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Abstract: In this research, we present a new computational technique for solving some physics prob-
lems involving fractional-order differential equations including the famous Bagley–Torvik method.
The model is considered one of the important models to simulate the coupled oscillator and various
other applications in science and engineering. We adapt a collocation technique involving a new
operational matrix that utilizes the Liouville–Caputo operator of differentiation and Morgan–Voyce
polynomials, in combination with the Tau spectral method. We first present the differentiation matrix
of fractional order that is used to convert the problem and its conditions into an algebraic system of
equations with unknown coefficients, which are then used to find the solutions to the proposed mod-
els. An error analysis for the method is proved to verify the convergence of the acquired solutions. To
test the effectiveness of the proposed technique, several examples are simulated using the presented
technique and these results are compared with other techniques from the literature. In addition, the
computational time is computed and tabulated to ensure the efficacy and robustness of the method.
The outcomes of the numerical examples support the theoretical results and show the accuracy and
applicability of the presented approach. The method is shown to give better results than the other
methods using a lower number of bases and with less spent time, and helped in highlighting some
of the important features of the model. The technique proves to be a valuable approach that can
be extended in the future for other fractional models having real applications such as the fractional
partial differential equations and fractional integro-differential equations.

Keywords: fractional-order equations; collocation method; Liouville–Caputo’s fractional derivative
operator; error analysis; Tau method

1. Introduction

Fractional calculus is a branch of mathematics that deals with the study of derivatives
and integrals of non-integer order. It has been around since the late 17th century when Got-
tfried Leibniz first proposed the concept of fractional derivatives, which has developed into
a powerful tool for simulating different physical problems in many areas such as physics,
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chemistry, engineering, economics, and biology. The concept of fractional calculus was
initially met with skepticism due to its unfamiliarity and lack of intuitive understanding.
However, over time, its usefulness has been recognized and there have been various defini-
tions and properties. These definitions vary depending on the context in which it is used,
which in general have a common definition as the study of derivatives and integrals with
non-integer orders. This means that instead of taking derivatives or integrals concerning
a single variable (as in traditional calculus), fractional calculus allows for derivatives or
integrals to be taken concerning multiple variables simultaneously. This allows for more
complex phenomena such as memory effects, diffusion processes, and chaotic systems that
might be difficult to solve using traditional definitions. In addition, fractional derivatives
are useful in many fields such as physics, engineering, economics, and finance. For example,
Zhao et al. [1] investigated the possible application of fractional definitions to simulate a
class of nonlinear fractional Langevin equations with important application in fluid dy-
namics. In addition, Zhang et al. [2] employed an exponential Euler scheme for simulating
the multi-delay Caputo–Fabrizio fractional-order differential equations with application in
control theory. Additionally, other applications of fractional calculus in several branches
of science and engineering include the simulation of the model of viscoelastic materials
in engineering applications and financial markets in economics. They can also be used to
describe chaotic systems in physics and other fields. There are various definitions of the
fractional order including the Riemann–Liouville operator [3], Grünwald–Letnikov opera-
tor [4], Liouville–Caputo operator [5] and Weyl–Riesz operator [6]. Each of these definitions
adheres to some advantages and disadvantageous over the other and the most widely used
of these applications is the Liouville–Caputo and Riemann–Liouville operators. There is a
close relationship between these two definitions since they can be converted through some
regularity assumption [7]. The Liouville–Caputo fractional operator is considered a pow-
erful tool for solving fractional differential equations (FDEs) that have been used widely
for simulating different complex problems. The Liouville–Caputo fractional operator is
a generalization of the classical derivative operator and can be used to solve FDEs with
non-integer order derivatives. It has the advantage of simulating physical phenomena that
involve memory effects or non-local interactions. In addition, it allows for more accurate
solutions since it takes into account memory effects and it provides more flexibility when
solving FDEs; because it can be applied to any function that can be expressed as a power
expansion series. This was one of the reasons to be used for the simulation of non-integer
models. For example, the definition of the Liouville–Caputo operator has been used in sim-
ulating disease models. Bonyah et al. [8] simulated the definition of the Liouville–Caputo
for investigating the dynamics of the COVID-19 infection. In addition, the time-dependent
influenza model has been studied in [9] to provide insight into the dynamics of such a
model and to provide measure precautions to stop its spread. Additionally, Gao et al. [10]
proposed a new fractional numerical differentiation formula for the Liouville–Caputo frac-
tional derivative and tested the new formulae for multiple applications. Additionally, the
constant proportional Liouville–Caputo operators were employed in [11] for simulating the
dynamics of the HIV disease model to understand its dynamics and ways of spread. Han
et al. identified some solutions for the variable-coefficient fractional-in-space KdV equation
in [12]. Some basic therapies and applications of the fractional differential equations have
been illustrated in [13] while [14,15] provided some parametric and argument variations
of the operators related to fractional calculus. With the importance of such definitions,
the Liouville–Caputo operator is of importance in helping to understand such behavior of
complex models.

Numerical simulation using collocation and spectral methods is a powerful tool for
solving complex problems in engineering and science. It is a method of approximating
solutions to differential equations by utilizing computational techniques such as collocation
and spectral methods. Collocation methods are used to approximate solutions to various
differential equations by representing them as a linear combination of basis functions.
Spectral methods are used to approximate solutions to differential equations by represent-
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ing them as an infinite series of (orthogonal) polynomials. Both of these techniques have
been widely used in the field of computational science, with applications ranging from
fluid dynamics to quantum mechanics. Collocation techniques have been widely used
for acquiring accurate results for these models using different types of bases. The main
idea of this technique is that the solution to a differential equation can be represented
as a linear combination of basis functions. These basis functions can be chosen from a
variety of sources including polynomials or other types. For example, Izadi et al. [16]
investigated the solution of the waste plastic management model in the ocean system
using the Morgan–Voyce polynomials. In addition, Adel et al. [17] employed a collocation
method of Genocchi polynomials for simulating the solution to the fourth-order singular
singularly perturbed and Emden–Fowler problems, which have significant importance in
physics. Izadi et al. [18] developed a collocation approach with a new definition of the
Chelyshkov polynomials to solve the fractional delay differential equations. Additionally,
El-Gamel et al. [19] adapted the Genocchi collocation method for solving a class of high-
order boundary value problems. The B-spline bases have been used to simulate physical
models as well as other basis functions. For example, De Boor [20] was the first to intro-
duce the basic definitions of the B-spline basis, and then researchers have been using it to
simulate real-life models. Kaur et al. [21] employed the adaptive wavelet optimized finite
difference technique combined with the B-spline polynomial for the solution of random
partial differential equations. Zahra et al. [22] developed a robust uniform B-spline colloca-
tion method for solving the generalized PHI-four equation. In addition, a cubic B-spline
collocation algorithm has been used to solve the Newell–Whitehead–Segel type equations
in [23]. Additionally, the combination of the wavelet along with other polynomials has
been used in the simulation of different models [24] and Alqhtani et al. [25] simulated a
high-dimensional chaotic Lorenz system using the Gegenbauer wavelet polynomials. The
coefficients in the linear combination are determined by solving an optimization problem
that minimizes the error between the approximate solution and the exact solution. This
approach is particularly useful when dealing with boundary value problems since it allows
for accurate approximations near the boundaries without having to solve for all points
in between. Spectral methods on the other hand are based on the idea that solutions to
differential equations can be represented as an infinite series of orthogonal polynomials.
These polynomials can be chosen from a variety of sources including the Chebyshev polyno-
mials [26] which have been used in the simulation of the fractional diffusion-wave equation
by Atta et al. [27]. Another type of polynomials is the Legendre polynomials [28], which is
also used for solving the linear Fredholm integro-differential equations accompanied by
the Galerkin method by Fathy et al. [29]. In addition, Abdelhakem et al. [30] employed the
pseudo-spectral matrices method for treating some models using the Legendre polynomials.
More general orthogonal polynomials such as Hermite [31] or Laguerre polynomials [32]
have also been used in practical simulations. This approach is particularly useful when
dealing with initial value problems since it allows for accurate approximations at all points
in time without having to solve for all points in between. Both of these techniques have
been extensively studied over the past few decades, leading to significant advances in their
accuracy and efficiency. They have become essential tools for solving complex problems in
engineering and science, allowing researchers to accurately simulate physical phenomena
with unprecedented accuracy and speed.

One of these polynomials that prove to have an effective role in simulating and
acquiring efficient results is the Morgan–Voyce polynomials (MVP). This type of polynomial
is a family of polynomials that was developed in the early 20th century by the American
mathematician and physicist, Edward L. Morgan, see [33]. Polynomials were initially
developed as a tool to study the behavior of certain physical systems, such as electrical
circuits and mechanical systems. These polynomials have since become an important tool in
many areas of mathematics; for example, in algebraic geometry to study curves and surfaces
defined by polynomial equations and in number theory to study Diophantine equations
and prime numbers. Many researchers have recently been using the MVP accompanied by
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the collocation technique to solve engineering problems. For example, the MVP has been
used to simulate a class of high-order differential equations by Türkyilmaz et al. in [34].
Additionally, Tarakci et al. [35] adapted a combination of the MVP with cubic and quadratic
terms with the collocation strategy to simulate the nonlinear ordinary differential equations.
Functional integro-differential equations of Volterra-type have been solved using the MVP
collocation approach by Özel et al. [36]. In addition, Izadi et al. [37] employed the MVP
to simulate the fractional Lotka–Volterra population model. Furthermore, Izadi et al. [38]
employed the shifted MVP for solving a class of nonlinear diffusion equations. Additionally,
Bushra et al. [39] proposed a collocation scheme for solving the Bratu problem with the
aid of the MVP. With the little work on the application of the MVP, we are interested in
expanding the application of such polynomials to fractional models.

In this research study, we are mainly interested in finding an accurate solution to a
class of fractional order boundary value problems in the form

v1 D2 g(t) + v2 Dζ g(t) + v3 g(t) = ϑ(t), (1)

with the initial conditions
g(0) = g0, g′(0) = g1. (2)

Here, v1, v2, v3, and ϑ(t) in Equation (1) are constant coefficients depending on the
application type and the source term, respectively. In addition, g0 and g1 are the starting
values for the problem’s solution andDζ is the fractional-order operator defined in Liouville–
Caputo sense with the fractal value 1 < ζ < 2. To the best of our knowledge, this is the
first time that the MVP is utilized for solving the model (1). This model incorporates a
different form of fractional differential equations. One of the main models represented
by the model (1) is the Bagley–Torvik model. This model has been used to simulate the
motion of a rigid plate immersed in a Newtonian fluid and also describes the behavior of
a system of coupled oscillators and was first discovered by Torvik and Begly [40]. Since
then, it has been widely studied and applied to various fields such as nonlinear optics,
fluid mechanics, and plasma physics. With the importance of this type of model, numerous
analytical and numerical techniques have been employed to find accurate solutions to
these problems. For examples, we mention neuro-swarming computational solver [41],
cubic B-spline method [42], Haar wavelet [43], fractional Meyer neural network [44] and
other related techniques. For more details and information, the reader may refer to the
works [45–47] and references therein.

In this paper, we interfered in simulating this model using the MVP with the definition
of the fractional order in terms of the Liouville–Caputo fractional derivative. We adapt the
proposed collocation method accompanied by the Tau method for simulating a different
model of fractional order having real-life applications. We use MVP as the basis function
in the collocation method because it has multiple advantages. Some of the advantages of
the proposed technique using the MVP are the ability to accurately approximate functions
with fewer terms than other methods, their ability to represent complex functions with a
single equation, and their ability to be used in a wide variety of applications. Additionally,
they can be used to solve equations that would otherwise be difficult or impossible to solve
using traditional methods. On the other hand, there are some drawbacks to the complexity
of the equations involved and they may not always provide an optimal solution for certain
types of problems. The novelty of the paper lies within the following few points:

• A novel operational matrix of fractional order is derived in the sense of the Liouville–
Caputo fractional derivative for the MVP.

• The technique is a combination of the collocation technique with the Tau method.
• The method converts the nonlinear fractional differential equation into a system of

algebraic equations that are solved easily.
• The convergence analysis is performed to prove the error bound for the technique.
• The proposed technique is adapted for solving various examples with the application

including the Bagley–Torvik and Bratu models.
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• The acquired results prove that the technique is better than the other methods in terms
of error and computational cost.

• The proposed algorithm can be extended to more complex problems having real-life
applications.

The organization of the rest of this paper can be summarized as the following. Section 2
provides the basic definitions and preliminaries related to the fractional calculus that
will be used later in the subsequent sections. The main relations and definitions of the
MVP are introduced in Section 3 with a derivation of the new fractional order matrix of
differentiation. In Section 4, the derivation of the integer and fractional operational matrix
of derivatives is illustrated in detail and the Tau-collocation technique is demonstrated for
solving the general model. In addition, the convergence analysis for the proposed technique
is provided in detail in the same section to prove the convergence of the developed method.
Several examples are introduced in Section 5 to validate the theistical results in light of the
absolute error and computational time. Finally, Section 6 presents the conclusion of the
study and some possible future work for the study.

2. Preliminaries and Notations

In this part, we will provide some of the fundamentals that will be needed in later
sections. We begin with the following definitions.

Definition 1 ([48]). Assume that g(t) is continuously differentiable k−times. The operator of
fractional-order derivative in the Liouville–Caputo sense is defined by:

Dζ g(t) =


Υk−ζ g(k)(t), k− 1 < ζ < k,

g(k)(t), ζ = k, k ∈ N,
(3)

where

Υζ g(t) =
1

Γ(ζ)

∫ t

0

g(t)
(t− τ)1−ζ

dτ, ζ > 0, t > 0. (4)

The linearity properties for Liouville–Caputo’s operator hold as

Dζ(a1 g1(t) + a2 g2(t)) = a1 Dζ g1(t) + a2 Dζ g2(t), (5)

where a1, a2 are constants.
The above principle Definition 1 of the Liouville–Caputo fractional-order operator is

utilized to obtain the following results for polynomials. Below, we use these facts,

Dζ a1 = 0, a1 is a constant, (6)

Dζ tm =


Γ(1+m)

Γ(1+m−ζ)
tm−ζ , m ∈ N0 ∧ m ≥ dζe or m /∈ N0 ∧ m > bζc,

0, m ∈ N0 ∧ m < dζe,
(7)

where the ceiling and floor functions are dζe, bζc, respectively. Additionally, if ζ ∈ N, then
the classical differential operator of integer-order is obtained, see [48].

In what follows, we use the following theorem, a proof of which can be found in [49].
Before we proceed, let us mention that by Dnζ we denote Dnζ := Dζ ·Dζ · · ·Dζ , n times.

Theorem 1 (Generalized Taylor’s formula). Let assume that 0 < ζ ≤ 1 and for n = 0, 1, . . . , m
we have Dnζ(g(t)) ∈ C(0, T ], where T > 0. Then, the function g(t) can be stated in the power
series form given by

g(t) =
m

∑
n=0

tnζ

Γ(1 + nζ)
Dnζ g(0+) +

t(m+1)ζ

Γ(1 + (m + 1)ζ)
D(m+1)ζ g(κ), ∀t ∈ [0, T ],
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for some κ ∈ (0, T ).

Corollary 1. Under the assumptions of Theorem 1 if we have |D(m+1)ζ(g(t)| ≤ Mmax, then the
following upper bound holds

∣∣∣g(t)− m

∑
n=0

tnζ

Γ(1 + nζ)
Dnζ g(0+)

∣∣∣ ≤ t(m+1)ζ

Γ(1 + (m + 1)ζ)
Mmax, ∀t ∈ [0, T ].

Next, we will provide the details of the Morgan–Voyce polynomials.

3. Morgan–Voyce Polynomials

Let us provide the details and properties of the MVP [34,36,39] that will be needed to
treat model (1).

Definition 2. The Morgan–Voyce polynomials of the degree m ≥ 1 in the variable t is explicitly
expressed in the power formula

MVm(t) =
m

∑
i=0

(
m + i + 1

m− i

)
ti, m ∈ N. (8)

Additionally, the Morgan–Voyce polynomials, MVm(t), can be constructed by taking
the next recurrence relation

MVm+2(t) = (t + 2) MVm+1(t)−MVm(t), m ≥ 0, (9)

where MV0(t) = 1, MV1(t) = t + 2. A few examples of these Morgan–Voyce polynomials
are

MV2(t) = t2 + 4t + 3,

MV3(t) = t3 + 6t2 + 10t + 4,

MV4(t) = t4 + 8t3 + 21t2 + 20t + 5,

MV5(t) = t5 + 10t4 + 36t3 + 56t2 + 35t + 6.

Moreover, MVm(t) are the solution of the following second kind ordinary differential
equation

(t2 + 4t)u′′m(t) + (3t + 6)u′m(t)−m(m + 2)um(t) = 0, (10)

where um(t) = MVm(t), m = 0, 1, . . . values. These polynomials MVm(t) over the interval
(−4, 0) are orthogonal with regard to the weight function

√
4− (t + 2)2.

3.1. Morgan–Voyce Polynomials Operational Matrices of Derivatives

In this subsection, the operational matrices of Morgan–Voyce polynomials in the
integer and fractional-orders of derivatives will be proposed. On the [0, T ] Lebesgue
integrable space, consider g(t) to be a square integrable function defined on it. Assume
g(t) can be expressed as an infinite series linear independent combination of the terms of
MVP as the following formula:

g(t) =
∞

∑
i=0

di MVi(t). (11)

Using truncation for the infinite series terms to have only (m+ 1)−terms, then Equation (11)
becomes as

g(t) ≈ gm(t) =
m

∑
i=0

di MVi(t) = DT
m Ψm(t), (12)
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where
DT

m = [d0, d1, . . . , dm], (13)

and
Ψm(t) = [MV0(t), MV1(t), . . . , MVm(t)]

T . (14)

Consider now the following vector form:

Pm(t) = [1, t, t2, . . . , tm]T , (15)

then, we can use Equation (15) to write the Ψm(t) of Equation (14) as follows:

Ψm(t) = W Pm(t), (16)

where W is (m + 1)× (m + 1) non-singular square matrix

W =


w0,0 0 0 0 . . . 0
w1,0 w1,1 0 0 . . . 0
w2,0 w2,1 w2,2 0 . . . 0

...
...

...
...

...
...

wm,0 wm,1 wm,2 . . . wm,m−1 wm,m

.

The components of the matrix W are given by

(wr,s)0≤r,s≤m =


1, r = s,

Γ(r + s + 2)
Γ(r− s + 1)Γ(2s + 2)

, r > s,

0, otherwise.

(17)

Clearly, det(W) = 1, which indicates that W is non-singular. The matrix W of dimension
5× 5 is given as an example as follows:

W =


1 0 0 0 0
2 1 0 0 0
3 4 1 0 0
4 10 6 1 0
5 20 21 8 1

.

Therefore, through Equation (16), we gain

Pm(t) = W−1 Ψm(t). (18)

3.2. MV(t) Polynomials Integer-Order Operational Matrix of Derivatives

In this subsection, we deduce the integer-order derivative of the vector Ψ(t) as follows:

d
dt

Ψm(t) = Q(1) Pm(t), (19)

where Q(1) =
(

q(1)l j

)
is (m + 1)× (m + 1) operational matrix of derivatives of integer-order

contains the derivatives coefficients for MV(t). Here, Q(1) is (m + 1)× (m + 1) singular
square matrix

Q(1) =


0 0 0 0 . . . 0

q1,1 0 0 0 . . . 0
q2,1 q2,2 0 0 . . . 0

...
...

...
...

...
...

qm,1 qm,2 qm,3 . . . qm,m 0

,



Fractal Fract. 2023, 7, 301 8 of 20

where the components of Q(1) can be determined directly by using

q(1)1≤l,j≤m =

0, l < j,
j Γ(l + j + 2)

Γ(l − j + 1) Γ(2j + 2)
, l ≥ j.

(20)

Consider the case m = 5 as an example for the first-order derivative operational matrix,
Q(1), as follows

Q(1) =



0 0 0 0 0 0
1 0 0 0 0 0
4 2 0 0 0 0

10 12 3 0 0 0
20 42 24 4 0 0
35 112 108 40 5 0


6×6

.

Hence, via the two Equations (19) and (20), we can obtain the classical derivatives integer-
order operational matrix of order more than the first order as the following:

dk

dtk Ψm(t) = Q(k) Pm(t) =
(

Q(1)
)k

Pm(t), k = 1, 2, . . . . (21)

3.3. MV(t) Polynomials Fractional-Order Operational Matrix of Derivatives

Below, we will investigate the processes that enable us to obtain the fractional-order
operational matrix of Morgan–Voyce polynomials. According to (16) we have Ψm(t) =
W Pm(t). Then, we get

Dζ Ψm(t) = Dζ(W Pm(t)) = W Dζ [1, t, t2, . . . , tm]T .

Using Equation (7) to obtain

Dζ Ψm(t) = W
[

0,
2

Γ(2− ζ)
t(1−ζ),

3
Γ(3− ζ)

t(2−ζ), . . . ,
Γ(m + 1)

Γ(m + 1− ζ)
t(m−ζ)

]T

= W



0 0 0 . . . 0
0 2

Γ(2−ζ)
t−ζ 0 . . . 0

0 0 3
Γ(3−ζ)

t−ζ . . . 0
...

...
...

...
...

0 0 0 . . . Γ(m+1)
Γ(m+1−ζ)

t−ζ




1
t
t2

...
tm


= t−ζ W Υ Pm(t),

(22)

where

Υ =



0 0 0 . . . 0
0 2

Γ(2−ζ)
0 . . . 0

0 0 3
Γ(3−ζ)

. . . 0
...

...
...

...
...

0 0 0 . . . Γ(m+1)
Γ(m+1−ζ)

. (23)

Using Equation (18), we have

DζΨm(t) = t−ζ W Υ W−1 Ψm(t). (24)

Hence, (t−ζ W Υ W−1) is called the fractional-order operational matrix for Dζ Ψm(t).

4. Proposed Methodology and Convergence Analysis

In this section, we will provide details on the main steps for finding the solution of
model Equation (1) using the proposed Tau-collocation method. In addition, we will prove
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the convergence of the suggested method to ensure that the method convergence to the
required solution.

4.1. Proposed Methodology

We will now illustrate the main steps for finding the solution of model Equation (1) us-
ing the proposed Tau-collocation method. Consider Equation (1), firstly. Then, by using the
content of Section 3 especially Equations (12) and (16), in addition to Equations (21) and (24)
to obtain the following matrix form:

v1 DT
m Q(2) W−1 Ψm(t) + v2 DT

m t−ζ W Υ W−1 Ψm(t) + v3 DT
m Ψm(t) = ϑ(t), t ∈ (0, T ]. (25)

The residual related to Equation (25) can be computed through

tζ R(t) = tζ v1 DT
m Q(2) W−1 Ψm(t) + v2 DT

m W Υ W−1 Ψm(t) + tζv3 DT
m Ψm(t)− tζ ϑ(t). (26)

Through application of the Tau method (see for example [50]) to have∫ T
0

tζ R(t)Ψj
m(t) dt = 0, 0 ≤ j ≤ m. (27)

Additionally, the initial conditions that given in Equation (2) can be re-expressed in
the matrix form as follows:

DT
m Ψm(0) = g0, DT

m Q(1) Ψm(0) = g1. (28)

Using Equations (25) and (28) a system of algebraic equations is created to represent the
unknown expansion coefficients di of dimension (m + 1). The resultant algebraic system
will be solved using the Gaussian elimination method. As a result, it is possible to compute
the appropriate numerical solution in Equation (12) for the model (1). In the next subsection,
we will prove the convergence of the method.

4.2. Convergence of Morgan–Voyce bases

In the final stage, we pay attention to the convergence of Morgan–Voyce polynomial
functions in the space of L2[0, T ], where T > 0. As mentioned in (11), every square-
integrable function g(t) ∈ L2[0, T ] can be represented in terms of Morgan–Voyce polyno-
mials in an infinite series form. However, we practically consider only (m + 1) terms series
expansion as given in (12). It follows that we restrict ourselves to the finite-dimensional
subspace Sm defined by

Sm = Span〈MV0(t), MV1(τ), . . . , MVm(τ)〉.

Additionally, let us define the error between g(t) and its approximation gm(t) by
Em(t) = g(t)− gm(t). Next, we assert that by increasing m, the error converges to zero in
the L2 norm. Also, by ‖·‖2 we denote the L2 norm of a function over [0, T ].

Theorem 2. Assume that 0 < δ := ζ/2 ≤ 1 and for n = 0, 1, . . . , m + 1 we have Dnδg(t) ∈
C(0, T ]. Suppose further that gm(t) = DT

m Ψm(t) in (12) represents the best possible approximation
for g(t) out of Sm. Then, the following estimate for the error Em(t) is valid:

‖Em(t)‖2 ≤
Mmax(

Γ(1 + 2(m + 1)δ)
) 1

2

T 1
2+(m+1)δ

Γ(1 + (m + 1)δ)
,

where
∣∣∣D(m+1)δg(t)

∣∣∣ ≤ Mmax, for t ∈ [0, T ].
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Proof. Owing to the fact that 0 < δ ≤ 1 and in accordance to Theorem 1, the generalized
Taylor form of g(t) is represented as follows:

Gm(t) = g(0+) +
tδ

Γ(1 + δ)
Dδg(0+) + . . . +

tmδ

Γ(1 + mδ)
Dmδg(0+).

By applying Corollary 1, the associated upper bound is given by

|Gm(t)− g(t)| ≤ t(m+1)δ

Γ(1 + (m + 1)δ)
Mmax, 0 < t < T . (29)

By virtue of the fact that the approximate solution gm(t) ∈ Sm represents the finest approxi-
mation to g(t), we have, consequently,

‖g(t)− gm(t)‖2 ≤ ‖g(t)− f (t)‖2, ∀ f ∈ Sm.

Employing in particular f (t) = Gm(t) in the forgoing inequality reveals that

‖g(t)− gm(t)‖2
2 ≤ ‖g(t)− Gm(t)‖2

2 =
∫ T

0
|g(t)− Gm(t)|2 dt.

By (29) and the definition of the error term, we immediately find that

‖Em(t)‖2
2 ≤

[ Mmax

Γ(1 + (m + 1)δ)

]2 ∫ T
0

t2(m+1)δdt.

By computing the integral, we obtain

‖Em(t)‖2
2 ≤

[ Mmax

Γ(1 + (m + 1)δ)

]2 T 1+2(m+1)δ

Γ(1 + 2(m + 1)δ)
.

The proof in finished by performing the square roots on the last expression.

5. Numerical Simulations

This section presents several examples that are solved numerically using our proposed
method, i.e., the Morgan–Voyce operational matrix method (MVOMM). The numerical
results of these examples support the analytical investigation and demonstrate the feasi-
bility of the introduced technique. In the paper, two types of errors are used to evaluate
the performance of the model: the L2 error and the L∞ error. The L2 error measures the
average squared difference between the true values and the predicted values, while the L∞
error measures the maximum absolute difference between the true values and the predicted
values. Additionally, the simulations were run using a Core-i7 laptop with 16 GB RAM and
the used software is Mathematica 11.0.

Example 1 ([51–53]). Consider the following inhomogeneous Bagley–Torvik initial value problem:

D2 g(t) + Dζ g(t) + g(t) = ϑ(t), ζ ∈ (1, 2), t ∈ (0, 1), g(0) = 1, g(1) = 3, (30)

where
ϑ(t) = t3 +

6
Γ(4− ζ)

t3−ζ + 7t + 1.

The exact solution of Equation (30) is given by g(t) = t(t2 + 1) + 1.

We apply the investigated method to have the following result as described. In Table 1,
we present numerical results for g(t) and its approximation gm(t) at various points in
the interval [0, 1], obtained using the MVOMM with m = 3. The results in this table
demonstrate the high accuracy of the MVOM method. The CPU time that takes through



Fractal Fract. 2023, 7, 301 11 of 20

obtaining these results at m = 3 is 3.766 s. For comparison, we also include results obtained
using the VIM and FIM methods from Mekkaouii and Hammouch [52]. The last column
in the table shows the exact values problem. As can be seen from the table, the MVOM
technique with m = 3 yields more accurate results than the VIM, FIM, and LDG approaches.
Table 2 presents L2-error and L∞-error results using our suggested method MVOMM in
addition to the comparison with these results obtained via Lucas wavelet scheme (LWS) [53].
From these results, we obtain the accuracy of the proposed method. For further illustration,
we introduce Figure 1, which shows the absolute error (left), and (right) the approximate
solutions ξ = 1.9, 1.8, 1.7, 1.5, 1.3 for Example 1 with m = 3. Clearly, from Figure 1, the
accuracy and efficiency of the MVOMM is useful for obtaining the numerical solutions in
several cases. In addition, it can be noticed from the figure that while changing the value of
the fractional order ξ, the value of the solution is increasing. This proves that the change in
the fractional order has an impact on the simulation of the results.

Absolute Error

0.0 0.2 0.4 0.6 0.8 1.0

0

5.×10
-16

1.×10
-15

1.5×10
-15

ξ=1.9

ξ=1.8

ξ=1.7

ξ=1.5

ξ=1.3

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

3.5

Figure 1. The absolute error (left), while (right) the numerical solution for different fractional-order
cases of ξ for Example 1 with m = 3.

Table 1. Approximate solution result comparisons for the methods in [51,52], and the proposed
method for Example 1, ζ = 1.5, and m = 3.

t LDG [51] VIM [52] FIM [52] MVOMM Exact

0.10 1.101000000 1.183140356 1.103763584 1.100999999 1.101000
0.25 1.265624999 1.438783940 1.269040456 1.265624999 1.265625
0.30 1.326999999 − − 1.326999999 1.327000
0.40 1.463999999 − − 1.463999999 1.464000
0.50 1.625000000 1.519844510 1.623997167 1.624999999 1.625000
0.60 1.816000000 − − 1.815999999 1.816000
0.75 2.171875000 0.830835570 2.166900262 2.171875000 2.171875
0.80 2.312000000 − − 2.312000000 2.312000
0.90 2.629000000 − − 2.629000000 2.629000

Table 2. Comparison of the strategy used in the present study for Example 1 with distinct errors and
the LWS introduced in [53].

Error Type LWS [53] (k = 0, H = 4) LWS [53] (k = 1, H = 4) MVOMM (m = 3)

L2-error 5.9× 10−15 4.9× 10−15 1.78× 10−15

L∞-error 9.3× 10−15 7.8× 10−15 8.98× 10−16

Example 2 ([51]). In our next experiment, we will show that MVOM method can handle problems
with discontinuities. To keep things simple, we will consider a model problem that only has
one discontinuous point, but it is possible to extend the method to handle a larger number of
discontinuities. We will consider a fractional-order Bagley–Torvik equation with an initial value
and a discontinuous right-hand side.

D2 g(t) + D1.5 g(t) + g(t) = ϑ(t), t ∈ (0, 2), g(0) = g′(0) = 0, (31)



Fractal Fract. 2023, 7, 301 12 of 20

where

ϑ(t) =

2 + t2 + 4t0.5
√

π
, 0 ≤ t < t1,

1 + 7t + t3 + 8t1.5
√

π
, t1 ≤ t ≤ t2.

In this case, t1 is a point where the discontinuity occurs. The exact solutions to the problem are
g(t) = t2 for the variable t in the interval I1 = [0, t1) and g(t) = t(t2 + 1) + 1 for t in the interval
I2 = [t1, t2]. We will assume that the discontinuous point t1 coincides with a mesh node.

For the purposes of this example, we will set I1 = [0, 1) and I2 = [1, 2]. Using m = 3,
we obtain the following approximations:

g3(t) = −4.44089× 10−16 + t2 − 3.45025 10−16t3, t ∈ I1,

g3(t) = 1 + t− 1.77636× 10−15t2 + t3, t ∈ I2.
(32)

For Example 2, through both intervals I1, I2 and with m = 3, we obtain all the results
via our suggested technique (MVOMM), reported in Equation (32), Table 3, Figures 2 and 3.
The results that were obtained by Equation (32) indicate the approximate solutions were
approximately consistent with the analytical solutions. Table 3 represented the absolute
error, which is very tiny. Figure 2 shows the exact and approximate solutions (right), and
the absolute error (left) at t ∈ I1. Figure 3 presents the exact and approximate solutions
(right), and the absolute error (left) where t ∈ I2. Moreover, when m = 3, the CPU time
required to produce these results at t ∈ I1, t ∈ I2 are 0.720 s, 0.858 s, respectively. Based
on the presented results, we can say that our proposed algorithm gives high accuracy and
efficiency.

Table 3. Absolute error comparisons for the presented method for Example 2, ξ = 1.5, m = 3.

t ∈ I1 Absolute Errors t ∈ I2 Absolute Errors

0.0 4.44089× 10−16 1.0 8.88178× 10−15

0.1 4.37773× 10−16 1.1 8.70304× 10−15

0.2 4.20204× 10−16 1.2 8.51763× 10−15

0.3 3.93453× 10−16 1.3 8.31890× 10−15

0.4 3.59589× 10−16 1.4 8.10019× 10−15

0.5 3.20684× 10−16 1.5 7.85483× 10−15

0.6 2.78806× 10−16 1.6 7.57616× 10−15

0.7 2.36027× 10−16 1.7 7.25753× 10−15

0.8 1.94416× 10−16 1.8 6.89226× 10−15

0.9 1.56044× 10−16 1.9 6.47371× 10−15

1.0 − 2.0 5.99520× 10−15

Absolute Error
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Figure 2. The exact and an approximate are shown on the right, while the absolute error is shown on
the left for Example 2 where t ∈ I1 and m = 3.



Fractal Fract. 2023, 7, 301 13 of 20

Absolute Error
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Figure 3. The exact and an approximate are shown on the right, while the absolute error is shown on
the left for Example 2 where t ∈ I2 and m = 3.

Example 3 ([51]). For the last examination, we choose a case study that is representative of the
types of issues encountered in the modeling of electrical and mechanical oscillations, in order to
make the example more applicable and realistic to real-world situations:

a1D2 g(t) + a2 g(t) = f0 cos($t), f0, $ > 0, (33)

with the original state
g(0) = g0, g′(0) = 0, 0 < t ≤ τ.

In our analysis of Equation (33), we only considered the cases where the forcing
function is a sinusoidal wave with an amplitude of f0 and a frequency of $. Using the
MVOM scheme, we examined three different vibration problems for a1 and a2 values of 1.
We obtain the numerical solution for these cases as the following:

Case I: f0 = 0, g0 = 1, and τ = 1. The analytical solution is g(t) = cos(t).
Case II: f0 = 0.01, g0 = 0, $ = 1, and τ = 1. The precise solution g(t) = 0.005 t sin(t).
Case III: f0 = 1, g0 = 0, and τ = 1. The true solution is g(t) = 1

1−$2 (cos($t)− cos(t)),

where $2 6= 1. Here, we have $ = 6.

The proposed approach that was explained in the preceding Section is used to compute
the absolute error for the three cases of Example 3. It is visible from analyzing the outcomes
of Table 4 that were generated by the proposed methodology and the results produced by
the method provided in [51] that the results provided by the proposed scheme are more
accurate than those published in [51]. Additionally, the CPU time of our method is better
than of [51] because we have few terms of the expansion series m = 4, 6 only. We obtain the
CPU time in these different cases (Case I, Case II, and Case III), which are 0.093, 0.110, and
0.125 s, respectively. A great degree of precision is also provided by the proposed method
for solving oscillation problems.
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Table 4. Absolute error comparisons for the presented method for Example 3.

Case I Case II Case III

t LDG [51] MVOMM (m = 4) LDG [51] MVOMM (m = 4) LDG [51] MVOMM (m = 6)

0.0 − 2.22× 10−16 − 2.42× 10−20 − 3.95× 10−20

0.1 1.95× 10−8 4.44× 10−16 7.76× 10−10 1.14× 10−15 1.12× 10−9 7.12× 10−17

0.2 1.36× 10−8 1.89× 10−15 5.38× 10−10 3.58× 10−15 5.91× 10−10 1.92× 10−16

0.3 9.66× 10−9 3.33× 10−15 3.79× 10−10 6.32× 10−15 1.92× 10−8 3.07× 10−16

0.4 9.96× 10−9 4.89× 10−15 3.94× 10−10 8.86× 10−15 3.11× 10−8 4.18× 10−16

0.5 1.02× 10−8 6.22× 10−15 4.01× 10−10 1.11× 10−14 1.92× 10−8 5.31× 10−16

0.6 5.06× 10−9 7.44× 10−15 2.01× 10−10 1.33× 10−14 5.55× 10−9 6.33× 10−16

0.7 9.44× 10−9 8.77× 10−15 3.72× 10−10 1.55× 10−14 1.88× 10−8 7.27× 10−16

0.8 3.58× 10−9 1.01× 10−14 1.42× 10−10 1.78× 10−14 1.62× 10−8 8.18× 10−16

0.9 4.79× 10−9 1.10× 10−14 1.89× 10−10 1.94× 10−14 9.71× 10−9 9.03× 10−16

1.0 3.18× 10−15 1.08× 10−14 1.19× 10−16 1.87× 10−14 1.12× 10−19 9.15× 10−16

Figures 4–6 are reported at m = 6 for Example 3 through three different cases of
oscillations. Figure 4 gives the absolute error on left, the analytic and an approximation
solutions on right for Case I. Figure 5 presents the absolute error on left, the exact and
numerical solutions on right for Case II. Figure 6 indicates the absolute error on left, the
exact and an approximation solutions on right for Case III. At first glance of these three
figures, we notice a great degree of agreement between the exact and the numerical solution.

Absolute Error
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Figure 4. For Example 3, Case I with m = 6: the absolute error is shown on (left), the analytic and
the approximation solutions are presented on (right).
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Figure 5. For Example 3, Case II with m = 6: the absolute error is shown on (left), and the analytic
and an approximation solutions are presented on (right).
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Absolute Error
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Figure 6. For Example 3, Case III with m = 6: the absolute error is shown on the (left), and the
analytic and an approximation solutions are presented on the (right).

Example 4 ([53,54]). Let us select the initial-value Bagley–Torvik equation of the fractional order

D2 g(t) +D1.5 g(t) + g(t) = ϑ(t), t ∈ [0, 1],

ϑ(t) = t3 +
8√
π

t
3
2 + 5t,

(34)

with the boundary conditions
g(0) = g(1) = 0.

The corresponding exact solution for Example 4 takes the form g(t) = t3 − t.

We use the suggested method for solving this problem numerically. Additionally,
some comparisons are made between the obtained results of MVOMM and the LWS and
the reproducing kernel Hilbert space (RKHS) reported in [53,54]. By using the LWS, the
obtained solution is [53]

ḡ3(t) = t3 − 2.33591× 10−13t2 − t + 2.22045× 10−16.

While the results with m = 3 using our method are as follows:

g3(t) = t3 − 2.66454× 10−15t2 − t. (35)

For Example 4 at m = 3, we acquire all findings using our recommended technique
(MVOMM), which is provided in Equation (35), Table 5, Table 6 and Figure 7. Equation (35)
shows that the approximations were roughly congruent with the analytical solutions.
Table 5, represented a comparison of the present study’s exact solution with the absolute
inaccuracy of the techniques developed in [53,54]. Table 6, displays findings for L2-error
and L∞-error utilizing our recommended approach MVOMM as well as a comparison
to results obtained via [53]. Figure 7 presents the absolute error (left) and the numerical
and true solutions (right). All results are obtained with CPU time 0.813 s (including all
numerical results and plotting the figures). The results derived from these Tables and
Figures for Example 4 provide a strong indication of the superiority of the presented Tau-
collocation algorithm. In terms of accuracy and efficiency, the proposed method was found
to outperform the other methods considered.
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Table 5. Comparison of the present study’s exact solution with the absolute inaccuracy of the
RKHS [54] and LWS [53], relative to Example 4.

t Exact RKHS [54] (H∗ = 20) RKHS [54] (H∗ = 40) LWS [53] (H = 4) MVOMM (m = 3)

0.2 −0.192000 1.890× 10−4 5.700× 10−5 9.575× 10−15 4.547× 10−16

0.4 −0.336000 2.537× 10−4 7.131× 10−5 3.758× 10−14 1.080× 10−15

0.6 −0.384000 2.168× 10−4 5.992× 10−5 8.426× 10−14 1.833× 10−15

0.8 −0.288000 1.198× 10−4 3.312× 10−5 1.497× 10−13 2.672× 10−15

1.0 0 0 0 0 0

Table 6. Comparison between the LWS introduced in [53] and the current study for Example 4 with
various errors.

Error Type LWS [53] (k = 0, H = 4) LWS [53] (k = 1, H = 4) MVOMM (m = 3)

L2-error 8.5× 10−14 2.2× 10−13 3.55× 10−15

L∞-error 1.6× 10−13 5.0× 10−13 1.88× 10−15

Absolute Error
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Figure 7. The absolute error (left), while the numerical and approximate solutions (right) for Exam-
ple 4 with m = 3.

Example 5 ([55–57]). Finally, we turn our attention to another form of equation, which is know as
the fractional-order Bratu differential equation type:

Dξ g(t)− 2eg(t) = 0, t ∈ [0, 1], ξ ∈ (1, 2], (36)

with the initial conditions
g(0) = g′(0) = 0.

The exact solution that corresponds to Example 5 at ξ = 2 is g(t) = −2 ln(cos(t)).

The following results are obtained by applying our recommended approach for solving
this problem numerically and comparing the outcomes with those reported in [55–57]. The
developed methods are the compact finite difference method (CFDM), the reproducing
kernel Hilbert space method (RKM), and the combined spectral Bessel quasilinearization
method (Bessel-QLM), respectively. For Example 5, we obtain all the results utilizing
our advised method (MVOMM), and these are presented in Tables 7 and 8 and Figure 8.
Table 7, introducing comparisons of the absolute error between the current methodology
and the other research approaches, CFDM and RKM published in [55,56] with m = 6.
The computational time (CPU time) in the case of m = 6 is 0.282 sec using our suggested
method. Table 8 reported a comparison between the recommended approach MVOMM and
this given in [55] with L2-error and L∞-error at ξ = 2 and diverse values of m. Additionally,
the CPU time in different values of m is reported in the last column of Table 8. Figure 8,
listed the achieved absolute error for ξ = 2 (left) and the numerical values at several values
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of the fractional-order term ξ = 2, 1.9, 1.8, 1.7, 1.5, 1.3 (right) with m = 6. These Tables and
Figures for numerical results of Example 5 give clear evidence of the proposed method’s
superiority. The proposed method was found to perform better than the other existing
numerical procedures taken into consideration in terms of efficiency and accuracy.

Table 7. Comparison of the absolute inaccuracy between the MVOMM and the CFDM and RKM
used in the previous studies [55–57] using ξ = 2 for Example 5.

t CFDM [55] RKM [56] Bessel-QLM (M = 7) [57] MVOMM (m = 6)

0.1 7.1× 10−6 1.67× 10−5 4.20× 10−8 2.75× 10−17

0.2 1.23× 10−5 3.10× 10−7 1.22× 10−7 3.016× 10−17

0.3 1.71× 10−5 1.13× 10−6 1.86× 10−7 1.65× 10−16

0.4 2.26× 10−5 2.12× 10−4 2.61× 10−7 1.87× 10−16

0.5 2.90× 10−5 2.90× 10−6 3.55× 10−7 8.05× 10−17

0.6 3.69× 10−5 4.10× 10−6 4.10× 10−7 1.32× 10−16

0.7 4.72× 10−5 6.50× 10−6 5.79× 10−7 2.19× 10−16

0.8 6.14× 10−5 7.50× 10−6 6.83× 10−7 1.67× 10−16

0.9 8.32× 10−5 3.35× 10−6 3.04× 10−7 2.79× 10−16

1.0 1.29× 10−5 4.37× 10−8 3.23× 10−5 2.52× 10−16

Table 8. Comparison of the highest absolute errors for Example 5 using ξ = 2 and various values of
m from [55] and our proposed approach.

CFDM [55] MVOMM

N = m L∞-Error m L∞-Error CPU Time (s)

5 1.67× 10−3 2 1.42× 10−8 0.185
10 8.32× 10−5 4 5.61× 10−13 0.225
20 4.43× 10−6 6 4.11× 10−16 0.282
40 2.38× 10−7 8 8.34× 10−16 0.586
80 1.36× 10−8 10 1.47× 10−16 1.592

Absolute Error
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Figure 8. The absolute error (left) and the numerical solution (right) for various fractional-order
cases of ξ for Example 5 with m = 6.

6. Conclusions

In this research manuscript, we propose a novel technique based on the collocation
strategy to acquire the approximate and numerical solutions for a class of fractional-order
differential equations with various applications in science. To achieve this purpose, we
utilize a novel operational matrix of fractional order for the Morgan–Voyce polynomials
defined in the Liouville–Caputo sense combined with the collocation and Tau method.
This approach involves converting the fractional order model into an algebraic system
of equations with unknown coefficients, which are then solved to find these coefficients
efficiently. A rigorous error analysis for the presented Tau-collocation technique shows
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that the proposed technique converges to the required solution. Several examples are
illustrated to highlight the efficiency of the technique including the well-known Bagley–
Torvik and Bratu equations and other models with different fractional orders. The results
are compared with other relevant available techniques from the literature which support
the proposition of a more accurate solution with fewer bases. These results provide insight
into the behavior of the solution of the investigated models. In addition, the robustness of
the proposed algorithm is verified by providing computational time which supports the
claim. The method successfully provides accurate results highlighting the importance of the
solved model, especially of the Bagley–Torvik model which have applications in simulating
coupled oscillator. Thus, the provided methods are considered promising techniques for
simulating similar models and can be extended to some more complex problems in the
future including fractional partial differential equations with real-life applications.

Author Contributions: Conceptualization, W.A., A.A.E.-S. and M.I.; methodology W.A., M.I. and
A.A.E.-S.; software, A.A.E.-S. and W.A.; validation, A.A.E.-S., W.A. and M.I.; formal analysis, H.M.S.,
M.I., W.A. and A.A.E.-S.; funding acquisition, H.M.S.; investigation, W.A., A.A.E.-S. and M.I.; writing—
original draft preparation, A.A.E.-S., W.A. and M.I.; writing—review and editing, H.M.S., M.I., W.A.
and A.A.E.-S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not Applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers and editor for
providing helpful comments and suggestions which further improved the quality of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, K. Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-

Leffler kernel. Fractal Fract. 2022, 6, 469.
2. Zhang, T.; Li, Y. Exponential Euler scheme of multi–delay Caputo–Fabrizio fractional–order differential equations. Appl. Math.

Lett. 2022, 124, 107709.
3. Yu, F. Integrable coupling system of fractional soliton equation hierarchy. Phys. Lett. A 2009, 373, 3730–3733.
4. Bonilla, B.; Rivero, M.; Trujillo, J.J. On systems of linear fractional differential equations with constant coefficients. Appl. Math.

Comput. 2007, 187, 68–78.
5. Diethelm, K.; Ford N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248.
6. Momani, S.; Ibrahim, R.W. On a fractional integral equation of periodic functions involving Weyl-Riesz operator in Banach

algebras. J. Math. Anal. Appl. 2008, 339, 1210–1219.
7. Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B.M.V. Matrix approach to discrete fractional calculus II: Partial fractional

differential equations. J. Comput. Phys. 2009, 228, 3137–3153.
8. Bonyah, E.; Hammouch, Z.; Koksal, M.E. Mathematical modeling of coronavirus dynamics with conformable derivative in

Liouville-Caputo sense. J. Math. 2022, 2022, 353343.
9. Saraswat, A.K.; Goyal, M. Numerical simulation of time–dependent influenza model with Atangana–Baleanu non–integer order

derivative in Liouville–Caputo sense. Pramana 2022, 96, 104.
10. Gao, G.H.; Sun, Z.Z.; Zhang, H.W. A new fractional numerical differentiation formula to approximate the Caputo fractional

derivative and its applications. J. Comput. Phys. 2014, 259, 33–50.
11. Günerhan, H.; Dutta, H.; Dokuyucu, M.A.; Adel, W. Analysis of a fractional HIV model with Caputo and constant proportional

Caputo operators. Chaos Solit. Fract 2020, 139, 110053.
12. Han, C.; Wang, Y.L. Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional

derivative. Fractal Fract. 2022, 6, 207.
13. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations. In North-Holland

Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204.
14. Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions

and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520.
15. Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher

transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166.
16. Izadi, M.; Parsamanesh, M.; Adel, W. Numerical and stability investigations of the waste plastic management model in the ocean

system. Mathematics 2022, 10, 4601.



Fractal Fract. 2023, 7, 301 19 of 20

17. Adel, W. A numerical technique for solving a class of fourth-order singular singularly perturbed and Emden-Fowler problems
arising in astrophysics. Int. J. Appl. Comput. Math. 2022, 8, 220.
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47. Izadi, M.; Yüzbaşı, Ş.; Cattani, C. Approximating solutions to fractional-order Bagley–Torvik equation via generalized Bessel
polynomial on large domains. Ric. Mat. 2021, 1–27. https://doi.org/10.1007/s11587-021-00650-9

48. Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999.
49. Odibat, Z.M.; Shawagfeh, N.T. Generalized Taylor’s formula. Appl. Math. Comput. 2007, 186, 286–293.



Fractal Fract. 2023, 7, 301 20 of 20

50. Abd Elaziz El-Sayed, A.; Boulaaras, S.; Sweilam, N.H. Numerical solution of the fractional-order logistic equation via the first-kind
Dickson polynomials and spectral tau method. Math. Methods Appl. Sci. 2021, Early View. https://doi.org/10.1002/mma.7345.

51. Izadi, M.; Negar, M.R. Local discontinuous Galerkin approximations to fractional Bagley–Torvik equation. Math. Methods Appl.
Sci. 2020, 43, 4798–4813.

52. Mekkaoui, T.; Hammouch, Z. Approximate analytical solutions to the Bagley–Torvik equation by the fractional iteration method.
Ann. Univ. Craiova Math. Comput. 2012, 39, 251–256.

53. Koundal, R.; Kumar, R.; Srivastava, K.; Baleanu, D. Lucas wavelet scheme for fractional Bagley–Torvik equations: Gauss–Jacobi
approach. Int. J. Appl. Comput. Math. 2022, 8, 3.

54. Sakar, M.G.; Saldır, O.; Akgül, A. A novel technique for fractional Bagley–Torvik equation. Proc. Natl. Acad. Sci. USA 2019, 89,
539–545.

55. Gharechahi, R.; Arabameri, M.; Bisheh-Niasar, M. Numerical solution of fractional Bratu’s initial value problem using compact
finite difference scheme. Progr. Fract. Differ. Appl. 2021, 7, 103–115.

56. Babolian, E.; Javadi, S.; Moradi, E. RKM for solving Bratu-type differential equations of fractional order. Math. Methods Appl. Sci.
2016, 39, 1548–1557.

57. Izadi, M.; Srivastava, H.M. Generalized Bessel quasilinearlization technique applied to Bratu and Lane–Emden type equations of
arbitrary order. Fractal Fract. 2021, 5, 179.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Preliminaries and Notations
	Morgan–Voyce Polynomials
	Morgan–Voyce Polynomials Operational Matrices of Derivatives
	MV(t) Polynomials Integer-Order Operational Matrix of Derivatives
	MV(t) Polynomials Fractional-Order Operational Matrix of Derivatives 

	Proposed Methodology and Convergence Analysis
	Proposed Methodology
	Convergence of Morgan–Voyce bases

	Numerical Simulations
	Conclusions
	References

