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Abstract: We propose an adaptive radial basis (RBF) neural network controller based on Lyapunov
stability theory for uncertain fractional-order time-delay chaotic systems (FOTDCSs) with different
time delays. The controller does not depend on the system model and can achieve synchronous control
under the condition that nonlinear uncertainties and external disturbances are completely unknown.
Stability analysis showed that the error system asymptotically tended to zero in combination with
the relevant lemma. Numerical simulation results show the effectiveness of the controller.
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1. Introduction

The theory of fractional calculus has been developed for more than 300 years, but
due to a lack of effective computing means, its research has been in the field of pure
mathematics, and its development has been slow. With the continuous development of
computer technology, the application of fractional calculus in engineering practice and
physics has become a hotspot [1–4]. Compared with integer-order differential equations,
fractional-order calculus equations can describe natural phenomena more accurately [5,6].
Therefore, they are universal to studying fractional-order systems.

Chaos is a special movement state of a nonlinear system that is the unity of order and
disorder; it is easily affected by external conditions and especially sensitive to the initial
value of the system. With the gradual deepening of people’s understanding of chaotic
systems, scholars have found that fractional-order chaotic systems have almost all the
characteristics of integer-order chaotic systems. Because of their historical memory charac-
teristics, fractional-order chaotic systems often have more complex dynamic behaviors than
those of integer-order chaotic systems. Time delay is a common phenomenon in nature [7].
Due to the influence of friction, machinery, and other practical factors, there are always time
delays in practical systems, such as physics, machinery, economy, biology, and engineering.
In addition, time delay has an important impact on the dynamic characteristics of the
system. When the change in the system on both the current and past states, the system
is called a time-delay system. The existence of a time delay renders the fractional chaotic
system more complex, and has broad application prospects in image encryption [8], secure
communication [9], and biomedicine [10].

Chaos synchronization control means that the state trajectory of the response sys-
tem can completely follow the drive system under the action of the controller. In 1990,
chaos synchronization was first proposed by Pecora and Carroll, who successfully realized
the synchronization of two systems with the same structure under different initial condi-
tions [11]. As a typical feature of nonlinear systems, the synchronization of chaotic systems
has been studied extensively, and a large number of synchronization control methods were
proposed [12–17]. In [18], a linear controller was designed for the synchronization control
of fractional-order financial chaotic systems with time delay in the absence of uncertainties
and external disturbances. This controller realized the active synchronization control of
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fractional-order Financial chaotic systems with time delay. Liu et al. [19] investigated a
sliding-mode controller that had been designed for the synchronization control of FOT-
DCSs with uncertainties. The controller realized the self-synchronization of FOTDCSs,
but required that uncertainties be bounded and did not consider external disturbances.
In addition, the controller could not achieve synchronization with different structures.
In [20,21], the authors adopted active control to directly eliminate the nonlinear term,
rendering the coefficient matrix of the system constant and realizing the hybrid projection
synchronization of FOTDCSs. However, its control cost was large, and when there were
unknown uncertainties in the system, this method could not achieve the expected control
effect. Li et al. [22] realized the impulse synchronization of FOTDCSs, but the controller
needed to know the coefficient matrix of the linear part of the drive and the response
system, which was highly dependent on the system model. When there are uncertainties or
external disturbances in the system, it is difficult for this method to achieve synchronization
control. Velmurugan et al. [23] proposed hybrid projection synchronization on the basis of
the neural network fractional time-delay memristor model, which also uses active control
to eliminate nonlinear terms. Second, it did not consider the aging and decay of mem-
ristor elements (that is, there were unknown uncertainties in the system). Luo et al. [24]
investigated the fractional-order MEMS model and achieved the active synchronization of
the model through a Chebyshev neural network. However, this idea was only aimed at
special models and is not universal. In addition, all the above control methods are only
applicable to synchronous control when the time delays of the drive and response systems
are the same.

In an actual physical system, the system may be affected by external disturbances, and
the aging and attenuation of components exist in the running process of the system. The
above factors hinder the ideal model from accurately describing the actual physical system.
On the basis of the above considerations, this paper mainly focuses on the synchronization
control of uncertain FOTDCSs based on adaptive RBF neural networks. On the one hand, an
RBF neural network, as a local approximation network, could approximate any continuous
function with arbitrary precision. So, an RBF neural network can be used to estimate an
unknown system type. On the other hand, adaptive control can eliminate the influence
of uncertainty and complex factors by automatically adjusting the relevant parameters of
the controller, so that the controller could adapt to the controlled object and the environ-
ment. Under the action of the designed synchronous controller, the synchronization error
asymptotically approaches zero. The novelty and contributions of this paper are as follows:

(1) On the basis of Barbarat’s lemma, an adaptive RBF neural network controller was
designed that realizes the synchronization control of FOTDCSs with nonlinear uncer-
tainty and external disturbance.

(2) When the driving system and the response system have different time delays, they
could also achieve synchronization under the action of the controller.

(3) A numerical simulation realized the synchronous control of the uncertain fractional time-
delay Liu chaotic system and the uncertain fractional time-delay financial chaotic system.
The theoretical proof and simulation results show the effectiveness of the controller.

The rest of this paper is arranged as follows: In Section 2, the preliminaries and radial
basis neural network models are given. In Section 3, the synchronization controller and
stability analysis based on a radial basis function neural network are presented. In Section 4,
a numerical simulation is provided. Lastly, some conclusions are drawn in Section 5.
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2. Preliminaries
2.1. Introduction to Fractional Calculus

There are three different definitions of fractional calculus: the Caputo derivative [25],
Riemann–Liouville (R–L) derivative [26], and Grünwald–Letnikov (G–L) derivative [27].
This paper is based on Caputo’s definition; the Caputo derivative is defined as follows:

Dα
t f (t) =

1
Γ(n− α)

∫ t

0

f (n)(τ)
(t− τ)(α−n+1)

dτ, (1)

The fractional Caputo integral is defined as follows:

D−α
t f (t) =

1
Γ(α)

∫ t

0
(t− α)(α−1) f (τ)dτ, (2)

where fractional order α > 0, and n is a smaller integer that is greater than α, namely,
n− 1 < α < n. Γ(·) is the Gamma function, defined as Γ(α) =

∫ t
0 t(α−1)e−tdt. In addition,

the fractional Caputo differential is Laplace-transformed as follows:

L {Dα
t f (t), s} = sαF(s)−

n−1

∑
k=0

sα−k−1 f (k)(0), (3)

where F(s) is the Laplace transform of f (t), and h(k)(0) are the initial conditions. Since the
subsequent stability proof of the system needs to use the properties of fractional calculus,
several properties are given in the following.

Proposition 1 ([28]). If x(t) ∈ C1[0, T](T > 0), then Dα
t Dα−1

t x(t) = x(t).

Proposition 2 ([29]). If x(t) ∈ R, then there is Dα−1
t |x(t)| ≥ 0 and Dα−1

t |x(t)| ≥ Dα−1
t x(t).

Proposition 3 ([30] (Barbalat’s lemma)). Set lim
t→+∞

x2(τ)dτ < ∞, then x(t) ∈ L2; when

x(t) ∈ L∞, if
·

x(t) exists and is bounded, then lim
t→+∞

x(t) = 0.

Proof. Set x(t) = Dα−1
t e(t). According to Property 1, the following equation can be

obtained.
e(t) = Dα−1

t x(t) (4)

By taking the Laplace transform of both sides of Equation (4), we could obtain

E(s) = s1−αX(s)− s−αx(0). (5)

Via the final value theorem, we have

lim
t→+∞

e(t) = lim
s→+0

s1−α(sX(s))− lim
s→0

s1−α(x(0)), (6)

lim
t→+∞

x(t) = lim
s→+∞

sX(s) = 0, (7)

When s → 0, sX(s) and s1−α are infinitely small, then lim
s→+0

s1−α(sX(s)) = 0 and

lim
s→0

s1−α(x(0)) = 0. Therefore, lim
t→+∞

e(t) = 0. The proof of Proposition 1 is completed.

2.2. Introduction to Radial Basis Neural Network

The RBF neural network is widely used in pattern recognition, nonlinear control, and
graph processing [31,32]. The RBF neural network is a kind of two-layer local convergence
neural network, so it has fast convergence. RBF neural networks can approximate any



Fractal Fract. 2023, 7, 288 4 of 12

continuous function with arbitrary precision. The first layer is the nonlinear input layer,
namely, the Gaussian basis function whose output is

hj(X) = exp(
−
∥∥X− cj

∥∥
2b2

2
), (j = 1, 2, · · · , m) (8)

The second layer is the linear output layer whose expression is

yj =
m

∑
j=1

wijhj = WT
i H, (i = 1, 2, · · · , n) (9)

where X = [X1, X2, · · · , Xn]T is the input vector of the RBF neural network, and the central
values of n×m form the matrix C = [c1, c2, · · · , cj, · · · , cm]. cj = [c1j, c2j, · · · , cij, · · · , cnj]

T

and bj are the central vector and width of the hidden layer node of the RBF neural net-
work, respectively. Wi = [wi1, wi2, · · · , wim]

T is the weight vector of the network, and
H = [h1, h2, · · · , hm]T is the Gaussian basis function vector.

3. Design and Stability Analysis of the Adaptive Controller Based on the RBF
Neural Network
3.1. Synchronization of Uncertain FOTDCSs

In this paper, an n-dimensional fractional time-delay chaotic system with uncertain
terms was considered. The driving system and response system are expressed as follows:

Dα
t x = f (x, x(t− τ1)) + ∆ f1(x) + d1(t), (10)

Dα
t y = g(y, y(t− τ2)) + ∆ f2(x) + d2(t) + U(t), (11)

where x = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn, y = [y1(t), y2(t), · · · , yn(t)]T ∈ Rn are the
measurable state variables of the driving system and the response system, respectively, and
τ1 and τ2 are different time delays. ∆ f (x) is the nonlinear uncertainty term, and d(t) the
external interference term. U(t) is the controller to be configured.

The synchronization error is defined as e(t) = y(t)− x(t). If lim
t→+0

‖e(t)‖ = 0. Then,

the driving system and the response system are synchronized.

3.2. Adaptive Controller Based on the RBF Neural Network

The synchronization error system is expressed as follows:

Dα
t e = g(y, y(t− τ2))− f (x, x(t− τ1)) + ∆ f2(x)−

∆ f1(x) + d2(t)− d1(t) + U(t).
(12)

Set φ = g(y, y(t− τ2))− f (x, x(t− τ1)) + ∆ f2(x)− f1(x) + d2(t)− d1(t), and φ is an un-
known function. Equation (12) can be derived as follows:

Dα
t e = φ + U(t). (13)

The synchronization error vector is

Dα
t ei = φi + ui(t). (14)

Nonlinear function φi can be approximated with the RBF neural network:

φ̂i = WT
i H, (i = 1, 2, · · · , n) (15)
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where H is the Gaussian basis function vector, and Wi is the weight vector of the network.
The optimal estimation parameter of the RBF neural network was set to W∗i . Then, the
optimal estimation is

φ̂∗i = W∗i
T H, (i = 1, 2, · · · , n) (16)

The parameter error and the optimal estimation error of the RBF neural network were set
to, respectively,

W̃i = Wi −W∗i , ρ = φi − φ∗i (17)

where the RBF neural network estimation error is bounded, that is, |ρi| ≤ ρ∗i , ρ∗i > 0 is
the upper bound of the optimal estimation error. Therefore, the estimation error of the
unknown nonlinear function is

φi − φ̂i = ρi − W̃i
T

H. (18)

In view of the above discussion, the proposed controller is as follows:

U(t) = −WT H − Ksign(pDα−1
t e) + qDα−1

t e. (19)

where K = [k1, k2, · · · , kn]T is the estimated value of the upper bound ρ∗i of the optimal
approximation error. In this paper, the adaptive law of the RBF neural network weight and
the estimated value of the upper bound of the optimal approximation error were designed
as follows:

Ẇi = λi p(Dα−1
t ei(t))H, (20)

k̇i = γi(Dα−1
t ei(t))p · sign(pDα−1

t ei(t)), (21)

where λ1andγi are the adjustment parameters of the adaptive law, and λ1andγi are positive
real numbers. p satisfies p · q < 0. In the following subsection, stability analysis is given on
the basis of the Lyapunov stability criterion.

3.3. Stability Analysis

The RBF neural network controller and its corresponding adaptive law are given in
Section 3.2, and this subsection discusses whether the trajectory of the response system
could reach the synchronization state with the driving system under this controller.

Proposition 2 Given the initial conditions, the adaptive RBF neural network controller
proposed in this paper could realize the synchronization.

Proof. After the synchronization controller U(t) proposed in the previous section had
been introduced into the synchronization error system, the error system was organized as
follows:

Dα
t ei(t) = φi −WT H − Ksign(pDα−1

t e) + qDα−1
t e. (22)

It can be further deduced as follows:

Dα
t ei(t) = ρi − W̃i

T
H − kisign(pDα−1

t ei(t)) + qDα−1
t ei(t). (23)

The Lyapunov function was constructed as follows:

V =
1
2

n

∑
i=1

(Dα−1
t ei(t))T · pDα−1

t ei(t) +
1
2

n

∑
i=1

1
λi

W̃i
T

W̃i +
1
2

n

∑
i=1

1
γi
(ki − ρ∗i )

2, (24)

where ρ∗i is a positive real number. The fractional derivative of both sides of the following
equation were taken:
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V̇ =
1
2

n

∑
i=1

(Dα
t ei(t))T · p · Dα−1

t ei(t) +
1
2

n

∑
i=1

(Dα−1
t ei(t))T

· pDα
t ei(t) +

n

∑
i=1

1
λi

W̃i
T ˙̃Wi +

n

∑
i=1

1
γi
(ki − ρ∗i )k̇i.

(25)

By substituting adaptive laws λ1, γi into the above equation, Equation (25) could be rear-
ranged as follows:

V̇ ≤
n

∑
i=1

(Dα−1
t ei(t))T · (pq) · Dα−1

t ei(t) +
n

∑
i=1

(Dα−1
t ei(t))T

· p‖ρ‖ −
n

∑
i=1

(Dα−1
t ei(t))T · p‖ρ∗‖.

(26)

In view of 0 ≤ |ρi| ≤ ρ∗, the above equation can be reduced to

V̇ ≤ −
n

∑
i=1

l · (Dα−1
t ei(t))2 ≤ 0, (27)

where l = −pq. 0 ≤ V(t) ≤ V(0), that is, V(t), is bounded. The integral of both sides of
Equation (28) yield the following equation:

V(t)−V(0) ≤ l
∫ t

0

n

∑
i=1

(Dα−1
t ei(τ))

2 ≤ l
∫ t

0
(Dα−1

t ei(τ))
2. (28)

This can be further deduced as follows:

lim
t→+∞

∫ t

0
(Dα−1

t ei(τ))
2 ≤

V(0)− lim
t→+∞

V(t)

l
≤ ∞. (29)

Then, Dα−1
t ei(t) ∈ L2. The following formula can be derived from the synchronization

error system: ∥∥∥Dα−1
t ei(t)

∥∥∥ ≤ ρi +
∥∥∥W̃i

T∥∥∥‖H‖+ |ki|+ |q||Dα
t ei(t)|. (30)

Thus, ‖H‖ is bounded. Then, Dα
t ei(t) ∈ L2 ∩ L∞ and Dα

t ei(t) ∈ L∞. It follows from
Barbalat’s lemma that lim

t→+∞
Dα

t ei(t) = 0. Through Proposition 1, the following equation

can be obtained:
lim

t→+∞
ei(t) = 0. (i = 1, 2, · · · , n) (31)

So, the synchronization error asymptotically approached zero, and the proof of Proposi-
tion 2 is completed.

4. Numerical Example

In order to verify the effectiveness of the controller presented in this paper, the im-
proved predictor-corrector method [33] was applied to the numerical simulation of the
fractional chaotic system. The controller in this paper is synchronous control in the case of
the nonlinear function model of the chaotic system. The nonlinear uncertainty term and
the external disturbance were completely unknown. The relevant models required for the
simulation are given below.

4.1. Fractional-Order Time-Delay Chaotic System

The expression of the fractional delay Liu system [34] is as follows:
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
Dα

t x = a(y(t)− x(t− τ))

Dα
t y = bx(t− τ)− x(t)z(t)

Dα
t z = cz(t− τ)− dx2(t)

, (32)

when the order of the system iwass set as α = 0.97, the control parameter (a, b, c, d) =
(10, 20,−2.5, 4), and the time delay 0 < τ ≤ 0.005, the system was in a chaotic state.
In this paper, time τ = 0.005 was selected, the initial value state of the system iwass
(x0, y0, z0) = (2.2, 2.4, 4.8), and the phase–space trajectory of the system is shown in Figure 1.
The expression of the fractional delay financial system [35] is as follows:

Dα
t x1 = z1 − a1z1 + x1y1(t− τ)

Dα
t y1 = 1− b1y1 + x2(t− τ)

Dα
t z1 = −x1(t− τ)− c1z1

, (33)

when the order of the system was α = 0.97, control parameter (a1, b1, c1) = (3, 0.1, 1), and
time delay τ = 0.001, the system was in a chaotic state. In this paper, the initial value state
of the system was (x0, y0, z0) = (0.1, 4, 0.5), and the phase–space trajectory of the system is
shown in Figure 2.

Figure 1. Phase–space trajectory distribution of fractional delay financial system: (a) X–Y plane;
(b) X–Z plane; (c) Y–Z plane; (d) X–Y–Z plane.
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Figure 2. Phase–space trajectory distribution of fractional delay Liu system: (a) X–Y plane; (b) X–Z
plane; (c) Y–Z plane; (d) X–Y–Z plane.

4.2. Simulation Results

In order to show the correctness and feasibility of the control method presented in
this paper, the fractional delay Lu and financial system with uncertain terms and external
disturbances were selected for numerical experiments. The expression of the driving
system is as follows:

Dα
t x = f (x, x(t− τ2)) + ∆ f1(x) + d1(t)

=

 a(x2(t)− x1(t− τ1))
bx1(t− τ1)− x1(t)x3(t)
cx3(t− τ1)− dx2

1(t)

+

 ecos(πt)x1
ecos(πt)x2
ecos(πt)x3

+

 f sin(t)
f sin(t)
f sin(t)

, (34)

and the expression of the response system is as follows:

Dα
t y = g(x, x(t− τ2)) + ∆ f2(x) + d2(t) + U(t)

=

 y3 − a1y1 + y1y2(t− τ2)
1− b1y2 − y2

1(t− τ2)
−y1(t− τ2)− c1y3(t)

+

 d1sin(πt)y1
d1sin(πt)y2
d1sin(πt)y3

+

 f1cos(t)
f1cos(t)
f1cos(t)

+

 u1(t)
u2(t)
u3(t)

.
(35)

From Equations (19), (34) and (35), the synchronization error system is as follows: ρ1 − W̃1
T

H − k1sign(pDα−1
t e1(t)) + qDα−1

t e1(t)

ρ2 − W̃2
T

H − k2sign(pDα−1
t e2(t)) + qDα−1

t e2(t)

ρ3 − W̃3
T

H − k3sign(pDα−1
t e3(t)) + qDα−1

t e3(t)

. (36)

From Proposition 2, driving system Equation (34) and response system Equation (35)
could be synchronized under the action of the controller. The remaining unknown pa-



Fractal Fract. 2023, 7, 288 9 of 12

rameters selected in this paper were e = 0.7, f = 1.3, e1 = 0.2, and f1 = 0.5, and the
input variables of the RBF neural network were synchronization error vectors e1, e2, e3.
The number of hidden layer neurons was 8, and the central matrix of the neurons was as
follows:

C =

 −1.5 1 −0.5 0 0.5 1 1.5 2
−1.5 1 −0.5 0 0.5 1 1.5 2
−1.5 1 −0.5 0 0.5 1 1.5 2

. (37)

The width value was bj = 3, (j = 1, 2, · · · , 8), and the adaptive adjustment parameters
were λi = 3000, γi = 3.5, (i = 1, 2, 3). The initial weights of the neural network were 8
zero vectors, and the initial values of the adaptive law were ki(0) = 0.4, (i = 1, 2, 3). The
values of p and q were p = 0.9, q = −10. The time step was h = 0.001 for the numerical
simulation. Figure 3a shows that the synchronization error converged quickly, indicating
that the designed RBF neural network had a good approximation effect. Figure 3b–d show
that each state synchronized well. Figure 4 shows that the amplitude of the weight of the
RBF neural network was not large, and the change was relatively stable, which indicates
that the control effect of the synchronous controller presented in this paper was better.

Figure 3. State trajectories of synchronization error vectors (a) e1, e2,and e3, (b) x1 and y1, (c) x2 and
y2, and (d) x3 and y3.



Fractal Fract. 2023, 7, 288 10 of 12

Figure 4. The optimal weight value of the neural network.

5. Conclusions

An adaptive RBF neural network controller and an integer-order parameter adaptive
law were presented for the synchronization of a heterogeneous structured fractional-order
chaotic system with completely unknown nonlinear uncertainties and external disturbances.
The controller and the RBF neural network were combined with adaptive control technology.
On the one hand, the unknown nonlinear function was approximated with an RBF neural
network. On the other hand, an adaptive law was used to adjust the corresponding
parameters in the controller. Numerical simulation results show that the controller designed
in this paper not only realized the synchronization control of heterogeneous structure
fraction-order time-delay chaotic systems, but also had fast response speed, a good control
effect, and strong anti-interference ability. In future work, we will construct a secure
communication scheme on the basis of this synchronization scheme that forms an encrypted
signal by driving the sequence generated by the system and the signal to be encrypted,
the decryptor decrypts the encrypted signal in response to the sequence generated by the
system, and the recovered signal is obtained. Therefore, the results of this study are not
only of great theoretical importance, but also have great application value in the field of
secure communication.
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