ζ(1− λ) + λϑ)

)2

M′2J t
2(−1+ζ−λζ+λϑ)[M2

J E‖z0‖2 + E‖h̄(0)‖2

+ Lh̄r + Mψ(1 + t2(1−ζ+λζ−λϑ)‖z0‖2)] + 5t2(1−ζ+λζ−λϑ)M′2J Mψ(1 + t2(1−ζ+λζ−λϑ)‖z‖2)

+ 5t2(1−ζ+λζ−λϑ)M′2J

(
κ0Γ(ϑ)
Γ(λϑ)

)2[(
t2λ−1

2λ− 1

) ∫ t

0
[b(ς) + cE‖z(ς)‖2]

+

(
t2λ−1

2λ− 1

) ∫ t

0
E‖Bu(z)‖2dς + LG

∫ t

0
(t− ς)2(λ−1)[d(ς) + eE‖z(ς)‖2]

]
≤ 5c̃2(1−ζ+λζ−λϑ)

(
κ0Γ(ϑ)

Γ(ζ(1− λ) + λϑ)

)2

M′2J c̃2(−1+ζ−λζ+λϑ)[M′2J E‖z0‖2 + E‖h̄(0)‖2

+ Lh̄r + Mψ(1 + c̃2(1−ζ+λζ−λϑ)‖z0‖2)] + 5c̃2(1−ζ+λζ−λϑ)M′2J Mψ(1 + c̃2(1−ζ+λζ−λϑ)‖z‖2)

+ 5c̃2(1−ζ+λζ−λϑ)M′2J

(
κ0Γ(ϑ)
Γ(λϑ)

)2[ c̃2λ−1

2λ− 1
(
c̃λ−1‖b‖

L
1
δ (V ,R+)

+ (c̃c + LGe)‖z‖2

+ ‖B‖2‖u‖2
L2
F(V ,U)) + LG

(
1− δ

2λ− 1− δ

)δ−1

c̃2λ−1−δ‖d‖
L

1
δ (V ,R+)

]
≤ l+ S‖z‖2, (7)

where

l = 5c̃2(1−ζ+λζ−λϑ)

(
κ0Γ(ϑ)

Γ(ζ(1− λ) + λϑ)

)2

M′2J c̃2(−1+ζ−λζ+λϑ)[M2
J E‖z0‖2 + E‖h̄(0)‖2

+ Lh̄r + Mψ(1 + c̃2(1−ζ+λζ−λϑ)‖z0‖2)] + 5c̃2(1−ζ+λζ−λϑ)M′2J Mψ(1 + c̃2(1−ζ+λζ−λϑ)‖z‖2)

+ 5c̃2(1−ζ+λζ−λϑ)M′2J

(
κ0Γ(ϑ)
Γ(λϑ)

)2[ c̃2λ−1

2λ− 1
(
c̃λ−1‖b‖

L
1
δ (V ,R+)

+
c̃2λ−1

2λ− 1
‖B‖2‖u‖2

L2
F(V ,U)

)
+ LG

(
1− δ

2λ− 1− δ

)δ−1

c̃2λ−1−δ‖d‖
L

1
δ (V ,R+)

]
.

As a result, from S < 1, the inequality (7)

=⇒ ‖z‖2 = sup
t∈V

E‖z(t)‖2 ≤ l+ S‖z‖2 ≤ l

S− 1
:= p0.

As a result, the collection Π is bounded. By Theorem 1, we obtain that Ξ has a fixed
point. The proof is completed.

4. Optimal Controls

This section examines the prior Lagrange problem (LP):
(P) Find a set (z0, u0) ∈ C(V , L2(F,X))×Uad 3

K (z0, u0) ≤ K (z, u), ∀ (z, u) ∈ C(V , L2(F,X))×Uad,

where

K (z, u) = E
∫ c̃

0
L (t, zu(t), u(t))dt.
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Here, zu stands for the mild solution of system (1) relating to the control u ∈ Uad. We
use the preceding assertion (H6) to explore the Lagrange problem (P):

(i) The functionalL : V ×X×U→ R
⋃{∞} is Borel measurable;

(ii) For almost all t ∈ V ,L is sequentially l.s.c. on X×U;
(iii) For each z ∈ X and almost all t ∈ V , L (t, z, ·) is convex on U;
(iv) ∃ constants r1 ≥ 0, r2 > 0, ξ is positive and ξ ∈ L1(V ,R) 3

L (t, z, u) ≥ ξ(t) + r1E‖z‖2
X + r2E‖u‖p

U.

Theorem 3. Suppose the assertions (H0)–(H6) are satisfied. The OC problem (P) allows at least
one optimal set ifB is a strongly continuous operator.

Proof. The Lagrange problem (P) has a single optimum set if inf{K (z, u)|u ∈ Uad} =
+∞. Assume inf{K (z, u) : u ∈ Uad} = v < +∞ without loss of generality. Then,
v > −∞ is implied by the condition (H6)(d). According to the concept of infimum,
a minimizing sequence of possible couples {(zn, un)} ⊂Aad 3L (zn, un)→ v as n→ +∞
exists. Therefore, {un} ⊆ Uad, n = 1, 2, · · · , {un} is bounded on Lp

F(V ,U), due to
the reflexivity of Lp

F(V ,U), ∃ a subsequence of {un}, denoted again by {un}, and u∗ ∈
Lp
F(V ,U), fulfilling

un weakly−−−−→ u∗ ∈ Lp
F(V ,U).

According to Mazur’s lemma, u∗ ∈ Uad, sinceUad is convex and closed. Remember
that the corresponding sequence of answers to the previous integral equation is indicated
by the symbol {zn}:

zn(t) =t1−ζ+λζ−λϑJ −1
[
Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t, zn(t))

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)[gn(ς) +Bun(ς)]dς

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)a(ς, zn(ς))dW(ς)

]
, (8)

where a(ς, zn(ς), (Hzn)(ς)) ∈ Sa,zn and gn ∈ Υ(zn).
The next step is to show that {zn} is a relatively compact subset of C

(
V , L2(F,X)

)
.

First, similar to the proof in (7), we obtain

E‖zn(t)‖2 ≤ 5c̃2(1−ζ+λζ−λϑ)

(
κ0Γ(ϑ)

Γ(ζ(1− λ) + λϑ)

)2

M′2J c̃2(−1+ζ−λζ+λϑ)[M2
J E‖z0‖2 + E‖h̄(0)‖2

+ Lh̄r + Mψ(1 + c̃2(1−ζ+λζ−λϑ)‖z0‖2)] + 5c̃2(1−ζ+λζ−λϑ)M′2J Mψ(1 + c̃2(1−ζ+λζ−λϑ)‖z‖2)

+ 5c̃2(1−ζ+λζ−λϑ)M′2J

(
κ0Γ(ϑ)
Γ(λϑ)

)2[ c̃2λ−1

2λ− 1
(
c̃λ−1‖b‖

L
1
δ (V ,R+)

+ c̃c‖z‖2 + ‖B‖2‖u‖2
L2
F(V ,U)

)
+ LG

(
1− δ

2λ− 1− δ

)δ−1

c̃2λ−1−δ‖d‖
L

1
δ (V ,R+)

+ LGe
c̃2λ−1

2λ− 1
‖z‖2

]
. (9)

We deduce that ∃ a constant µ > 0 3 ‖zn‖ ≤ µ, =⇒ {zn} is uniformly bounded due to
the boundedness of {un}, (9), and Gronwall’s inequality.

After that, we can demonstrate that {zn(t)} is equicontinuous on V , and that {zn(t)}
is relatively compact for any t ∈ V using an equivalent argument to Steps 3 and 4 in
Theorem 2. There is a function z∗ ∈ C

(
V , L2(F,X)

)
since the Ascoli–Arzela theorem is a

relatively compact subset of C
(
V , L2(F,X)

)
3

zn → z∗ in C
(
V , L2(F,X)

)
⊂ L2(V , L2(F,X)

)
. (10)
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The dominated convergence theorem, together with the properties of boundedness
and compactness of {un} and Nλ(t− ς),

=⇒
∫ t

0
J −1(t− ς)λ−1Nλ(t− ς)Bun(ς)dς→

∫ t

0
J −1(t− ς)λ−1Nλ(t− ς)Bu∗(ς)dς. (11)

Due to the compactness of Qλ, (H2)(c), (H3), (10), and Lemma 6, one gets a result
similar to Step 5 in Theorem 2.

t1−ζ+λζ−λϑJ −1
[
Mλ,ζ (t)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t, zn(t)) +

∫ t

0
(t− ς)λ−1Qλ(t− ς)gn(ς)dς

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)a(ς, zn(ς))dW(ς)

]
→ t1−ζ+λζ−λϑJ −1

[
Mλ,ζ (t)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t, z∗(t)) +

∫ t

0
(t− ς)λ−1Qλ(t− ς)g∗(ς)dς

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)a(ς, z∗(ς))dW(ς)

]
, (12)

where a(ς, z∗(ς)) ∈ Sa,z∗ and g∗ ∈ Υ(z∗). Thus, it may be deduced from (11) and (12) that

z∗(t) =t1−ζ+λζ−λϑJ −1
[
Mλ,ζ(t)[J z0 − h̄(z)− ψ(0, z(0))] + ψ(t, z∗(t))

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)[g∗(ς) +Bu∗(ς)]dς

+
∫ t

0
(t− ς)λ−1Qλ(t− ς)a(ς, z∗(ς))dW(ς)

]
, (13)

This proves that z∗ is a mild solution to problem (1) corresponding to the control
u ∈ Uad.

As we can see from Theorem 2.1 of [46], all of Balder’s assumptions are satisfied by
(a)–(d). Consequently, Balder’s Theorem illustrates that the functional

(z, u) 7→ E
∫ c̃

0
L (t, zu(t), u(t))dt

is sequentially l.s.c. in the strong topology of L1
F(V ,X) and weak topology of Lp

F(V ,X) ⊂
L1
F(V ,U). Since Lp

F(V ,U) ⊂ L1
F(V ,U), we conclude thatK is weakly l.s.c. on Lp

F(V ,U).
From the hypotheses (H5)(d), we know thatK > −∞. Consequently, we determine that
K achieves its infimum at u∗ ∈ Uad, and so

v = lim
n→∞

E
∫ c̃

0
L (t, zn(t), un(t))dt ≥ E

∫ c̃

0
L (t, z∗(t), u∗(t))dt ≥ v.

The result is now finished.

5. Example
5.1. Example-1

We examine the following control system represented by hemivariational inequality
as an implementation of our major findings:

Dλ, 4
7

0+ [z(t, ξ)− zξξ(t, ξ)− k(t, z(t, ξ))] ∈ ∂2z
∂ξ2 [(t, ξ)− k(t, z(t, ξ))] + ∂G(t, z(t, ξ)) +Bu(t, ξ)

+a(t, z(t, ξ)) dW(t)
dt , t ∈ (0, 1], ξ ∈ [0, π],

z(t, 0) = z(t, π) = 0, t ∈ [0, 1],

I (
3
7 )(1−λ)

0+
(
z(0, ξ)

)
+ ∑m

i=1
∫ π

0 k(t, ς)z(ti, ς)dς = z0(ξ), ξ ∈ [0, π],

(14)
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where Dλ, 4
7

0+ is the HFD of order 4
7 and type λ ∈ [0, 1], I (

3
7 )(1−λ)

0+ is the R–L integral of order
( 3

7 )(1− λ) and k(t, ς) ∈ L2([0, π]× [0, π]), m is a nonnegative number, and 0 < t1 < t2 <
· · · < tm ≤ 1. Consider z(·)(ξ) = z(·, ξ), B(·)u(·)(ξ) =Bu(·, ξ), and

F(z, u) = E
∫ π

0

∫ 1

0
|z(t, ξ)|2dtdξ +

∫ π

0

∫ 1

0
|u(t, ξ)|2dtdξ.

Let W(t) be the two-sided, one-dimensional Brownian motion in X specified on filtered
probability area (Λ,F, P), and ∂G represent the generalized gradient of a locally Lipschitz
function G. A simple example of G fulfilling the requirements (H2) is G(t, µ) = G(µ) =
min{g1(µ), g2(µ)} where gi : R→ R, i = 1, 2, are convex quadratic functions (see [20,42]).
The function ψ(t, z(t)) = k(t, z(t, ξ)), satisfies the condition (H5).

To write the above system (14) into the abstract form (1), set X = Y := L2[0, π]. Specify,
Ã : D(Ã) ⊂ X → X and J : D(J ) ⊂ X → X by Ãz = zξξ and J z = z− zξξ , where
domains D(Ã) and D(J ) are provided by {z ∈ X : z, zξ are absolutely continuous, zξξ ∈
X, z(0) = z(π) = 0}. Then, Ã and J can be written as

Ãz =
∞

∑
n=1
−n2〈z, en〉en, z ∈ D(Ã),

J z =
∞

∑
n=1

(1 + n2)〈z, en〉en, z ∈ D(Ã),

where en(y) =
√

2
π sin(ny), n = 1, 2, · · · is the orthonormal basis of eigenvectors. More-

over, for z ∈ X, we have

J −1z =
∞

∑
n=1

1
1 + n2 〈z, en〉en,

ÃJ −1z =
∞

∑
n=1

−n2

1 + n2 〈z, en〉en,

and Qλ(t) = ∑∞
n=1 exp

(
−n2

1+n2

)
〈z, en〉en. Here, ÃJ −1 generates the infinitesimal generator

of a compact semigroup T(t)(t > 0) on X, presented as

T(t)z =
∞

∑
n=1

e
−n2

1+n2 t〈z, en〉en, z ∈ X, ‖T(t)‖ ≤ e−t, ∀ t ≥ 0.

Specify z(t)(ξ) = z(t, ξ) and a(t, z(t))(ξ) = a(t, z(t, ξ)) that fulfill the condition (H3).
Let the infinite-dimensional space U be defined by

U = {u : u =
∞

∑
n=2

unen with
∞

∑
n=2

u2
n < ∞}.

The norm in U is specified by ‖u‖U = (∑∞
n=2 u

2
n)

1
2 . Explain a bounded linear operator

B : U→ X as follows:

Bu = 2u2e1 +
∞

∑
n=2

unen for u =
∞

∑
n=2

unen ∈ U.

Since all of the criteria of the Theorem 2 are met, system (14) may be written in the
abstract form (1). The hemivariational stochastic control system (14) has a mild solution
and at least one feasible optimal pair, according to Theorem 2.
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5.2. Example-2

In this section, we give an example to illustrate our main results. Let X = U = L2[0, π].
Define Ã : D(A) ⊂ X→ X by Ãz = zyy, where domain D(Ã) is given by

D(Ã) =
{
z ∈ X : z, zy are absolutely continuous, zyy ∈ Xz(t, 0) = z(t, π) = 0

}
.

Then, Ã can be written as follows:

Ãz = −
∞

∑
n=1

n2〈z, en〉en, z ∈ D(Ã),

where

en(y) =

√
2
π

sin ny, n = 1, 2, · · ·

is the orthonormal basis of eigenfunctions of Ã. It is known that A is the infinitesimal
generator of a compact semigroup T(t)(t > 0) on X given by

T(t)z =
∞

∑
n=1

e−n2t〈z, en〉en, z ∈ X, ‖T(t)‖ ≤ e−t, ∀ t ≥ 0.

The admissible controls set Uad is defined by Uad = {u ∈ U|‖u‖L2([0,1],U) ≤ 1}.
Consider the problem of finding the controls u(z; y) to minimize the cost function

F(z, u) = E
∫ π

0

[ ∫ 1

0
|z(t, y)|2dtdy +

∫ π

0

∫ 1

0
|u(t, y)|2dt

]
dy,

subject to the following system:

〈
− Dλ, 3

5
t [z(t, y)− κ(t, z(t, y))] + [zyy(t, y)− κ(t, z(t, y))] +

∫ 1
0 q(y, δ)u(t, y)dδ

+a(t, z(t, y)) dW(t)
dt , ω

〉
+ G0(t, y, z(t, y); ω) ≥ 0, t ∈ (0, 1] = (0, c̃],

z(t, 0) = z(t, π) = 0, t ∈ [0, 1],

I (
2
5 )(1−λ)

0+
(
z(0, ξ)

)
+ β(z(t, y)) = z0(ξ), ξ ∈ [0, π].

(15)

where {W(t)}t∈R is a two-sided and standard one-dimensional Brownian motion defined
on the filtered probability space (Λ,F, P); a : V ×X→ L2

0 is a non-empty, bounded, closed,
and convex multivalued map which satisfies the assumptions (H3); ψ : V ×X→ X be the
appropriate function; q : [0, 1]× [0, 1]→ R is continuous.

Let a functional G : [0, 1]×X → R be defined by

G(t, z) =
∫ 1

0
g(t, y, z(y))dy, t ∈ (0, 1), z ∈ X,

where
g(t, y, z) =

∫ z

0
γ(t, y, θ)dθ, (t, y) ∈ (0, 1)× (0, π), z ∈ R.

Suppose that γ : (0, π)× (0, 1)×R→ R is a functional such that

(i) for all y ∈ (0, π), z ∈ R, γ(·, y, z) : (0, 1)→ R is measurable;
(ii) for all t ∈ (0, 1), z ∈ R, γ(t, ·, z) : (0, π)→ R is continuous;
(iii) for all z ∈ R there exists a constant c1 > 0 satisfying

|γ(·, ·, z)| ≤ c1(1 + |z|);

(iv) for all z ∈ R, γ(·, ·, z± 0) exists.
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If γ satisfies (iii), then one has ∂G(z) ⊂ [γ(z), γ̄(z)] for z ∈ R (we omit (t, y) here),
where γ(z) and γ̄(z) stand for the essential infimum and essential supremum of η at a point
z. If γ satisfies (i)− (iv), then the function g(·, ·, ·) defined above has properties as follows:

(i) for all y ∈ (0, π), z ∈ R, g(·, y, z) : (0, 1)→ R is measurable and g(·, ·, 0) ∈ L2((0, 1)×
(0, π));

(ii) for all t ∈ (0, 1), z ∈ R, g(t, ·, z) : (0, π)→ R is continuous;
(iii) for all (t, y) ∈ (0, 1)× (0, π), g(t, y, ·) : R→ R is locally Lipschitz;
(iv) there exists a constant c2 > 0 satisfying

|ζ| ≤ c2(1 + |z|), for all ζ ∈ ∂g(t, y, ·), (t, y) ∈ (0, 1)× (0, π);

(v) there exists a constant c3 > 0 satisfying

g0(t, y, z,−z) ≤ c2(1 + |z|), for all (t, y) ∈ (0, 1)× (0, π).

Moreover, the functional G(·, ·) defined above satisfies conditions (H2).
Define

z(t, y) = z(y)(t), Bu(t) =
∫ 1

0
q(y, δ)u(t, y)dδ.

We also suppose that condition (H6) holds. Thus, problem (15) can be written as the
abstract form of problem (1) with the cost function

F(z, u) = E
∫ π

0
[‖z(t)‖2 + ‖u(t)‖2]dt.

Summarizing the above, we know that the hypotheses (H0)–(H6) hold. Thus, all
conditions of Theorems 2 and 3 are satisfied, and we conclude that problem (15) has a mild
solution and at least one optimal pair.

6. Conclusions

This study explores the existence of mild solutions and OC for a class of Sobolev-type
HF neutral stochastic evolution hemivariational inequalities. The properties of generalized
Clarke’s subdifferential and a fixed point approach for multivalued maps were first em-
ployed to provide appropriate standards for the existence of mild solutions to the focused
control system. The existence of optimal state-control sets that are governed by Sobolev-
type HF neutral stochastic evolution HVIs was then proven using limited Lagrange optimal
systems. The OC results are gathered without considering how unique the control sys-
tem’s solutions are. The main result is eventually illustrated with an example. In the next
study, we will talk about the optimal controls for HF stochastic Volterra–Fredholm integro-
differential evolution HVIs with Poisson jumps, as well as the existence of mild solutions.
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The following abbreviations are used in this manuscript:

HF Hilfer fractional
HFD Hilfer fractional derivative
FDEs Fractional differential equations
HVI Hemivariational inequality
HVIs Hemivariational inequalities
OC Optimal control
SDEs Stochastic differential equations
SEEs Stochastic evolution equations
SEHVIs Stochastic evolution hemivariational inequalities
R–L Riemann–Liouville
RHS Right-hand side
LDCT Lebesgue dominated convergence theorem
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