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Abstract: In this paper, we aim to find unified estimates of fractional integrals involving Mittag–
Leffler functions in kernels. The results obtained in terms of fractional integral inequalities are
provided for various kinds of convex and related functions. A variant of Hadamard-type inequality
is also presented, which shows the upper and lower bounds of fractional integral operators of many
kinds. The results of this paper are directly linked with many recently published inequalities.
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1. Introduction

Special functions play very important role in mathematical analysis, complex analysis,
geometric function theory, physics, statistics, and many other subjects. Now, they are
frequently utilized in fractional calculus. For example, the Mittag–Leffler function is the
generalization of exponential, trigonometric, and hyperbolic functions, depending on the
well-known gamma function. Likewise, the beta function is also utilized to extend the
Mittag–Leffler function.

The Mittag–Leffler function appears in the solutions of fractional differential equations,
such as exponential function, which occurs in solving ordinary differential equations.
Therefore, the fractional integral operators are defined using a Mittag–Leffler function in
their kernels. Integral operators are important tools in many areas, including the theory of
integral and differential equations, approximation theory, the theory of Fourier series and
Fourier integrals, and summability theory, see [1,2].

Now, integral operators are used routinely in establishing generalized versions of clas-
sical inequalities. Among very familiar inequalities, Hadamard-, Ostrowski-, Minkowski-,
and Grüss-type inequalities are studied very commonly for fractional integral operators.
For instance, the reader can see recently published articles on Hadamard inequality in [3,4],
while, for Ostrowski inequality, we refer to [5,6].

Motivated by the recent research on fractional inequalities, the aim of this paper is to
estimate the bounds of fractional integral operators in different forms by using a certain
type of convexity. A fractional version of Hadamard inequality is provided; a lot of such
inequalities are deducible for convex, and exponentially convex functions of almost all
kinds that are directly linked with Definition 8.

In [7], the general forms of integral operators of fractional order are defined by using
the modified Mittag–Leffler function. Before defining these operators, first we provide the
definitions of gamma function, beta function, λ-beta function, and pochhammer symbol,
see [8,9].
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Definition 1 ([10,11]). The gamma function for z > 0 is provided by

Γ(z) =
∫ ∞

0
e−wwz−1dw. (1)

The k-analogue of gamma function is provided by

Γk(z) =
∫ ∞

0
wz−1e

−wk
k dw, (2)

where z ∈ C with <(z) > 0 and k > 0.

Definition 2 ([10]). The beta function is defined by

β(p, q) =
∫ 1

0
wp−1(1− w)q−1dw,

where <(p),<(q) > 0.

Definition 3 ([12]). The definition of λ−beta function is provided by

βλ(p, q) =
∫ 1

0
wp−1(1− w)q−1e−

λ
w(1−w) dw,

where min{<(p),<(q)} > 0 and <(λ) > 0.

Definition 4 ([10]). The pochhammer symbol for r ∈ C is provided by

(r)nµ =
Γ(r + nµ)

Γ(r)
. (3)

Next, we provide the definition of an integral operator that is directly linked with
many well-known fractional integral operators.

Definition 5 ([7]). Let φ : [a, b] → R be a differentiable and strictly increasing function, g
be a positive and g ∈ L1[a, b] where 0 < a < b. Furthermore, let u, ρ, z, r, σ ∈ C, <(u),
<(z) > 0, <(r) > <(ρ) > 0, λ ≥ 0, γ, ε, k > 0 with 0 < µ ≤ ε + γ. Then, for t ∈ [a, b] the
integral operators k

φκ
ρ,ε,µ,r
γ,σ,u,z,a+ g(., .) and k

φκ
ρ,ε,µ,r
γ,σ,u,z,a+ g(., .) are defined by;

(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a+ g

)
(t; λ) =

∫ t

a
(φ(t)− φ(w))

σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(t)− φ(w))

γ
k ; λ

)
g(w)d(φ(w)), (4)

and(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,b−g

)
(t; λ) =

∫ b

t
(φ(w)− φ(t))

σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(w)− φ(t))

γ
k ; λ

)
g(w)d(φ(w)) (5)

where the Mittag–Leffler function is provided by

Eρ,ε,µ,r
γ,σ,u,k(w; λ) =

∞

∑
n=0

βλ(ρ + nµ, r− ρ)

β(ρ, r− ρ)

(r)nµ

kΓk(γn + σ)

wn

(u)nε
. (6)

The above Definition 5 in particular cases provides the definitions of the fractional
integral operators defined in [13–15].

The goal of this paper is to establish the bounds for the k-fractional integral operators
provided in (4) and (5) by using a generalized class of exponentially convex functions.
In the following, we provide the definition of convex, exponentially convex, and other
important functions that will be helpful to study the linkages of this paper with already
published work.
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Definition 6 ([16,17]). Let p, q ∈ A where A ⊆ R is an interval and 0 ≤ w ≤ 1. Then, a real
valued function ζ satisfying the inequality

ζ(wp + (1− w)q) ≤ wζ(p) + (1− w)ζ(q), (7)

is called convex function on A.

Definition 7. Let a function ζ : A ⊆ R→ R, with A being an interval, satisfy the inequality

ζ(wp + (1− w)q) ≤ w
ζ(p)
eξ p + (1− w)

ζ(q)
eξq ,

∀ p, q ∈ A, 0 ≤ w ≤ 1, and ξ ∈ R. Then, ζ is called an exponentially convex function.

The aforementioned definitions motivated the researchers to define many new classes
of functions. For example, m-convex [18], exponentially m-convex [19], s-convex [20],
exponentially s-convex [21], h-convex [22], exponentially h-convex [23], (h−m)-convex [24],
exponentially (h−m)-convex [25], (s, m)-convex [18], (α, m)-convex [26], and exponentially
(α, m)-convex functions [27] are all defined after appearance of convex functions. An
exponentially (α, h− m)-convex function unifies all the above functions, and is defined
as follows:

Definition 8. Let h : B→ R be a non-negative function, where B is an interval in R that contains
(0, 1). Then, function ζ : [0, b]→ R satisfying the inequality

ζ(wp + (1− w)q) ≤ h(wα)
ζ(p)
eξ p + mh(1− wα)

ζ(q)
eξq ,

for all p, q ∈ [0, b], (α, m) ∈ [0, 1]2, 0 < w < 1, and ξ ∈ R; this is called an exponentially
(α, h−m)-convex function.

The Riemann–Liouville fractional integral operator with respect to an increasing
function is defined as follows:

Definition 9 ([28]). Let g ∈ Ł1[a, b]. Then, the Riemann–Liouville fractional integral operators of
order σ ∈ C, <(σ) > 0 are defined as follows:

φ Iσ
a+ g(t) =

1
Γ(σ)

∫ t

a
(φ(t)− φ(w))σ−1g(w)d(φ(w)), t > a, (8)

φ Iσ
b−g(t) =

1
Γ(σ)

∫ b

t
(φ(w)− φ(t))σ−1g(w)d(φ(w)), t < b, (9)

where φ is an increasing function on [a, b].

The classical Riemann–Liouville fractional integral can be obtained by setting φ(t) = t
in the above definition. It can also be noted that

(
k
φκ

ρ,ε,µ,r
γ,σ,u,0,a+ g

)
(t; 0) = φ Iσ

a+ g(t) and(
k
φκ

ρ,ε,µ,r
γ,σ,u,0,b−g

)
(t; 0) = φ Iσ

b−g(t). From k-fractional integral operators (4) and (5), one can
see that:

J σ
k ,a+(t; λ) :=

(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a+1

)
(t; λ) = k(φ(t)− φ(a))

σ
k Eρ,ε,µ,r

γ,σ+k,u,k

(
z(φ(t)− φ(a))

γ
k ; λ

)
, (10)

J τ
k ,b−(t; λ) :=

(
k
φκ

ρ,ε,µ,r
γ,τ,u,z,b−1

)
(t; λ) = k(φ(b)− φ(t))

τ
k Eρ,ε,µ,r

γ,τ+k,u,k

(
z(φ(b)− φ(t))

γ
k ; λ

)
. (11)
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Remark 1.

(i) The extended Mittag–Leffler function (6) in particular cases produces the related Mittag–Leffler
functions defined in [13,14,28–30], see [15] (Remark 1.3).

(ii) The operators (4) and (5) produce, in particular, several kinds of known fractional integral
operators, see [15] (Remark 1.4).

The rest of the paper is organized as follows: in the upcoming section in Theorem 1,
we establish estimates of fractional integral operators of Definition 5. Then, we outline
the consequences of this theorem in the form of corollaries. In Theorem 2, the continuity
of the aforementioned operators is proved. In Theorem 3, the estimates of the fractional
integrals are provided in the form of a modulus inequality; then, its consequences are
discussed. In the last theorem, a Hadamard-like inequality is proven, which generates
several important implications.

2. Main Results

Theorem 1. Let ψ, φ : [a1, a2] −→ R, be the two functions such that ψ is positive, integrable, and
exponentially (α, h−m)-convex, m ∈ (0, 1], and φ is differentiable and strictly increasing with
φ′ ∈ L1[a1, a2]. Then, for σ, τ ≥ k, ξ ∈ R, the following fractional integral inequality holds:(

k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ
)
(t; λ) +

(
k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−ψ
)
(t; λ) ≤ (t− a1)J σ

k ,a1
+(t; λ)

(
ψ(a1)

eξa1∫ 1
0 h(ζα)φ′(t− ζ(t− a1))dζ + m ψ( t

m )

eξ( t
m )

∫ 1
0 h(1− ζα)φ′(t− ζ(t− a1))dζ

)
+ (a2 − t)

J τ
k ,a2

−(t; λ)

(
ψ(a2)

eξa2

∫ 1
0h(ζ

α)φ′(ζ(a2 − t) + t)dζ+
mψ( t

m )

eξ( t
m )

∫ 1
0h(1− ζα)φ′(ζ(a2 − t) + t)dζ

)
.

(12)

Proof. Let t ∈ [a1, a2]. Then, for w ∈ [a1, t) and σ ≥ k, the following inequality holds:

(φ(t)− φ(w))
σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(t)− φ(w))

γ
k ; λ
)

φ′(w) (13)

≤ (φ(t)− φ(a1))
σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(t)− φ(a1))

γ
k ; λ
)

φ′(w).

By applying the definition of the exponentially (α, h−m)-convex function, for ξ ∈ R,
one can have

ψ(w) ≤ h
(

t− w
t− a1

)α
ψ(a1)

eξa1
+ mh

[
1−

(
t− w
t− a1

)α]ψ( t
m )

eξ( t
m )

. (14)

The following inequality is yielded after multiplication of the inequalities (13) and (14)
and then integrating on the interval [a1, t]:

∫ t

a1

(φ(t)− φ(w))
σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(t)− φ(w))

γ
k ; λ

)
φ′(w)ψ(w)dw

≤
(

φ(t)− φ(a1)

) σ
k−1

Eρ,ε,µ,r
γ,σ,u,k

(
z(φ(t)− φ(a1))

γ
k ; λ

)[
ψ(a1)

eξa1

∫ t

a1

h
(

t− w
t− a1

)α

φ′(w)dw + m
ψ( t

m )

eξ( t
m )

∫ t

a1

h
(

1−
(

t− w
t− a1

)α)
φ′(w)dw

]
.

Inequality (15) is obtained by utilizing the definition of left integral operator(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ
)
(t; λ) ≤ (t− a1)J σ

k ,a1
+(t; λ)

(
ψ(a1)

eξa1

∫ 1
0 h(ζα)φ′(t− ζ(t− a1))dζ

+m ψ( t
m )

eξ( t
m )

∫ 1
0 h(1− ζα)φ′(t− ζ(t− a1))dζ

)
.

(15)
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On the other hand, we obtain the inequality (16) for w ∈ (t, a2] and τ ≥ k:

(φ(w)− φ(t))
τ
k−1Eρ,ε,µ,r

γ,τ,u,k

(
z(φ(w)− φ(t))

γ
k ; λ
)

φ′(w)

≤ (φ(a2)− φ(t))
τ
k−1Eρ,ε,µ,r

γ,τ,u,k

(
z(φ(a2)− φ(t))

γ
k ; λ
)

φ′(w).
(16)

For ξ ∈ R, the following inequality is acquired by applying the definition of exponen-
tially (α, h−m) convex function ψ:

ψ(w) ≤ h
(

w− t
a2 − t

)α
ψ(a2)

eξa2
+ mh

[
1−

(
w− t
a2 − t

)α]ψ( t
m )

eξ( t
m )

. (17)

The following inequality is yielded after multiplication of inequalities (16) and (17)
and then integrating over [t, a2]:∫ a2

t
(φ(w)− φ(t))

τ
k−1Eρ,ε,µ,r

γ,τ,u,k

(
z(φ(w)− φ(t))

γ
k ; λ

)
φ′(w)ψ(w)dw

≤
(

φ(a2)− φ(t)
) τ

k−1

Eρ,ε,µ,r
γ,τ,u,k

(
z(φ(a2)− φ(t))

γ
k ; λ

)[
ψ(a2)

eξa2

∫ a2

t
h
(

w− t
a2 − t

)α

φ′(w)dw + m
ψ( t

m )

eξ( t
m )

∫ a2

t
h
(

1−
(

w− t
a2 − t

)α)
φ′(w)dw

]
.

Inequality (18) is obtained by utilizing the definition of the right integral operator(
k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−ψ
)
(t; λ) ≤ (a2 − t)J τ

k ,a2
−(t; λ)

(
ψ(a2)

eξa2

∫ 1
0 h(ζα)φ′(ζ(a2 − t) + t)dζ

+m ψ( t
m )

eξ( t
m )

∫ 1
0 h(1− ζα)φ′(ζ(a2 − t) + t)dζ

)
.

(18)

After doing the sum of inequalities (15) and (18), we obtain the inequality (12).

Corollary 1. Along with assumptions of Theorem 1, if ψ ∈ L∞[a1, a2], then the following inequal-
ity is established:(

k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ
)
(t; λ) +

(
k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−ψ
)
(t; λ) ≤ ||ψ||∞

[
(t− a1)J σ

k ,a1
+(t; λ)(

1
eξa1

∫ 1
0 h(ζα)φ′(t− ζ(t− a1))dζ + m

eξ( t
m )

∫ 1
0 h(1− ζα)φ′(t− ζ(t− a1))dζ

)
+ (a2 − t)

J τ
k ,a2

−(t; λ)

(
1

eξa2

∫ 1
0 h(ζα)φ′(ζ(a2 − t) + t)dζ + m

eξ( t
m )

∫ 1
0 h(1− ζα)φ′(ζ(a2 − t) + t)dζ

)]
.

(19)

Remark 2. By setting α = 1; m = 1; α = m = 1; h(t) = t; h(t) = t and α = 1; h(t) = t;
and α = m = 1 in (12), it holds for exponentially (h−m) convex, exponentially (α, h)-convex,
exponentially h-convex, exponentially (α, m) convex, exponentially m-convex, and exponentially
convex functions, respectively.

Remark 3.

(i) If we say that k = 1, φ(t) = t, h(t) = t, and ξ = 0 in (12), then we obtain [31] (Theorem 2.1).

(ii) If we set k = 1, φ(t) = t, α = 1, and ξ = 0 in (12), we obtain [32] (Theorem 1).

Theorem 2. With the assumptions of Theorem 1 if ψ ∈ L∞[a1, a2], the operators defined in
(4) and (5) are bounded.
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Proof. Using inequality (15) for ψ ∈ L∞[a1, a2], we obtained the following inequality∣∣∣(k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ
)
(t; λ)

∣∣∣ ≤ ||ψ||∞(t− a1)J σ
k ,a1

+(t; λ)∫ 1
0

(
1

eξa1
h(ζα)φ

′
(t− ζ(t− a1)) + m 1

eξ t
m

h(1− ζα)φ
′
(t− ζ(t− a1))

)
dζ

≤ ||ψ||∞(a2 − a1)J σ
k ,a1

+(a2; λ)∫ 1
0

(
1

eξa1
h(ζα)φ

′
(a2 − ζ(a2 − a1)) + m 1

eξ
q
m

h(1− ζα)φ
′
(a2 − ζ(a2 − a1))

)
dζ.

(20)

Therefore, we obtain ∣∣∣(k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ
)
(t; λ)

∣∣∣ ≤ M||ψ||∞, (21)

where

M =(a2 − a1)J σ
k ,a1

+(a2; λ)
∫ 1

0

(
1

eξa1
h(ζα)φ

′
(a2 − ζ(a2 − a1))

+
m

eξ
q
m

h(1− ζα)φ
′
(a2 − ζ(a2 − a1))

)
dζ.

One can obtain the inequality (22) by using inequality (18):∣∣∣(k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−ψ
)
(t; λ)

∣∣∣ ≤ K||ψ||∞, (22)

where

K =(a2 − a1)J τ
k ,a2

−(p, λ)
∫ 1

0

(
1

eξa2
h(ζα)φ

′
(p + ζ(a2 − a1))

+
m

eξ
a1
m

h(1− ζα)φ
′
(p + ζ(a2 − a1))

)
dζ.

Therefore,
(

k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ
)
(t; λ) and

(
k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−ψ
)
(t; λ) are bounded.

Theorem 3. Let ψ, φ : [a1, a2] −→ R, be functions such that ψ is positive and integrable, that |ψ′|
is exponentially (α, h−m)-convex, and m ∈ (0, 1] and φ are differentiable and strictly increase
with φ′ ∈ L1[a1, a2]. Then, for σ, τ ≥ k, ξ ∈ R, the following fractional integral inequality for
generalized integral operators as (4) and (5) holds:∣∣∣(k

φκ
ρ,ε,µ,r
γ,σ,u,z,a1

+(φ ∗ ψ)
)
(t, w; λ) +

(
k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−(φ ∗ ψ)
)
(t, w; λ)

∣∣∣
≤ (t− a1)J σ

k ,a1
+(t; λ)

(
|ψ′(a1)|

eξa1

∫ 1
0 hζαφ′(t− ζ(t− a1))dζ +

m|ψ′( t
m )|

eξ( t
m )

×
∫ 1

0 h(1− ζα)φ′(t− ζ(t− a1))dζ

)
+ (a2 − t)J τ

k ,a2
−(t; λ)(

|ψ′(a2)|
eξa2

∫ 1
0 hζαφ′(t + ζ(a2 − t))dζ + m |ψ

′( t
m )|

eξ t
m

∫ 1
0 h(1− ζα)φ′(t + ζ(a2 − t))dζ

)
.

(23)

where (
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+(φ ∗ ψ)
)
(t, w; λ) :=

∫ t

a1

(φ(t)− φ(w))
σ
k−1

Eρ,ε,µ,r
γ,σ,u,k

(
z(φ(t)− φ(w))

γ
k ; λ
)

φ′(w)ψ′(w)dw
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and (
k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−(φ ∗ ψ)
)
(t, w; λ) :=

∫ a2

t
(φ(w)− φ(t))

τ
k−1

Eρ,ε,µ,r
γ,τ,u,k

(
z(φ(w)− φ(t))

γ
k ; λ
)

φ′(w)ψ′(w)dw.

Proof. Let t ∈ [a1, a2] and w ∈ [a1, t). Then, for ξ ∈ R, applying the definition of exponen-
tially (α, h−m)-convexity of |ψ′|, the inequality (24) holds:

|ψ′(w)| ≤ h
(

t− w
t− a1

)α |ψ′(a1)|
eξa1

+ mh
[

1−
(

t− w
t− a1

)α] |ψ′( t
m )|

eξ( t
m )

. (24)

From the above inequality, one can obtain

ψ′(w) ≤ h
(

t− w
t− a1

)α |ψ′(a1)|
eξa1

+ mh
[

1−
(

t− w
t− a1

)α] |ψ′( t
m )|

eξ( t
m )

. (25)

Now, by multiplying inequalities (13) and (25) we obtain the following inequality:

(φ(t)− φ(w))
σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(t)− φ(w))

γ
k ; λ
)

ψ′(w)φ′(w)

≤ (φ(t)− φ(a1))
σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(t)− φ(a1))

γ
k ; λ
)

φ′(w)(
h
(

t−w
t−a1

)α
|ψ′(a1)|

eξa1
+ mh

[
1−

(
t−w
t−a1

)α]
|ψ′( t

m )|

eξ( t
m )

)
.

(26)

Further, the following inequality is yielded after integrating over [a1, t]:∫ t
a1
(φ(t)− φ(w))

σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(t)− φ(w))

γ
k ; λ
)

φ′(w)ψ′(w)dw

≤ (φ(t)− φ(a1))
σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(t)− φ(a1))

γ
k ; λ
)(
|ψ′(a1)|

eξa1

∫ t
a1

h
(

t−w
t−a1

)α

φ′(w)dw + m |ψ
′( t

m )|
eξ t

m

∫ t
a1

h
(

1−
(

t−w
t−a1

)α)
φ′(w)dw

)
= (t− a1)J σ

k ,a1
+(t; λ)

(
|ψ′(a1)|

eξa1

∫ 1
0 hζαφ′(t− ζ(t− a1))dζ + m |ψ

′( t
m )|

eξ( t
m )∫ 1

0 h(1− ζα)φ′(t− ζ(t− a1))dζ

)
.

(27)

Simplifying the left-hand side of inequality (27), we have(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+(φ ∗ ψ)
)
(t, w; λ) ≤ (t− a1)J σ

k ,a1
+(t; λ)

(
|ψ′(a1)|

eξa1∫ 1
0 hζαφ′(t− ζ(t− a1))dζ + m |ψ

′( t
m )|

eξ( t
m )

∫ 1
0 h(1− ζα)φ′(t− ζ(t− a1))dζ

)
.

(28)

From inequality (24), we have

ψ′(w) ≥ −
[

h
(

t− w
t− a1

)α |ψ′(a1)|
eξa1

+ mh
[

1−
(

t− w
t− a1

)α] |ψ′( t
m )|

eξ( t
m )

]
. (29)

Similarly, one can have the following inequality:(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+(φ ∗ ψ)
)
(t, w; λ)− (t− a1)J σ

k ,a1
+(t; λ)

(
|ψ′(a1)|

eξa1

≥
∫ 1

0 hζαφ′(t− ζ(t− a1))dζ + m |ψ
′( t

m )|

eξ( t
m )

∫ 1
0 h(1− ζα)φ′(t− ζ(t− a1))dζ

)
.

(30)
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The following inequality is obtained from inequalities (28) and (30),∣∣∣(k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+(φ ∗ ψ)
)
(t, w; λ)

∣∣∣
≤ (t− a1)J σ

k ,a1
+(t; λ)

(
|ψ′(a1)|

eξa1

∫ 1
0 hζαφ′(t− ζ(t− a1))dζ + m |ψ

′( t
m )|

eξ( t
m )∫ 1

0 h(1− ζα)φ′(t− ζ(t− a1))dζ

)
.

(31)

Now, for t ∈ [a1, a2] and w ∈ (t, a2]. Again, by using the exponentially (α, h− m)-
convexity of |ψ′| for ξ ∈ R, we have

|ψ′(w)| ≤ h
(

w− t
a2 − t

)α |ψ′(a2)|
eξa2

+ mh
[

1−
(

w− t
a2 − t

)α] |ψ′( t
m )|

eξ( t
m )

. (32)

Proceeding on the same lines as we did to obtain (31), the following inequality holds:∣∣∣(k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−(φ ∗ ψ)
)
(t, w; λ)

∣∣∣ ≤ (a2 − t)J τ
k ,a2

−(t; λ)

(
|ψ′(a2)|

eξa2∫ 1
0 hζαφ′(t + ζ(a2 − t))dζ + m |ψ

′( t
m )|

eξ( t
m )

∫ 1
0 h(1− ζα)φ′(t + ζ(a2 − t))dζ

)
.

(33)

From inequalities (31) and (33), using triangular inequality, (23) is established.

Remark 4. By setting α = 1; m = 1; α = m = 1; h(t) = t; h(t) = t and α = 1; and h(t) = t
and α = m = 1 in (23), it holds for exponentially (h−m) convex, exponentially (α, h)-convex,
exponentially h-convex, exponentially (α, m) convex, exponentially m-convex, and exponentially
convex functions, respectively.

Remark 5.

(i) If we use k = 1, φ(t) = t, h(t) = t, and ξ = 0 in (23), then we obtain [31] (Theorem 2.2).

(ii) If we use k = 1, φ(t) = t, α = 1, and ξ = 0 in (23), then we obtain [32] (Theorem 2).

It is easy to prove the next lemma that will be helpful to produce the Hadamard-type
estimations for the generalized fractional integral operators.

Lemma 1. Let ψ : [a1, ma2] → R, a1 < ma2 be exponentially (α, h− m)-convex function. If
ψ
(

a1+ma2−w
m

)
e

ξ

(
a1+ma2−w

m

) = ψ(w)
eξw and m ∈ (0, 1], then the following inequality holds:

ψ

(
a1 + ma2

2

)
≤ ψ(w)

eξw

(
h
(

1
2α

)
+ mh

(
1− 1

2α

))
. (34)

Proof. Since ψ is an exponentially (α, h−m)-convex function, one can write the follow-
ing inequality:

ψ
(

a1+ma2
2

)
≤ h

(
1

2α

)ψ
(

w−a1
ma2−a1

ma2+
ma2−w
ma2−a1

a1

)
e

ξ

(
w−a1

ma2−a1
ma2+

ma2−w
ma2−a1

a1

) + mh
(

1− 1
2α

)
ψ

 w−a1
ma2−a1

a1+
ma2−w
ma2−a1

ma2
m



e

ξ

 w−a1
ma2−a1

a1+
ma2−w
ma2−a1

ma2
m


= h

(
1

2α

)
ψ(w)
eξw + mh

(
1− 1

2α

) ψ
(

a1+ma2−w
m

)
e

ξ

(
a1+ma2−w

m

) .

(35)

Hence, by using the condition on ψ, we obtain the required inequality (34).
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Theorem 4. Let ψ, φ : [a1, a2] −→ R, a1 < ma2, be functions such that ψ be positive, integrable,

exponentially (α, h−m)-convex, and
ψ
(

a1+ma2−w
m

)
e

ξ

(
a1+ma2−w

m

) = ψ(w)
eξw , m ∈ (0, 1], and φ be differentiable and

strictly increasing with φ′ ∈ L1[a1, a2]. Then, for σ, τ ≥ k, ξ ∈ R, the following fractional integral
inequality holds:

eξw

h( 1
2α )+mh(1− 1

2α )
ψ
(

a1+ma2
2

)[
J τ

k ,a2
−(a1; λ) + J σ

k ,a1
+(a2; λ)

]
≤
(

k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−ψ
)
(a1; λ) +

(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ
)
(a2; λ)

≤
[

J τ
k ,a2

−(a1; λ) + J σ
k ,a1

+(a2; λ)
]
(a2 − a1)

(
ψ(a2)

eξa2

∫ 1
0 h(ζα)

φ′(a1 + ζ(a2 − a1))dζ +
mψ(

a1
m )

eξ( a1
m )

∫ 1
0 h(1− ζα)φ′(a1 + ζ(a2 − a1))dζ

)
.

(36)

Proof. For w ∈ [a1, a2] and τ > 0, we have

(φ(w)− φ(a1))
τ
k−1Eρ,ε,µ,r

γ,τ,u,k

(
z(φ(w)− φ(a1))

γ
k ; λ

)
φ′(w)

≤ (φ(a2)− φ(a1))
τ
k−1Eρ,ε,µ,r

γ,τ,u,k

(
z(φ(a2)− φ(a1))

γ
k ; λ

)
φ′(w).

(37)

For ξ ∈ R, applying the exponentially (α, h−m) convexity of ψ we have:

ψ(w) ≤ h
(

w− a1

a2 − a1

)α
ψ(a2)

eξa2
+ mh

[
1−

(
w− a1

a2 − a1

)α]ψ( a1
m ))

eξ
a1
m

. (38)

The following inequality is yielded after multiplication of inequalities (37) and (38)
and then integrating over the interval [a1, a2]:∫ a2

a1

(φ(w)− φ(a1))
τ
k−1Eρ,ε,µ,r

γ,τ,u,k

(
z(φ(w)− φ(a1))

γ
k ; λ

)
φ′(w)ψ(w)dw

≤ (φ(a2)− φ(a1))
τ
k−1Eρ,ε,µ,r

γ,τ,u,k

(
z(φ(a2)− φ(a1))

γ
k ; λ

) [
ψ(a2)

eξa2

∫ a2

a1

h
(

w− a1

a2 − a1

)α

φ′(w)dw + m
ψ( a1

m )

eξ
a1
m

∫ a2

a1

h
(

1−
(

w− a1

a2 − a1

)α)
φ′(w)dw

]
.

On simplifying, we obtain the inequalities (39) and (40) which are provided as:

(
k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−ψ

)
(a1; λ) ≤ (φ(a2)− φ(a1))

τ
k−1Eρ,ε,µ,r

γ,τ,u,k

(
z(φ(a2)− φ(a1))

γ
k ; λ

)
(

ψ(a2)

eξa2

∫ 1
0 h(ζα)φ′(p + ζ(a2 − a1))(a2 − a1)dζ

+m ψ(
a1
m )

eξ( a1
m )

∫ 1
0 h(1− ζα)φ′(p + ζ(a2 − a1))(a2 − a1)dζ

)
,

(39)

(
k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−ψ

)
(a1; λ) ≤ (a2 − a1) J τ

k ,a2
− (a1; λ)(

ψ(a2)
eξa2

∫ 1
0 h(ζα)φ′(p + ζ(a2 − a1))dζ + m ψ(

a1
m )

eξ( a1
m )

∫ 1
0 h(1− ζα)φ′(p + ζ(a2 − a1))dζ

)
.

(40)
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Similarly, on the other hand, the inequality (41) holds for t ∈ [a1, a2] and σ > 0
as follows:

(φ(a2)− φ(w))
σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(a2)− φ(w))

γ
k ; λ

)
φ′(w)

≤ (φ(a2)− φ(a1))
σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(a2)− φ(a1))

γ
k ; λ

)
φ′(w).

(41)

The following inequality is yielded after multiplication of inequalities (38) and (41),
and then integrating over the interval [a1, a2]:∫ a2

a1

(φ(a2)− φ(w))
σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(a2)− φ(w))

γ
k ; λ

)
φ′(w)ψ(t)dw

≤ (φ(a2)− φ(a1))
σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(a2)− φ(a1))

γ
k ; λ

) [
ψ(a2)

eξa2

∫ a2

a1

h
(

w− a1

a2 − a1

)α

φ′(w)dw + m
ψ( a1

m )

eξ
a1
m

∫ a2

a1

h
(

1−
(

w− a1

a2 − a1

)α)
φ′(w)dw

]
.

Further, we have:(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ

)
(a2; λ) ≤ (φ(a2)− φ(a1))

σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(a2)− φ(a1))

γ
k ; λ

)
(

ψ(a2)

eξa2

∫ 1
0 h(ζα)φ′(a1 + ζ(a2 − a1))(a2 − a1)dζ

+
mψ(

a1
m )

eξ( a1
m )

∫ 1
0 h(1− ζα)φ′(a1 + ζ(a2 − a1))(a2 − a1)dζ

) (42)

(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ

)
(a2; λ) ≤ (a2 − a1) J σ

k ,a1
+(a2; λ)

(
ψ(a2)

eξa2∫ 1
0 h(ζα)φ′(a1 + ζ(a2 − a1))dζ + m ψ(

a1
m )

eξ( a1
m )

∫ 1
0 h(1− ζα)φ′(a1 + ζ(a2 − a1))dζ

)
.

(43)

By summing the inequalities (40) and (43), we have;(
k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−ψ
)
(a1; λ) +

(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ
)
(a2; λ)

≤
[

J τ
k ,a2

−(a1; λ) + J σ
k ,a1

+(a2; λ)
]
(a2 − a1)

(
ψ(a2)

eξa2∫ 1
0 h(ζα)φ′(a1 + ζ(a2 − a1))dζ + m ψ(

a1
m )

eξ( a1
m )

∫ 1
0 h(1− ζα)φ′(a1 + ζ(a2 − a1))dζ

)
.

(44)

Multiplying the inequality (34) with (φ(w)− φ(a1))
τ
k−1Eρ,ε,µ,r

γ,τ,u,k

(
z(φ(w)− φ(a1))

γ
k ; λ

)
φ′(w) and then integrating it over [a1, a2], we obtain

ψ

(
a1+ma2

2

) ∫ a2
a1
(φ(w)− φ(a1))

τ
k−1Eρ,ε,µ,r

γ,τ,u,k

(
z(φ(w)− φ(a1))

γ
k ; λ

)
φ′(w)dw

≤ 1
eξw

(
h
(

1
2α

)
+ mh

(
1− 1

2α

))
∫ a2

a1
(φ(w)− φ(a1))

τ
k−1Eρ,ε,µ,r

γ,τ,u,k

(
z(φ(w)− φ(a1))

γ
k ; λ

)
φ′(w)ψ(t)dw.

(45)

Inequality (46) is obtained by utilizing inequalities (5) and (11)

ψ

(
a1+ma2

2

)
J τ

k ,a2
−(a1; λ)

≤ 1
eξw

(
h
(

1
2α

)
+ mh

(
1− 1

2α

))(
k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−ψ

)
(a1; λ).

(46)
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Multiplying inequality (34) with (φ(a2)− φ(w))
σ
k−1Eρ,ε,µ,r

γ,σ,u,k

(
z(φ(a2)− φ(w))

γ
k ; λ

)
φ′(w) and integrating it over [a1, a2], also utilizing (4) and (10), we obtain

ψ

(
a1+ma2

2

)
J σ

k ,a1
+(a2; λ)

≤ 1
eξw

(
h
(

1
2α

)
+ mh

(
1− 1

2α

))(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ

)
(a2; λ).

(47)

Adding the inequalities (46) and (47), we obtain

eξw

h( 1
2α )+mh(1− 1

2α )
ψ
(

a1+ma2
2

)[
J τ

k ,a2
−(a1; λ) + J σ

k ,a1
+(a2; λ)

]
≤
(

k
φκ

ρ,ε,µ,r
γ,τ,u,z,a2

−ψ
)
(a1; λ) +

(
k
φκ

ρ,ε,µ,r
γ,σ,u,z,a1

+ψ
)
(a2; λ).

(48)

From inequalities (44) and (48), inequality (36) can be obtained.

Remark 6. By setting α = 1; m = 1; α = m = 1; h(t) = t; h(t) = t and α = 1; and h(t) = t
and α = m = 1 in (36), it holds for exponentially (h−m) convex, exponentially (α, h)-convex,
exponentially h-convex, exponentially (α, m) convex, exponentially m-convex, and exponentially
convex functions, respectively.

3. Conclusions

Using exponential (α, h−m)-convexity, we provided the bounds of fractional integral
operators incorporating Mittag–Leffler functions. The generalization of the numerous
results proved in [31,32] are established. In the form of well-known Hadamard-like in-
equality, we presented upper as well as lower bounds for operators of various types. The
results hold for almost all kinds of convex functions. By utilizing the integral operators
studied in this paper, it is possible to generalize Ostrowski-, Gruss-, and Ostrowski-Gruss-
type inequalities. The authors are further working on fractional equations for the integral
operators utilized in this paper.
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