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Abstract: This paper investigates a class of finite-time synchronization problems of fractional order
fuzzy inertial cellular neural networks (FFICNNs) with piecewise activations and mixed delays. First,
the Caputo FFICNNs are established. A suitable transformation variable is constructed to rewrite
FFICNNs with mixed delays into a first-order differential system. Secondly, some new effective
criteria are constructed on the basis of the finite-time stability theory and Lyapunov functionals to
realize the synchronization of the drive-response system. Finally, two numerical simulation examples
show that the proposed method is effective.
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1. Introduction

Yang et al. [1,2] put forward cellular neural networks (CNNs) in 1988, which have
since been extensively investigated and applied in such fields as secondary optimiza-
tion, pattern classification, pattern recognition, associative memory, and image processing.
Yang et al. [3] put forward the fuzzy cellular neural networks (FCNNs) in 1996. Com-
pared with the CNNs, the FCNNs contains fuzzy logics, and there is a local connection
between cells [4–10]. FCNNs have superior performance applications in image encryption,
psychophysics, perception, robots, secure communication, and medical diagnosis, etc.

Babcock et al. [11] supplemented an inertial term to neural networks to make up
inertial neural networks (INNs) in 1986, which caused more complex bifurcation and
chaotic dynamic behaviors of neuron coupling as instability and concussion behaviors.
Adding an inertia term to electronic neural networks may bring about complex behaviors
such as spontaneous concussion, instability, and chaotic behavior. Moreover, there exist
significant biological backgrounds for bringing the inertial term into neural systems. Many
researchers have paid extensive attention to inertial neural networks, and have made
important progress (see [12–16]).

Fractional order calculus is an extension of integer calculus to arbitrary order, has
become a mathematical tool to solve practical problems in pattern recognition, information
processing, robot control, physics, statistics, and other fields for its superiority, which is
characterized by infinite memory considering the current states and all its previous ones.
Scholars [17–22] used fractional operators to build fractional order neural network models.

In practical application, the signals of processing and transmission between neurons
are limited by the switching speed of the amplifier, the delay time is inevitable, and this will
influence the stability of the neural networks and give rise to divergence, instability, and
oscillation in network systems. In fact, mixed delays include constant ones, time-varying
ones, and distributed ones, which are considered to be more effective than single ones at
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modeling network systems in that these simple delays are often impractical, while network
systems become more complex.

Synchronization is the dynamic behavior of the drive system and reponse system
to attain the same state after a certain time. Nowadays, much attention has been paid
to synchronization, owing to its potential applications in medicine, information science,
optimized calculation, automatic control, and other fields. At present, there are many
achievements in synchronous research. According to the convergence time, it is mainly
divided into three categories: global asymptotical synchronization, exponential synchro-
nization, and finite-time synchronization. In comparison with the global asymptotical
synchronization of neural networks, finite-time synchronization has better convergence
performance. However, the final convergence time is closely related to the initial state
of the drive-response system. To achieve synchronization quickly, we can rely on con-
trol methods—for example, feedback control, adaptive control, intermittent control, etc.
Of course, we sincerely hope that systems can achieve synchronization with practical
engineering applications in a finite time. Therefore, the research for finite-time synchro-
nization of neural networks is of great significance. At present, the research result of the
inertial neural networks’ synchronization mainly includes the following aspects. Yang
et al. [23] designed three different types of controllers by using the maximum analysis
method to ensure the global asymptotic synchronization between the drive-response sys-
tem. Feng et al. [24] investigated the exponential synchronization control of inertial neural
networks with time-varying delays. By designing Lyapunov–Krasovskii functionals and
utilizing new weighted integral inequalities, the delay-related criteria of linear matrix
inequality (LMI) are obtained. Zhang et al. [25] obtained two new strategies to solve
the synchronization for fractional neural networks with two inertia terms and a time
delay by constructing Lyapunov function and using the LMI method. Tang et al. [26]
researched the exponential synchronization of INNs with finite and discrete distributed
mixed delays by using intermittent control. Liang et al. [27] introduced the exponential
synchronization control of inertial Cohen–Grossberg neural networks with time-varying
delays. Shi et al. [28] studied the lag synchronization and global exponential stabiliza-
tion of INNs via adaptive control by constructing nonnegative function and employing
inequality techniques, and obtained several new results. Zhang et al. [29] introduced the
finite-time synchronization control of FINNs with the maximum method of functions.
Hua et al. [30] introduced a new control method to solve the finite-time synchronization
problem of IMNNs with time-varying delay. It can effectively dispose of the problems
caused by mixed delay and memristor connection weight. Chen et al. [31] design four
different kinds of feedback controllers, under which the considered inertial memristive
neural networks can realize fixed-time synchronization perfectly. Alimi et al. [32] intro-
duced the finite/fixed time synchronization of the INNs with multiple proportional delays.
Yang et al. [33] studies the synchronization control of a new FICNNs with piecewise activa-
tion and mixed delay. However, few reports are found in the existing works for finite-time
synchronization of FFICNNs with piecewise activation and mixed delay.

Motivated by these, this paper will investigate the problems of finite-time synchro-
nization analysis for a class of FFICNNs with piecewise activation and mixed delay. There
are the following primary innovations in this paper.

• The Caputo fractional order fuzzy inertial cellular neural networks model is estab-
lished. It can be used to describe many systems of internal coherence in the real
environment. In addition, it is easy to implement in engineering applications and has
important application prospects.

• A novel nonlinear controller is designed to realize the finite-time synchronization of
FFICNNs with piecewise activation and mixed delay. It is of high reliability and great
accuracy, and can better synchronize the position and motion of the system.

• The Lyapunov direct method is applied in the analysis of the inertial system to avoid
the loss of the inertia. The numerical simulation results show that the designed method
is effective. Therefore, it is of more important practical significance.
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The other parts of this paper are structured as follows. Section 2 introduces the network
system model of FICNNs with piecewise activations and mixed delays, assumptions,
lemmas, and definitions of finite-time synchronization. In Section 3, the synchronization of
the neural network system is analyzed. In Section 4, two examples are given to demonstrate
the effectiveness of the obtained results. The conclusion is revealed in Section 5.

2. Preliminaries and Problem Formulation
2.1. Preliminaries

In this article, the system model is defined by Caputo fractional order. First, some
basic definitions, lemmas, and assumptions about fractional calculus are introduced.

Definition 1 ([34]). By using Equation (1) to define the fractional integral of the function z(t),
we have

C
t0

D−α
t z(t) =

1
Γ(α)

∫ t

t0

(t− x)α−1z(x)dx, (1)

where α > 0, t > t0, Γ(·) is gamma function.

Definition 2 ([34]). By using Equation (2) to define the the fractional derivative of the function
z(t), we have

C
t0

Dα
t z(t) =

1
Γ(n− α)

∫ t

t0

(t− x)n−α−1z(n)(x)dx, (2)

where t > t0, α ∈ (m− 1, m], m ∈ Z+. If α ∈ (0, 1], then

C
t0

Dα
t z(t) =

1
Γ(1− α)

∫ t

t0

z
′
(x)

(t− x)α
dx. (3)

For simplicity, we use Dα
t z(t) to represent C

0 Dα
t z(t) in this article. Some useful lemmas

are given as follows.

Lemma 1 ([35]). Suppose that z(t) ∈ C1[0, T], T > 0 and β ∈ (0, 1], and then Equation (4) holds,

D−β
t Dβ

t z(t) = z(t)− z(0) (4)

and
Dβ

t D−β
t z(t) = z(t). (5)

Lemma 2 ([35]). Suppose that z(t) ∈ Cn[0, T] , T > 0, and then Equation (6) holds,

Dβ
t z(t) = Dβm

t · · · D
β2
t Dβ1

t z(t), (6)

where t ∈ [0, T], β = ∑m
i=1 βi, βi ∈ (0, 1], n− 1 < β ≤ n ∈ Z+, and there exist il < m s.t.

∑il
j=1 β j = l (l = 1, 2, · · ·, n− 1).

Lemma 3 ([36]). Suppose that a, b ∈ R, ∀β > 0, and then Equation (7) holds:

Dβ
t (az1(t) + bz2(t)) = aDβ

t z1(t) + bDβ
t z2(t). (7)

Lemma 4 ([37]). Suppose that z(t) ∈ C1[t0, ∞], β ∈ (0, 1], and then Equation (8) holds:

Dβ
t |z(t)| ≤ sign(z(t))Dβ

t z(t). (8)
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Lemma 5 ([38]). Suppose that function z(t) : [0,+∞]→ Rm is differentiable and bounded, and
β ∈ (0, 1], and then Equation (9) holds:

Dβ
t zT(t)z(t) ≤ 2zT(t)Dβ

t z(t). (9)

Lemma 6 ([3]). Suppose that akr, bkr, xr, yr ∈ R, hr : R → R are continuous functions for
k, r = 1, 2, · · · , m, and then Equation (10) holds:∣∣∣∣ m∧

r=1

akrhr(xr)−
m∧

r=1

akrhr(yr)

∣∣∣∣ ≤ m

∑
r=1
|akr||hr(xr)− hl(yr)|∣∣∣∣ m∨

r=1

bkrhr(xr)−
m∨

r=1

bkrhr(yr)

∣∣∣∣ ≤ m

∑
r=1
|bkr||hr(xr)− hr(yr)|

. (10)

Lemma 7 ([39]). If a1, a2, . . . , am ≥ 0, 0 < ν ≤ 1, µ > 1, then Equation (11) holds:

m

∑
k=1

aµ
k ≥ n1−µ

( m

∑
k=1

ak

)µ

,
m

∑
k=1

aν
k ≥

( m

∑
k=1

ak

)ν

. (11)

Lemma 8 ([40]). Suppose that V(t) is a nonnegative and continuous definite function, if it satisfies
the inequality Equation (12), and then Equation (13) holds,

Dq
t V(t) ≤ −cVη(t) (12)

Vq−η(t) ≤ Vq−η(t0)−
cΓ(1 + q− η)(t− t0)

q

Γ(1 + q)Γ(1− η)
, t ∈ [t0, T], (13)

where c > 0, η ∈ (0, q), and q > 0. T may be given by the following:

T = t0 +

(
Γ(1 + q)Γ(1− η)Vq−η(t0)

cΓ(1 + q− η)

) 1
q

.

2.2. Problem Formulation

In this paper, the system of the m-dimensional FFCNNs with piecewise activation and
mixed delays is defined as

D2α
t zk(t) = −akDα

t zk(t)− bkxk(t) +
m

∑
r=1

ckrhk(zr(t)) +
m

∑
r=1

dkr

∫ t

t−σ0(t)
hr(zr(s))ds

+
m

∑
r=1

gkrvk +
m∧

r=1

Pkνr +
m∧

r=1

αkrhr(zr(t− σr(t))) +
m∨

r=1

Qkνr

+
m∨

r=1

βkrhr(zr(t− σr(t))) + Ik

zk(ι) = ψk(ι), Dα
t xk(ι) = ϕk(ι), ι ∈ [−σ, t0], k = 1, · · · , m

, (14)

where 0 < α ≤ 1. zk(t) represent the state of the kth neuron. ak, bk represent the passive
decay rate to the state of kth neuron. ckr, dkr represent elements of feedback template and
gkr denotes the feedforward template. vk and Ik are input and bias of the kth neuron, respec-
tively. αkr, βkr are fuzzy feedback MIN and MAX template, Pkr, Qkr are fuzzy feedforward
MIN and MAX template. hk(·) denotes activation functions, σ0(t) and σk(t) represent the
delay of the kth neuron.
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Remark 1. The mixed delay σ meets the following conditions: σ = max
0≤r≤m{

sup
t∈R+σr(t)},

ψk(s), ϕk(s) ∈ C([−σ, t0], Rm) with C([−σ, t0], Rm) represents the Banach space of continuous
functions [−σ, t0] into Rn. If the activation functions hk(·) is piecewise, it has a Filippov solution.

We assume that the following assumptions about activation functions are satisfied.

Assumption 1. There exist nonnegative constants Lk and Sk such that

|λk − ζk| ≤ Lk|pk − qk|+ Sk, ∀pk, qk ∈ R, k = 1, 2, . . . , m, (15)

where λk ∈ co[hk(pk)] and ζk ∈ co[hk(qk)]; co represents the convex closure of the set.

Assumption 2. xi : R → R is continuous except on a countable set of isolation points {$i
k} for

each i = 1, 2, . . . , n, where there exists a finite left limit xi($
i−
k ) and right limit xi($

i+
k ). Moreover,

gi has at most a finite number of jump discontinuities in every compact interval of R.

Remark 2. Assumptions 1 and 2 are not restrictive. Generally, the neural network model can
satisfy Assumptions 1 and 2 in [41–43]. In addition, to obtain the main results, the concept of
Filippov solution, which comes from Filippov for system (14), is given.

Definition 3. If (i) and (ii) are satisfied, then the function z = (z1, z2, . . . , zm)T is said to be a
solution of system (14) on [−σ, T). Here, σ = max

0≤r≤m{
sup

t∈R+σr(t)}, T ∈ (0,+∞).
(i) The function z = (z1, z2, . . . , zm)T is continuous in the interval [−σ, T), and it is abso-

lutely continuous in the interval [0, T).
(ii) The λ = (λ1, λ2, . . . , λm)T : [−σ, T)→ Rm is a measurable function, such that λl(t) ∈

co[hk(zl(t))] for t ∈ [−σ, T] and

D2α
t zk(t) = −akDα

t zk(t)− bkzk(t) +
m

∑
r=1

ckrλr(t) +
m

∑
r=1

dkr

∫ t

t−σ0(t)
λr(s)ds

+
m

∑
r=1

gkrvk +
m∧

r=1

Pkνr +
m∧

r=1

αkrλr(t− σr(t)) +
m∨

r=1

Qkνr

+
m∨

r=1

βkrλr(t− σr(t)) + Ik, k = 1, · · · , m

. (16)

Let gk(t) = Dα
t zk(t) + ξkzk(t), where ξk is constant. According to Lemmas 2 and 3, the

system (16) can be transformed into the Equation (17), and it is chosen as the drive system.
We have 

Dα
t zk(t) = −ξkzk(t) + gk(t)

Dα
t gk(t) = −φkgk(t) + δkzk(t) +

m

∑
r=1

ckrλr(t) +
m

∑
r=1

dkr

∫ t

t−σ0(t)
λr(s)ds

+
m

∑
r=1

gkrvr +
m∧

r=1

Pkνr +
m∧

r=1

αkrλr(t− σr(t)) +
m∨

r=1

Qkνr

+
m∨

r=1

βkrλr(t− σr(t)) + Ik, k = 1, 2, . . . , m

, (17)

where φk = ak − ξk, δk = −ξ2
k + ξkak − bk, and Equation (18) is the initial value of system.

We have {
zk(ι) = ψk(ι)

gk(ι) = ξkψk(ι) + ϕk(ι), ι ∈ [−σ, t0].
(18)
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Now, we choose the system (19) as the response system. We have

Dα
t pk(t) = −ξk pk(t) + qk(t) + uk(t)

Dα
t qk(t) = −φkqk(t) + δk pk(t) +

m

∑
r=1

ckrζr(t) +
m

∑
r=1

dkr

∫ t

t−σ0(t)
ζr(s)ds

+
m

∑
r=1

gkrvr +
m∧

r=1

Pkνr +
m∧

r=1

αkrζr(t− σr(t)) +
m∨

r=1

Qkνr

+
m∨

r=1

βkrζr(t− σr(t)) + Ik + ũk(t), k = 1, 2, . . . , m

, (19)

where ũk(t), uk(t) represent the designed controller. Equation (20) is the error system:{
θk(t) = pk(t)− zk(t)

θ̃k(t) = qk(t)− gk(t).
(20)

According to Equation (17) and Equation (19), we obtain

Dα
t θk(t) = −ξkθk(t) + θ̃k(t) + uk(t)

Dα
t θ̃k(t) = −φk θ̃k(t) + δkθk(t) +

m

∑
r=1

ckrζr(t)−
m

∑
r=1

ckrλr(t)

+
m

∑
r=1

dkr

∫ t

t−σ0(t)
ζr(s)ds−

m

∑
r=1

dkr

∫ t

t−σ0(t)
λr(s)ds

+
m∧

r=1

αkrζr(t− σr(t))−
m∧

r=1

αkrλr(t− σr(t))

+
m∨

r=1

βkrζr(t− σr(t))−
m∨

r=1

βkrλr(t− σr(t))

+ ũk(t), k = 1, 2, . . . , m

. (21)

The structure of this FICNN is shown in Figure 1.

Figure 1. Framework of feedback control.
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Definition 4 ([32]). The drive system(17) and response systems (19) are synchronized within a
finite time, if T > t0 exists under properly designed controllers ũk(t), uk(t), such that

lim
t→T
‖pk(t)− zk(t)‖ = lim

t→T
‖qk(t)− gk(t)‖ = 0

and ‖pk(t)− zk(t)‖ = ‖qk(t)− gk(t)‖ = 0 for all t > T, k = 1, 2, . . . , m.

3. Finite-Time Synchronization

In this section, we will design controller uk(t), ũk(t) to get the finite-time synchroniza-
tion between the drive-response systems. The controller is designed,

uk(t) = −ρsign
(

θk(t)
)(∣∣θk(t)

∣∣µ + ωk
∣∣θk(t− σk(t))

∣∣)− kkθk(t)

ũk(t) = −sign
(

θ̃k(t)
)(

ηk2 + ρ
∣∣θ̃k(t)

∣∣µ)− ηk1θ̃k(t)

−
m

∑
r=1

dkr

( ∫ t

t−σ0(t)
ζr(s)ds−

∫ t

t−σ0(t)
λr(s)ds

)
,

, (22)

where 0 < µ < 1, ρ > 0, kk, ωk, ηk1, and ηk2 are the control parameters.

Theorem 1. Assumptions 1 and 2 are true if the following conditions (23) hold; then, the system
(17) and (19) can achieve finite-time synchronization under controller (22). We have

ηk1 ≥ 1− φk

ηk2 ≥
m

∑
r=1

(
|αkr|+ |βkr|+ |ckr|

)
Sr

kk ≥
m

∑
r=1
|crk|Lk + δk − ξk

ωk ≥
m

∑
r=1

(
|αkr|+ |βkr|

)
Lk

(23)

for k = 1, 2, . . . , m. Furthermore, the T can be calculated by Equation (24),

T = t0 +

(
Γ(1 + α)Γ(1− µ)Vα−µ(t0)

cΓ(1 + α− µ)

) 1
α

, (24)

where

V(t0) =
m

∑
k=1

∣∣θk(t0)
∣∣+ m

∑
k=1

∣∣θ̃k(t0)
∣∣.

Proof. Select the following Lyapunov function:

V(t) =
m

∑
k=1

∣∣θk(t)
∣∣+ m

∑
k=1

∣∣θ̃k(t)
∣∣. (25)

According to Lemmas 3 and 4, the derivative of V(t) is calculated, and we obtain
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Dα
t V(t) ≤

m

∑
k=1

sign
(
θk(t)

)
Dα

t θk(t) +
m

∑
k=1

sign
(
θ̃k(t)

)
Dα θ̃k(t)

=
m

∑
k=1

sign
(
θk(t)

)(
− ξkθk(t) + θ̃k(t) + uk(t)

)
+

m

∑
k=1

sign
(
θ̃k(t)

)(
− φk θ̃k(t) + δkθk(t)

+
m

∑
r=1

ckrζr(t)−
m

∑
r=1

ckrλr(t) +
m

∑
r=1

dkr

∫ t

t−σ0(t)
ζr(s)ds−

m

∑
r=1

dkr

∫ t

t−σ0(t)
λr(s)ds

+
m∧

r=1

αkrζr(t− σr(t))−
m∧

r=1

αkrλr(t− σr(t))

+
m∨

r=1

βkrζr(t− σr(t))−
m∨

r=1

βkrλr(t− σr(t)) + ũk(t)
)

. (26)

Substituting the controller (22) into Equation (26), and we have

Dα
t V(t) ≤

m

∑
k=1

sign
(
θk(t)

)(
− ξkθk(t) + θ̃k(t)− kkθk(t)− sign

(
θk(t)

)(
ρ
∣∣θk(t)

∣∣µ
+ ωk

∣∣θk(t− σk(t))
∣∣))+

m

∑
k=1

sign
(
θ̃k(t)

)(
− φk θ̃k(t) + δkθk(t) +

m

∑
r=1

ckrζr(t)

−
m

∑
r=1

ckrλr(t) +
m

∑
r=1

dkr

∫ t

t−σ0(t)
ζr(s)ds−

n

∑
r=1

dkr

∫ t

t−σ0(t)
λr(s)ds

+
m∧

r=1

αkrζr(t− σr(t))−
m∧

r=1

αkrλr(t− σr(t))

+
m∨

r=1

βkrζk(t− σr(t))−
m∨

r=1

βkrλr(t− σr(t))− ηk1θ̃k(t)

− sign
(
θ̃k(t)

)(
ηk2 + ρ

∣∣θ̃k(t)
∣∣µ)− m

∑
r=1

dkr

∫ t

t−σ0(t)
ζr(s)ds

+
m

∑
r=1

dkr

∫ t

t−σ0(t)
λr(s)ds

)

,

which yields

Dα
t V(t) ≤

m

∑
k=1

[
− ξk − kk + δk

]∣∣θk(t)
∣∣+ m

∑
k=1

[
1 + φk − ηk1

]∣∣θ̃k(t)
∣∣

−
m

∑
k=1

ωk
∣∣θk(t− σk(t))

∣∣− m

∑
k=1

ρ
∣∣θk(t)

∣∣µ − m

∑
k=1

(
ηk1 + ρ

∣∣θ̃k(t)
∣∣µ)

+
m

∑
k=1

∣∣ m∧
r=1

αkrζr(t− σr(t))−
m∧

r=1

αkrλr(t− σr(t))
∣∣

+
m

∑
k=1

∣∣ m∨
r=1

βkrζr(t− σr(t))−
m∨

r=1

βkrλr(t− σr(t))
∣∣

+
m

∑
k=1

m

∑
r=1

∣∣ckr
∣∣∣∣ζr(t)− λl(t)

∣∣

.
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According to Assumption 1, we have

m

∑
k=1

m

∑
r=1

∣∣ckr
∣∣∣∣ζr(t)− λr(t)

∣∣ ≤ m

∑
k=1

m

∑
r=1

∣∣ckr
∣∣(Lr

∣∣θr(t)
∣∣+ Sr

)
=

m

∑
k=1

m

∑
r=1

∣∣crk
∣∣(Lk

∣∣θk(t)
∣∣+ Sk

).
By using Assumption 1 and Lemma 6, we have∣∣∣∣ m∧

r=1

αkrζr(t− σr(t))−
m∧

r=1

αkrλr(t− σr(t))
∣∣∣∣ ≤ m

∑
k=1

∣∣αkr
∣∣∣∣ζr(t− σr(t))− λr(t− σr(t))

∣∣
≤

m

∑
r=1

∣∣αrk
∣∣(Lr

∣∣θr(t− σr(t))
∣∣+ Sr

) .

Similarly,∣∣∣∣ m∨
r=1

βkrζr(t− σr(t))−
m∨

r=1

βkrλr(t− σr(t))
∣∣∣∣ ≤ m

∑
k=1

∣∣βkr
∣∣∣∣ζr(t− σr(t))− λr(t− σr(t))

∣∣
≤

m

∑
r=1

∣∣βrk
∣∣(Lr

∣∣θr(t− σr(t))
∣∣+ Sr

) .

By using the above inequality, we have

Dα
t V(t) ≤

m

∑
k=1

[
− ξk − kk + δk +

m

∑
r=1

∣∣crkLk
∣∣]∣∣θk(t)

∣∣+ m

∑
k=1

[
1 + φk − ηk1

]∣∣θ̃k(t)
∣∣

+
m

∑
k=1

( m

∑
r=1

(∣∣αrk
∣∣+ ∣∣βrk

∣∣)Lk −ωk

)∣∣θk(t− σk(t))
∣∣

+
m

∑
k=1

( m

∑
r=1

(∣∣αkr
∣∣+ ∣∣βkr

∣∣+ ∣∣ckr
∣∣)Sr − ηk2

)
−

m

∑
k=1

c
∣∣θk(t)

∣∣µ − m

∑
k=1

c
∣∣θ̃k(t)

∣∣µ
. (27)

By using Lemma 7, it follows that

Dα
t V(t) ≤ −

m

∑
k=1

c
∣∣θk(t)

∣∣µ − m

∑
k=1

c
∣∣θ̃k(t)

∣∣µ
≤ −c

( m

∑
k=1

∣∣θk(t)
∣∣+ m

∑
k=1

∣∣θ̃k(t)
∣∣)µ

= −cVµ(t)

.

Therefore, the drive (17) and the response (19) system can achieve to synchronization
in the finite-time by Lemma 8.

Remark 3. The finite-time synchronization of FFICNNs with piecewise activations and mixed
delays is achieved by constructing a suitable controller in Theorem 1. However, the control laws
uk(t) and ũk(t) are not easily adaptive, and they must meet some special conditions. Therefore, we
will optimize the applicable laws uk(t) and ũk(t) to improve the feasibility.
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The controller is redesigned as follows,

uk(t) =− kk1θk(t)− kk2sign
(

θk(t)
)∣∣θk(t)

∣∣µ
ũk(t) =− ηk1θ̃k(t)− sign

(
θ̃k(t)

)(
ηk2
∣∣θ̃k(t)

∣∣µ + ωk
∣∣θk(t− σk(t))

∣∣
+

m

∑
r=1

Lr
∣∣dkr

∣∣ ∫ t

t−σ0(t)

∣∣θr(s)
∣∣ds + ρk

)
,

(28)

where 0 < µ < 1, kk1, kk2, ηk1, ηk2, ρk, ωk are the control parameters. Then we have the
following theorem.

Theorem 2. Assumptions 1 and 2 are true if the following conditions (29) hold, and then the
system (17) and (19) can achieve finite-time synchronization under controller (28). We have

kk1 ≥
1
2
+

1
2

δk +
1
2

m

∑
r=1

Lk|crk| − ξk

ηk1 ≥
1
2
+

1
2

δk +
1
2

m

∑
r=1

Lr|ckr| − φk

ρk ≥
m

∑
r=1

(
|αkr|+ |βkr|+ |ckr|+ σ|dkr|

)
Sr

ωk ≥
m

∑
r=1

(
|αkr|+ |βkr|

)
Lr

kk2 > 0, ηk2 > 0

(29)

for k = 1, 2, . . . , m. Furthermore, the T can be calculated by Equation (30),

T = t0 +

(Γ
(

1 + α

)
Γ
(

1−µ
2

)
V

2α−µ−1
2 (t0)

cΓ
(

2α−µ+1
2

) ) 1
α

, (30)

where

V(t0) =
1
2

m

∑
k=1

θ2
k (t0) +

1
2

m

∑
k=1

θ̃2
k (t0).

Proof. Select the following Lyapunov function:

V(t) =
1
2

m

∑
k=1

θ2
k (t) +

1
2

m

∑
k=1

θ̃2
k (t). (31)
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Calculating the derivative of V(t), according to Lemma 3, 5, we have

Dα
t V(t) ≤

m

∑
k=1

θk(t)Dα
t θk(t) +

m

∑
k=1

θ̃k(t)Dα θ̃k(t)

=
m

∑
k=1

θk(t)
(
− ξkθk(t) + θ̃k(t) + uk(t)

)
+

m

∑
k=1

θ̃k(t)
(
− φk θ̃k(t) + δkθk(t)

+
m

∑
r=1

ckrζr(t)−
m

∑
r=1

ckrλr(t) +
m

∑
r=1

dkr

∫ t

t−σ0(t)
ζr(s)ds−

m

∑
r=1

dkr

∫ t

t−σ0(t)
λr(s)ds

+
m∧

r=1

αkrζr(t− σr(t))−
m∧

r=1

αkrλr(t− σr(t))

+
m∨

r=1

βkrζr(t− σr(t))−
m∨

r=1

βkrλr(t− σr(t)) + ũk(t)
)

.

(32)
Substituting the controller (28) into Equation (32), we have

Dα
t V(t) ≤

m

∑
k=1

θk(t)
(
− ξkθk(t) + θ̃k(t)− kk1θk(t)− kk2sign

(
θk(t)

)∣∣θk(t)
∣∣µ)

+
m

∑
k=1

θ̃k(t)
(
− φk θ̃k(t) + δkθk(t) +

m

∑
r=1

ckrζr(t)−
m

∑
r=1

ckrλr(t) +
m

∑
r=1

dkr

∫ t

t−σ0(t)
ζr(s)ds

−
m

∑
r=1

dkr

∫ t

t−σ0(t)
λr(s)ds +

m∧
r=1

αkrζr(t− σr(t))−
m∧

r=1

αkrλr(t− σr(t))

+
m∨

r=1

βkrζr(t− σr(t))−
m∨

r=1

βkrλr(t− σr(t))− ηk1θ̃k(t)

− sign
(

θ̃k(t)
)(

ηk2
∣∣θ̃k(t)

∣∣µ + ρk

)
− sign

(
θ̃k(t)

)
ωk
∣∣θk(t− σk(t))

∣∣)
− sign

(
θ̃k(t)

) m

∑
r=1

Lr
∣∣dkr

∣∣ ∫ t

t−σ0(t)

∣∣θr(s)
∣∣ds
)

,

which yields

Dα
t V(t) ≤ −

m

∑
k=1

ξkθ2
k (t) +

m

∑
k=1

∣∣θk(t)
∣∣∣∣θ̃k(t)

∣∣− m

∑
k=1

kk1θ2
k (t)−

m

∑
k=1

kk2
∣∣θk(t)

∣∣µ+1

−
m

∑
k=1

φk θ̃2
k (t) +

m

∑
k=1

δk
∣∣θk(t)

∣∣∣∣θ̃k(t)
∣∣+ m

∑
k=1

m

∑
r=1

∣∣ckr
∣∣∣∣ζr(t)− λr(t)

∣∣∣∣θ̃r(t)
∣∣

+
m

∑
k=1

m

∑
r=1

∣∣dkr
∣∣∣∣θ̃k(t)

∣∣∣∣∣∣ ∫ t

t−σ0(t)
ζr(s)ds−

∫ t

t−σ0(t)
λr(s)ds

∣∣∣∣
+

m

∑
k=1

∣∣θ̃k(t)
∣∣∣∣∣∣ m∧

r=1

αkrζr(t− σr(t))−
m∧

r=1

αkrλr(t− σr(t))
∣∣∣∣

+
m

∑
k=1

∣∣θ̃k(t)
∣∣∣∣∣∣ m∨

r=1

βkrζr(t− σr(t))−
m∨

r=1

βkrλr(t− σr(t))
∣∣∣∣

−
m

∑
k=1

ηk1θ̃2
k (t)−

m

∑
k=1

(
ηk2
∣∣θ̃k(t)

∣∣µ+1
+ ρk

∣∣θ̃k(t)
∣∣)− m

∑
k=1

ωk
∣∣θk(t− σk(t))

∣∣∣∣θ̃k(t)
∣∣

−
m

∑
k=1

m

∑
r=1

Lr
∣∣dkr

∣∣∣∣θ̃k(t)
∣∣ ∫ t

t−σ0(t)

∣∣θr(s)
∣∣ds

.

According to Assumption 1 and Lemma 6, we have
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m

∑
k=1

m

∑
r=1

∣∣ckr
∣∣∣∣θ̃k(t)

∣∣∣∣ζr(t)− λr(t)
∣∣ ≤ m

∑
k=1

m

∑
r=1

∣∣ckr
∣∣∣∣θ̃k(t)

∣∣(Lr
∣∣θr(t)

∣∣+ Sr
)

≤
m

∑
k=1

m

∑
r=1

Lk
∣∣ckr
∣∣(1

2
θ2

r (t) +
1
2

θ̃2
r (t)

)
+

m

∑
k=1

m

∑
r=1

Sr
∣∣ckr
∣∣∣∣θ̃k(t)

∣∣
and

m

∑
k=1

m

∑
r=1

∣∣dkr
∣∣∣∣θ̃k(t)

∣∣∣∣∣∣ ∫ t

t−σ0(t)
ζk(s)ds−

∫ t

t−σ0(t)
λr(s)ds

∣∣∣∣
≤

m

∑
k=1

m

∑
r=1

∣∣dkr
∣∣∣∣θ̃k(t)

∣∣ ∫ t

t−σ0(t)

∣∣ζr(s)− λr(s)
∣∣ds

≤
m

∑
k=1

m

∑
r=1

∣∣dkr
∣∣∣∣θ̃k(t)

∣∣ ∫ t

t−σ0(t)

(
Lr
∣∣θr(s)

∣∣+ Sr
)
ds

≤
m

∑
k=1

m

∑
r=1

Lr
∣∣dkr

∣∣∣∣θ̃k(t)
∣∣ ∫ t

t−σ0(t)

∣∣θr(s)
∣∣ds

+
m

∑
k=1

m

∑
r=1

σSr
∣∣dkr

∣∣∣∣θ̃k(t)
∣∣

,

so we can easily get

m

∑
k=1

∣∣θ̃k(t)
∣∣∣∣∣∣ m∧

r=1

αkrζr(t− σr(t))−
m∧

r=1

αkrλr(t− σr(t))
∣∣∣∣

≤
m

∑
k=1

m

∑
r=1

∣∣αkr
∣∣∣∣θ̃k(t)

∣∣∣∣ζr(t− σr(t))− λr(t− σr(t))
∣∣

≤
m

∑
k=1

m

∑
r=1

∣∣αrk
∣∣∣∣θ̃k(t)

∣∣(Lr
∣∣θr(t− σr(t))

∣∣+ Sr
)

.

Similarly,

m

∑
k=1

∣∣θ̃k(t)
∣∣∣∣∣∣ m∨

r=1

βkrζr(t− σr(t))−
m∨

r=1

βkrλr(t− σr(t))
∣∣∣∣

≤
m

∑
k=1

∣∣βkr
∣∣∣∣θ̃k(t)

∣∣∣∣ζr(t− σr(t))− λr(t− σr(t))
∣∣

≤
m

∑
r=1

∣∣βkr
∣∣∣∣θ̃k(t)

∣∣(Lk
∣∣θk(t− σk(t))

∣∣+ Sr
)

.

We further obtain the following inequality:

Dα
t V(t) ≤

m

∑
k=1

[
1
2
+

1
2

δk +
1
2

m

∑
l=1

Lk
∣∣clk
∣∣− ξk − kk1

]
θ2

k (t)

+
m

∑
k=1

[
1
2
+

1
2

δk +
1
2

m

∑
r=1

Lr
∣∣ckl
∣∣− φk − ηk1

]
θ̃2

k (t)

+
m

∑
k=1

[ m

∑
r=1

(
|αkr|+ |βkr|+ |ckr|+ σ|dkr|

)
Sr − ρk

]∣∣θ̃k(t)
∣∣

+
m

∑
k=1

[ m

∑
r=1

(
|αkr|+ |βkr|

)
Lr −ωk

]∣∣ẽk(t)
∣∣∣∣θk(t− σk(t))

∣∣
−

m

∑
k=1

kk2
∣∣θk(t)

∣∣µ+1 −
m

∑
k=1

ηk2
∣∣θ̃k(t)

∣∣µ+1

.



Fractal Fract. 2023, 7, 294 13 of 23

By using Lemma 7, we obtain

Dα
t V(t) ≤ −

m

∑
k=1

kk2
∣∣θk(t)

∣∣µ+1 −
m

∑
k=1

ηk2
∣∣θ̃k(t)

∣∣µ+1

≤ −min{min{kk2}, min{ηk2}}
m

∑
k=1

[∣∣θk(t)
∣∣µ+1

+
∣∣θ̃k(t)

∣∣µ+1
]

≤ −min{min{kk2}, min{ηk2}}
m

∑
k=1

[∣∣θk(t)
∣∣2 + ∣∣θ̃k(t)

∣∣2] µ+1
2

≤ −min{min{kk2}, min{ηk2}}2
µ+1

2 V
µ+1

2 (t)

= −γV
µ+1

2 (t)

,

where γ = min{min{ki2}, min{ηi2}}2
µ+1

2 . Therefore, the drive (17) and the response (19)
system can achieve synchronization in the finite time by Lemma 8.

4. Numerical Simulations

In this section, we use two numerical examples to verify the validity of the results of
Theorems 1 and 2.

Example 1. Consider a two-dimensional FFINNs with piecewise activations and mixed delay.
The drive system is given by

Dα
t zk(t) = −ξkzi(t) + gk(t)

Dα
t gk(t) = −φkgk(t) + δkzk(t) +

2

∑
r=1

ckrλr(t) +
2

∑
r=1

dkr

∫ t

t−σ0(t)
λr(s)ds

+
2

∑
r=1

gkrvr +
2∧

r=1

Pkνr +
2∧

r=1

αkrλr(t− σr(t)) +
2∨

r=1

Qkνr

+
2∨

r=1

βkrλr(t− σr(t)) + Ik, k = 1, 2

(33)

and the response system

Dα
t pk(t) = −ξk pk(t) + qk(t) + uk(t)

Dα
t qk(t) = −φkqk(t) + δk pk(t) +

2

∑
r=1

ckrζr(t) +
2

∑
r=1

dkr

∫ t

t−σ0(t)
ζr(s)ds

+
2

∑
r=1

gkrvr +
2∧

r=1

Pkνr +
2∧

r=1

αkrζr(t− σr(t)) +
2∨

r=1

Qkνr

+
2∨

r=1

βkrζr(t− σr(t)) + Ik + ũk(t), k = 1, 2.

, (34)

where

hk(x) =

{
tanh(x) + 0.8, x ≥ 0

tanh(x)− 0.8, x < 0
.

Obviously, hk(x) satisfies Assumptions 1 and 2 with Lk = 1, Sk = 1, k = 1, 2. The
parameters of drive (33) and response (34) system are chosen as follows:
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

α = 0.95;

a1 = 3, a2 = 2, b1 = b2 = 1, ξ1 = 0.2, ξ2 = 0.1;

c11 = c21 = −0.1, c12 = 0.3, c22 = 0.2

α11 = α12 = α21 = α22 = −0.01;

β11 = β12 = β21 = β22 = 0.1;

d11 = d12 = d21 = d22 = −0.1;

I1 = 0.2, I2 = 0.5, σk(t) = 0.3 cos(2t) + 0.7, k = 1, 2

.

The controller is designed as follows:

uk(t) = −kkek(t)− ρsign
(

ek(t)
)(∣∣ek(t)

∣∣µ + ωk
∣∣ek(t− σk(t))

∣∣)
ũk(t) = −ηk1 ẽk(t)− sign

(
ẽk(t)

)(
ηk2 + ρ

∣∣ẽk(t)
∣∣µ)

−
2

∑
r=1

dkr

∫ t

t−σ0(t)
ζr(s)ds +

2

∑
r=1

dkr

∫ t

t−σ0(t)
λr(s)ds.

. (35)

The controller parameters are as follows:{
k1 = 2, k2 = 2, ω1 = 1, ω2 = 1, ρ = 4;

η11 = η12 = η21 = η22 = 2, µ = 0.8
.

The initial conditions are given as{
z1(t) = 2, z2(t) = 3, g1(t) = 4, g2(t) = 1;

p1(t) = 4, p2(t) = 1, q1(t) = 2, q2(t) = 4
.

The time T is calculated by Theorem 1, which means that (34) and (35) can achieve
synchronization in a finite time T. Furthermore, here T = 1.7220.

Figures 2–4 show the simulation results of the drive(33) and response(34) system.
Figures 2 and 3 show the trajectories of states p(t) and z(t), and q(t) and g(t), respectively.
Equation (34) indeed converges to (33) with the controller (35) in T, and the convergence
error continues to remain zero. The time evolution of synchronization errors θ(t) and θ̃(t)
between systems (33) and (34) are presented in Figure 4. Simulation results show that the
main results of the finite-time synchronization entrenched are correct in this article.
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Figure 2. Time responses of p(t) and z(t).
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Figure 3. Time responses of q(t) and g(t).
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Figure 4. Synchronization error θ(t) and θ̃(t) between the drive-response system

Example 2. Consider a two-dimensional FFINNs with piecewise activations and mixed delay.
The drive system is given by

Dα
t zk(t) = −ξkzk(t) + gk(t)

Dα
t gk(t) = −φkgk(t) + δkzk(t) +

2

∑
r=1

ckrλr(t) +
2

∑
r=1

dkr

∫ t

t−σ0(t)
λr(s)ds

+
2

∑
r=1

gkrvr +
2∧

r=1

Pkνr +
2∧

l=1

αkrλr(t− σr(t)) +
2∨

r=1

Qkνr

+
2∨

r=1

βkrλr(t− σr(t)) + Ik, k = 1, 2

. (36)

and the response system is given by

Dα
t pk(t) = −ξk pk(t) + qk(t) + uk(t)

Dα
t qk(t) = −φkqk(t) + δk pk(t) +

2

∑
r=1

ckrζl(t) +
2

∑
r=1

dkr

∫ t

t−σ0(t)
ζr(s)ds

+
2

∑
r=1

gkrvr +
2∧

r=1

Pkνr +
2∧

r=1

αkrζr(t− σr(t)) +
2∨

r=1

Qkνr

+
2∨

r=1

βkrζr(t− σr(t)) + Ik + ũk(t), k = 1, 2

, (37)



Fractal Fract. 2023, 7, 294 18 of 23

where

hk(x) =

{
tanh(x) + 0.5, x ≥ 0

tanh(x)− 0.5, x < 0
.

Obviously, hk(x) satisfies Assumptions 1 and 2 with Lk = 1, Sk = 1, k = 1, 2. The
parameters of drive (33) and response (34) system are chosen as follows:

α = 0.95;

a1 = b2 = 1, a2 = b1 = 2, ξ1 = 0.2, ξ2 = 0.1;

c11 = c21 = −0.2, c12 = c22 = 0.1

α11 = α12 = α21 = α22 = −1;

β11 = β12 = β21 = β22 = 0.5;

d11 = d21 = −0.1, d12 = d22 = 0.2;

I1 = 0.2, I2 = 0.5, σk(t) = 0.3 cos(2t) + 0.7, k = 1, 2

.

The controller is designed as follows:

uk(t) =− kk1θk(t)− kk2sign
(

θk(t)
)∣∣θk(t)

∣∣µ
ũk(t) =− ηk1θ̃k(t)− sign

(
θ̃k(t)

)(
ηk2
∣∣θ̃k(t)

∣∣µ + ωk
∣∣θk(t− σk(t))

∣∣
+

2

∑
r=1

Lr
∣∣dkr

∣∣ ∫ t

t−σ0(t)

∣∣θr(s)
∣∣ds + ρk

) . (38)

The controller parameter is given by{
k11 = k21 = 6, k12 = k22 = 4, ω1 = 1.2, ω2 = 0.8;

η11 = η21 = 6, η12 = η21 = 2, ρ1 = ρ2 = 9, µ = 0.7
.

The initial conditions are given as{
z1(t) = 5, z2(t) = 3, g1(t) = −4, g2(t) = 3;

p1(t) = −5, p2(t) = −2, q1(t) = 2, q2(t) = 6
.

The time T is calculated by Theorem 2, which means that (37) and (38) can achieve
synchronization in a finite time T. Furthermore, here T = 1.9082.

Figures 5–7 show the simulation results of the drive(36)-response(37) system.
Figures 5 and 6 show the trajectories of states p(t) and z(t) , q(t) and g(t), respectively.
Equation (37) indeed converges to (36) with the controller (38) in T, and the convergence
error continues to remain zero. The time evolution of synchronization errors θ(t) and θ̃(t)
between systems (36) and (37) are presented in Figure 7. Simulation results show that the
main results of the finite-time synchronization entrenched are correct in this article.
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Figure 5. Time responses of p(t) and z(t).
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Figure 6. Time responses of q(t) and g(t).
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Figure 7. Synchronization error θ(t) and θ̃(t) between the drive-response system.

5. Conclusions

In this paper, a class of fractional order fuzzy inertial cellular neural network system
with piecewise activation and mixed delay is proposed, and the finite-time synchronization
of the system is discussed. By using the finite-time stability theory, Lyapunov functionals,
and analytical techniques, some novel methods for finite-time synchronization of drive-
response systems are obtained. Finally, two numerical simulation examples show that the
proposed method is effective. In the future, we propose to expand our results to better
apply FFINNs and implement it by designing hardware. The more efficient control laws
will be considered, which is a challenging topic.
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