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Abstract: Forecasting the dynamical behaviors of nonlinear systems over long time intervals repre-
sents a great challenge for scientists and has become a very active area of research. The employment
of the well-known artificial recurrent neural networks (RNNs)-based models requires a high com-
putational cost, and they usually maintain adequate accuracy for complicated dynamics over short
intervals only. In this work, an efficient reservoir-computing (RC) approach is presented to predict
the time evolution of the complicated dynamics of a fractional order hyperchaotic finance model.
Compared with the well-known deep learning techniques, the suggested RC-based forecasting model
is faster, more accurate for long-time prediction, and has a smaller execution time. Numerical schemes
for fractional order systems are generally time-consuming. The second goal of the present study is to
introduce a faster, more efficient, and simpler simulator to the fractional order chaotic/hyperchaotic
systems. The RC model is utilized in a proposed RC-based digital image encryption scheme. Security
analysis is carried out to verify the performance of the proposed encryption scheme against different
types of statistical, KPA, brute-force, CCA, and differential attacks.

Keywords: reservoir-computing; hyperchaos; finance model; fractional order models; encryption

1. Introduction

Significant advancements in communication systems, information processing, and
data transmission mark the technological revolution of the twenty-first century. The
amount of information being created, stored, or transmitted every second on earth is
unparalleled. Today’s communication systems differ in complexity, transfer rate, speed,
and power consumption, based on their intended purposes and scopes. Nowadays, many
tools can be utilized to transmit these data, and one of the most important among them is
digital imaging. Digital images are used to convey a large amount of data and have many
applications in various fields such as military, medical, and daily life [1,2]. When these data
are transmitted over a wireless network through digital images, two important factors have
to be taken into consideration. The first is to ensure that these data are securely transmitted
over such an insecure wireless network. The other factor is to confirm the confidentiality
of the data being transmitted over the network. To achieve this, image encryption is
necessary in order to ensure this process. When transmitting multiple images at once,
single-image encryption is no longer applicable; therefore, multiple-image encryption
is considered to balance security and efficiency. In recent decades, image encryption
algorithms have been widely used due to their excellent security properties. For example,
Chuying et al. [3] employed a novel four-image encryption scheme based on several
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approaches. Through these proposed techniques, they succeeded in significantly reducing
the amount of key data, providing a more efficient encryption technique. In addition,
Rafik et al. [4] proposed a privacy-preserving encryption cryptosystem that helps to
protect patients’ privacy as a direct application of digital image encryption for E-health
systems. In addition, Ying et al. [5] developed an encryption scheme for optical image
color, based on the two-dimensional nonlinear coupled map lattice. The application of
this new approach results in a large key space and strong resistance to attacks, giving
this scheme the advantage of providing more security to the transmitted digital images.
Gao et al. [6] introduced a multiple-image encryption algorithm that utilizes single-image
encryption through a chaotic system. Based on this, they achieved a good performance
for the encryption process with excellent encryption speed. Finally, Elsadany et al. [7]
designed a new hybrid technique for physical layer encryption and watermarking. The
designed technique is based on discrete memristive chaos, and finally tests the proposed
scheme for possible brute attacks, revealing good performance. With the importance of
digital image encryption, many other techniques have been employed for this purpose,
including artificial intelligence-based approaches that provide reliability and achieve great
results.

During the last few years, artificial neural networks (ANNs) have attracted increasing
interest from engineers, computer scientists, and mathematicians. Indeed, ANNs have
successfully played an important role in simulating different real-life models due to their
ability to provide a clear insight into their dynamics. Many branches of science and
engineering benefit from this revolutionary concept, and have been used ever since in
providing a greater understanding into the behaviors of these models. Object detection [8],
natural language processing [9], autonomous vehicle driving [10], and security [11] are
only some of the examples of the plethora of applications where the ANNs can be utilized.
In a general form, the ANNs can be categorized into several types, based on the structure of
the network. The first type is the feedforward neural network, which specifically depends
on dividing the neurons into a specific number of layers, and then the processed signal
flows forward in one direction. The convolutional neural network [12] or Shift Invariant
is a more complicated ANNs that has been widely used in the field of object detection
and face recognition. There are observed deficiencies in simulating temporal signals with
the feedforward ANNs. Thus, another form of the ANNs, namely, the recurrent neural
networks RNNs [13,14] have been developed. This type of ANNs depends on recruiting
the neuron which helped in encoding the input signal into the internal state of the network
itself. Consequently, it leads to a greater realization of the short-term memory concept.
Indeed, the RNNs were considered to be an appropriate approach for forecasting temporal
signals, but with the problem of having high computational costs. Moreover, some complex
nonlinear behaviors are found to be difficult to be processed by RNNs.

The continuous efforts of researchers in this field aim at developing more accurate and
capable time series forecasting techniques with more simple structures and less computa-
tional costs. This leads to the development of what is known as the reservoir-computing
(RC) paradigm [15–22]. The RC technique has two ongoing aspects, named research and
applications, which are being explored. The RC technique has proven its reliability and use-
fulness in many applications for its ability to provide more realistic simulations, avoiding
the problems with the RNN. The main difference between the RC and RNNs approaches
is that in the RC paradigm, the training process is required only for the weights that are
connected to the output layer. In addition, the most important advantage of the RC tech-
nique over other conventional techniques is that the RC requires fewer weight parameters
to be trained. Thus, the training process required for the RC is less than the other methods,
especially the RNNs. In addition, the training process of the RC becomes linear and can be
treated as linear regression. Thus, this robust, simple, and fast training algorithm can be
used to simulate the given dynamical system.

The RC approach opens the door for many applications, as the concept of RC has
helped with many problems from different disciplines, regardless of their complexity. In-
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deed, the RC models can efficiently utilize the system’s dynamics to achieve highly complex
tasks with the involvement of some dependent data. Figure 1 gives a simple schematic
diagram that shows the structure of the RC model. The RC models can be universally
extended to a wider type of application compared to other ANNs approaches. Butcher et al.
adapted the RC scheme for simulating the non-linear time series data [23]. Applications in
wireless communications have been investigated with the aid of the RC algorithm in Jaeger
et al. in [24], and have improved the accuracy of the predicted time series. In addition, Liu
et al. [25] investigated the possible application of the RC frame in the field of information
security through chaotic synchronization. Another application in weather forecasting for a
short period was explained in [26] by Ferreira et al., revealing an excellent prediction of the
hourly wind speed for a short period using RC prediction. Escalona-Morán et al., in [27],
adapted the RC technique for classifying the electrocardiogram with logistic regression. In
addition, the application of the RC algorithm has been extended to the processing of noisy
image recognition and simulation, as indicated in [28] by Jalalvand et al. It has been found
that the RC technique has many other interesting applications such as controlling robotic
systems and leading, which has led to the development of the drone industry. Lukoševičius
et al., in [17], illustrates the trends in the robotic field through the application of the RC
technique. The RC paradigm is observed to have a superiority over other relatively similar
techniques in performing many tasks. The efficiency of the RC can be maximized through
the careful choice of a suitable reservoir with an adequate capacity for storing information.
Interestingly, the RC scheme has shown to be very helpful and has achieved some brilliant
performances in the area of computer science. Speech recognition is one of these related
topics that have various benefits from the RC technique, as presented by Verstraeten in [29].
Also, some new materials and devices were designed with the aid of the RC technique,
including some photonic modules, as provided by Martinenghi et al. in [30], Vandoorne et
al. in [31], and Antonik et al. in [32]. Memristors-based circuits are also one of the crucial
devices that employ the RC technique in hardware implementation [33–35], by taking into
account the advantages of their analogous resistive switching properties [36–39].

Figure 1. Schematic diagram of the structure of reservoir computer.

In the field of forecasting models for financial/stock temporal data trends, RC has
been also used for these simulations. For example, Wang et al. [40] developed a new
approach based on the RC technique for predicting the livestock market index behavior
based on small-world topologies. The resulting simulations are shown to be competitive
compared to other deep-learning models. An RC computing approach was developed
in [41] for analyzing integer-order time-delay-controlled financial systems. Another model
of computing the strategies for monthly time series prediction was introduced by Wyffels
in [42], which may help companies to arrange their investment and production needs.
Other models include estimating risk bounds [43] and visualization methods for temporal
data [44], etc.

Historically, the hyperchaos term was first introduced by Rossler, who derived a
new four-dimensional hyperchaotic system named after him. These hyperchaotic systems
are characterized by the fact that the corresponding strange attractors have more than
one positive Lyapunov exponent. This implies that the hyperchaotic system exhibits
more complicated chaotic dynamical behaviors relative to the conventional chaotic systems.
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During the last few years, more attention has been given to these hyperchaotic systems with
their wide range of applications in engineering and science. In addition, the applications of
chaotic and hyperchaotic systems in finance and economy better simulate some practical
and theoretical aspects that are related to this field. For example, Szumiński et al. in [45]
investigated two new types of hyperchaotic systems and revealed some of their dynamics,
with possible applications in finance through bifurcation diagrams and the Lyapunov
exponents spectrum. Yu et al. in [46] proposed a new hyperchaotic finance system that
is a modification to the chaotic finance system, by adding some new state variables. A
new adaptive synchronization scheme for hyperchaotic finance systems with unknown
parameters and bounded disturbances was introduced by Vargas et al. in [47]. Cao et
al. [48] created a new four-dimensional hyperchaotic model and studied several control
parameters for this system. These are only a few of the works of chaotic systems in finance.
For more details regarding the hyperchaotic systems and their applications in finance,
the reader may refer to [49–57]. All of the previously mentioned models benefit from
understanding their dynamics, with the discovery of the fractional calculus that brings
power to their perspective.

Fractional calculus is a branch of mathematics that employs non-local operators in
the form of derivatives and integrals of arbitrary orders. It was first introduced by Leibniz
back in the 17th century, and has since been used to accurately model a wide variety
of phenomena, from fluid dynamics [57] to financial markets [58], with high precision.
Indeed, fractional calculus has been used to model many systems from different fields,
including physics, engineering, economics, and biology. There have been many definitions
of fractional operators and each of these definitions has its merit. One of the most widely
used fractional operators is the Caputo fractional derivative operator. It has been applied to
many areas such as viscoelasticity [59], wave propagation [60], and diffusion processes [61].
The Caputo fractional derivative has also been used in the study of chaotic systems and
fractals [62]. The key advantage of the Caputo fractional derivative is that it allows for
more flexibility than other types of fractional order derivatives. Thus, using this fractional
operator in simulating different models gives an added great understanding of their
behavior.

The motivation of the work can be summarized as follows: Artificial recurrent neu-
ral networks (RNNs) can be trained and utilized to perform complex tasks such as the
forecasting of complicated nonlinear time series, handwriting recognition, and language
processing. However, there are two common issues associated with RNNs. The first issue is
that they require training data of massive size, and the training process itself is challenging
and computationally expensive. Moreover, the corresponding hardware realization is not
simple and requires expensive elements. The second and more critical issue is that the
accuracy of RNNs prediction is maintained basically for short time intervals, while it can be
lost for long-time forecasting. The first goal of the present work is to introduce an RC-based
model for the highly accurate long-time forecasting of complicated hyperchaotic financial
time series, for the first time. We verified the superiority of the suggested RC model in
terms of accuracy, long-time prediction, simplicity, and running time.

On the other hand, the study and analysis of fractional order systems (FOS) have
become a very active area of research over the last two decades. Numerical schemes for
FOS are generally time-consuming, and the number of required arithmetic operations
rapidly increases with the increment of solution intervals. The second goal of the present
study is to introduce a faster, more efficient, and simpler simulator to the fractional order
chaotic/hyperchaotic systems. The presented scheme can emulate fractional order dynami-
cal systems and accurately predict the solution time series in a fast time, compared with
conventional numerical schemes.
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The following fractional hyperchaotic finance system of order σ is considered

Dσu(t) = w(t) + (v(t)− α)u(t) + w(t),
Dσv(t) = 1− βv(t)− u(t)2,
Dσw(t) = −u(t)− γw(t),
Dσz(t) = −µu(t)v(t)− κw(t).

(1)

The above model is an extension of the integer order model presented in [46] by
incorporating the Caputo fractional order derivative. The four state variables in the model
are the interest rate u, the demand on the investment v, the exponent of price w, and
the profit margin average z. In addition, the parameters presented in the model (1) can
be defined, as α denotes the saving parameter, β refers to the investment cost, γ is the
elasticity of demand on commercials, and finally, µ and κ are constants with positive
values. System (1) exhibits hyperchaotic behavior when the parameters take the values
of α = 0.9, β = 0.2, γ = 1.5, µ = 0.2, and κ = 0.17. The initial values of the model (1) are
taken as (u, v, w, z) = (1, 2, 0.5, 0.5) in our simulations. It will be shown that the RC model
reduces the execution time of the forecasting process from around 59 s in the well-known
Long Short-Term Memory (LSTM)-type RNNs [63,64], and 5.1 s in the PECE numerical
method, to 0.85 s.

Finally, the image encryption schemes which rely on the hyperchaotic fractional order
systems inherit the high computational costs of the seed fractional chaos generators. The
present work is an attempt to utilize the aforementioned benefits of the RC machine learning
approach in a proposed image encryption scheme. The proposed scheme is much faster,
and the total processing time of the encryption algorithm is greatly reduced from 6.2 s
(when conventional fractional chaotic systems are used) to 1.85 s. In addition, security
analysis reveals that the presented encryption technique is resistant to brute force, statistical,
differential, KPA, and CCA attacks.

The organization of the paper is summarized as follows. The mathematical model
for the RC technique is presented in Section 2. Numerical simulations are conducted, and
the performance of the scheme is evaluated in Section 3. In addition, comparisons with
the LSTM technique are performed. The proposed RC-based encryption scheme and the
associated security analysis are presented in Sections 4 and 5, respectively. The conclusion
and suggested future work are presented in Section 6.

2. RC Model for the Forecasting of the Hyperchaotic Financial Time Series

In this section, we introduce the main procedure of the RC approach. First, suppose
that χ(n) is defined as an N1 dimensional input signal at discrete time n. In addition, we
define Ξ(n) and Ψ(n) to be the N2 dimensional vectors of the reservoir activation and the
updates of the RC state, respectively. The updated equations of the RC system can take
the form

Ψ(n) = (1− $)Ξ(n) + $η(n), (2)

Ξ(n) = <(Φin[1; χ(n)] + ΦΞ(n− 1)), (3)

where the nonlinear activation function <(.) is usually chosen in the form of tanh(.),
Φin ∈ RN2×(N1+1) is the input weight matrix, Φ ∈ RN1×N2 is the recurrent weight matrix
for the hidden layer, $ ∈ [0, 1] is the rate of leakage, and [., .] is the concatenation of column
vectors. For the case where $ = 1, it follows that Ψ(n) = η(n).

The expression of the linear readout output layer Υout(n) ∈ RNout can take the follow-
ing form

Υout(n) = Φout[1; χ(n); Ψ(n)],
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where Φout ∈ RNout×(1+N1+N2) is the matrix of the output weights. One may note that in
some special cases of the RC designs, there are some extra feedback output layers of the
function < in Equation (2), such that

Ξ(n) = <(Φin[1; χ(n)] + ΦΞ(n− 1) + Φ f bΥout(n− 1)),

where Φ f b is defined as the output feedback matrix.
The training process of the RC supervised machine learning paradigm uses the input

signal χ(n) and updates output weights such as Υout(n) ∈ RNout , which matches the
specified target sequence ΥTR(n) ∈ RNout . In particular, this goal is achieved by minimizing
the root mean square error (RMSE) E, which takes the following form

E =
1

Nout

Nout

∑
i=1

√
1
m

m

∑
n=1

(Υout
i (n)− ΥTR

i (n))2,

where m denotes the training sequence length. When the training process is accomplished
successfully, the RC can be utilized to predict the future states of the sequence.

To operate with the RC, we can summarize the main steps for the RC forecasting
procedure, as follows:

Step I

Create the reservoir of the RC with random values of internal weights. The associated
matrices Φin and Φ are preferred to be sparse matrices, in order to simplify the calculations
and to reduce the running time.

Step II

The training vector χ(n) is applied, and the resulting activation state vector Ψ(n)
is acquired. The harmful effects of the outliers of the input data can be suppressed by
employing the normalization of the input data.

Step III

The output weight matrix Φout, which minimizes RMSE E between Υout and ΥTR, is
evaluated.

Step IV

The final step is to use the trained matrix Φout to forecast the output of new input data.
Generally, the size of the reservoir should exceed the dimension of the input data vector,
multiplied by the number of time steps of the input data that are required to be memorized
by the RC to complete the assigned task. In addition, the sparse matrix Φ must be initially
scaled to an acceptable value of spectral radius that preserves the fading memory charac-
teristics of the RC. More training and tuning procedures should be performed to scale the
matrix Φ again to ensure the achievement of the suitable form. The appropriate values for
$ are determined by the time scales of the training signal and the target signal.

Now, in the following subsection, we illustrate the training procedure of the RC.

Procedure of Training the RC

In this subsection, we shall illustrate the main procedure steps for training the RC.
First, the output of the RC over a defined period s = 1, 2, ..., m can be defined as

Λ = ΦoutC,

where Λ = [Υout(1)Υout(2)...Υout(m)] and C is the concatenation of [1; χ(n); Ψ(n)]. Then,
the output matrix Φout in optimal form is attained by minimizing E between the teacher
data and the RC output data, or by solving the following equation

ΛTR = ΦoutC.
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Indeed, we need to solve an overdetermined system of equations in order to achieve
this task. Thus, the Tikhonov regularization technique (ridge regression) can be employed
as a useful and efficient tool to achieve this goal. The objective function obeying this
approach can be put in the following form

Φout = argmin
Φout

1
Nout

Nout

∑
i=1

(
p

∑
n=1

(Λi(n)−ΛTR
i (n))2 + v

∥∥Φout
i
∥∥2
),

where the norm of Φout
i is the well-known Euclidean norm of the ith row of the matrix Φout.

This regularization reduces the effect of overfitting and feedback instability. Finally, the
optimal form of the matrix Φout can be written as

Φout = ΛTRCT(vI + CCT)−1,

where v is the regularization parameter and I denotes the identity matrix.
The next section is devoted to illustrating and discussing the obtained results of the

RC paradigm.

3. Numerical Simulations

In this section, we use the suggested RC forecasting approach to estimate the compli-
cated time series solution of the hyperchaotic finance model (1). The phase portraits of the
fractional order hyperchaotic finance model (1), obtained at the different values of σ are
shown in Figure 2. The processed time series length equals 10, 000 for each state variable of
the model. The training part is constructed from the first 7000 elements of the data vector.
The remaining 3000 elements constitute the test validation set. In addition, the number of
RC nodes is set at 32. Three cases for fractional order σ are considered. Figures 3–6 depict
the training and prediction results at σ = 1 for different state variables of the fractional
order hyperchaotic finance model (1). Figures 7–10 illustrate the training and prediction
results at σ = 0.95 for the state variables of the model (1). Moreover, Figures 11–14 illustrate
the training and prediction results at σ = 0.8 for the state variables of the model (1).

Long Short-Term Memory (LSTM) [63,64] is a deep-learning technique that can be
regarded as a special class for recurrent neural networks. The LSTM networks have the
advantages of employing additional gates and better controlling the processed information
in hidden cells. So, LSTM networks can learn long-term relationships in time series
and make the classification of sequential data more effective than the classical recurrent
neural networks.

The LSTM technique is applied for the forecasting process of our financial time series.
The length of the training part of the data vector is set at 8000, and the size of the validation
test part is 2000. Examples of the obtained results are shown in Figures 15 and 16. It is
obvious that the results of the RC-based prediction process are more accurate over long
intervals and show very small forecasting errors compared with the LSTM approach. In
addition, the RC-based model is easily realizable and highly efficient, from the viewpoint
of computational cost and execution time. Table 1 illustrates the comparisons between the
two approaches, in terms of RMSE and execution time (in a s) for different cases of σ and
different state variables.
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(a) (b)

(c)
Figure 2. The phase portraits of the fractional order hyperchaotic finance model (1), obtained at the
different values of σ: (a) σ = 0.8, (b) σ = 0.95, and (c) σ = 1.

(a) (b)

(c) (d)

Figure 3. Training and prediction results of the RC model for u(t) state variable of the model (1) at
σ = 1. The 70% of input data are used as a teacher sequence, whereas the last 30% of the data are set
as the validation test data. (a) The weights of RC nodes after the completion of training. (b,c) The
spread of the weights of RC units, illustrated by using a box-and-whisker plot. (d) The training and
test data in red color vs. predicted data in blue color.
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Table 1. The performance of RC forecasting scheme and LSTM approach.

Predicted Series RMSE (Suggested RC) RMSE (LSTM) Execution Time (RC) Execution Time (LSTM)

u(t), σ = 1 0.010302 2.1758 0.8–0.9 55–63

v(t), σ = 1 0.015974 1.7028 0.8–0.9 55–63

w(t), σ = 1 0.022054 1.8142 0.8–0.9 55–63

z(t), σ = 1 0.018673 1.9533 0.8–0.9 55–63

u(t), σ = 0.95 0.0007084 1.5214 0.8–0.9 55–63

v(t), σ = 0.95 0.00068142 1.5003 0.8–0.9 55–63

w(t), σ = 0.95 0.00065223 1.6287 0.8–0.9 55–63

z(t), σ = 0.95 0.0095651 1.4169 0.8–0.9 55–63

u(t), σ = 0.8 0.0002302 1.2514 0.8–0.9 55–63

v(t), σ = 0.8 0.00079411 1.2210 0.8–0.9 55–63

w(t), σ = 0.8 0.00032459 1.3018 0.8–0.9 55–63

z(t), σ = 0.8 0.00022052 1.1074 0.8–0.9 55–63

(a) (b)

(c) (d)
Figure 4. Training and prediction results of the RC model for v(t) state variable of the model (1) at
σ = 1. The 70% of input data are used as the teacher sequence, whereas the last 30% of the data are
set as the validation test data. (a) The weights of RC nodes after the completion of training. (b,c) The
spread of the weights of RC units, illustrated using a box-and-whisker plot. (d) The training and test
data in red color vs. predicted data in blue color.
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(a) (b)

(c) (d)
Figure 5. Training and prediction results of the RC model for w(t) state variable of the model (1) at
σ = 1. The 70% of input data are used as teacher sequence, whereas the last 30% of the data are set as
validation test data. (a) The weights of RC nodes after the completion of training. (b,c) The spread of
the weights of RC units, illustrated using box-and-whisker plot. (d) The training and test data in red
color vs. predicted data in blue color.

(a) (b)

(c) (d)
Figure 6. Training and prediction results of the RC model for z(t) state variable of the model (1) at
σ = 1. The 70% of input data are used as teacher sequence, whereas the last 30% of the data are set as
validation test data. (a) The weights of RC nodes after the completion of training. (b,c) The spread of
the weights of RC units illustrated using box-and-whisker plot. (d) The training and test data in red
color vs. predicted data in blue color.
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(a) (b)

(c) (d)
Figure 7. Similar to Figure 3 but for the case where σ = 0.95.

(a) (b)

(c) (d)
Figure 8. Similar to Figure 4 but for the case where σ = 0.95.
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(a) (b)

(c) (d)
Figure 9. Similar to Figure 5 but for the case where σ = 0.95.

(a) (b)

(c) (d)
Figure 10. Similar to Figure 6 but for the case where σ = 0.95.
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(a) (b)

(c) (d)
Figure 11. Similar to Figure 3 but for the case where σ = 0.8.

(a) (b)

(c) (d)
Figure 12. Similar to Figure 4 but for the case where σ = 0.8.
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(a) (b)

(c) (d)
Figure 13. Similar to Figure 5 but for the case where σ = 0.8.

(a) (b)

(c) (d)
Figure 14. Similar to Figure 6 but for the case where σ = 0.8.
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(a) (b)

(c)
Figure 15. (a) The time series of u(t) of the model (1) obtained at σ = 1. (b) The prediction of time
series using the LSTM method. (c) The predicted data and the error between observed and predicted
time series.

(a) (b)

(c)
Figure 16. (a) The time series of v(t) of the model (1) obtained at σ = 1. (b) The prediction of time
series using the LSTM method. (c) The predicted data and the error between observed and predicted
time series.
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4. The Proposed RC-Based Image Encryption Scheme

In this section, the reservoir-computing model is employed as a core for the proposed
new image encryption algorithm. More specifically, the RC paradigm is efficiently used
to produce random-like time series for the image encryption process. In other words,
the RC model is utilized as a simulator for a discrete-time fractional order hyperchaotic
map. The generated time series can mimic the chaotic attractor of the fractional order
hyperchaotic system in the present study. Indeed, the presented scheme is capable of
simulating any selected fractional order hyperchaotic system. The advantages of this
approach for encryption applications are (1) Low computational cost and distinct small
running time. It is known that the numerical schemes for fractional order differential
equations are time-consuming and require quite a high computational cost. (2) A larger
space of secret parameters compared with conventional chaos-based encryption techniques.

Given an M× N colored plain image, the key steps for the proposed RC encryption
algorithm are described as follows:
Key Steps for the RC Encryption Algorithm

Step 1. Define k1 and k2 by

k1 = f loor[
M× N

a
],

k2 = f loor[
M× N

b
],

where a and b are two preselected positive integers. Without loss of generality, they are set
to a = 50, b = 50 in our simulations.

Step 2. Let Pr(i, j) denote the pixel value of the red color component at position (i, j),
then reshape the associated M× N matrix Pr into the row vector Vr

1 by combining all rows
of the matrix into a single row of size 1× M.N. Similarly, reshape the matrix Pr into a
single column Vr

2 of size M.N × 1 via the concatenation of its columns.
Step 3. Similar to Step 2, the green and blue color channels of the plain colored image

are represented by the row vectors Vg
1 and Vb

1 , respectively. In addition, the column vectors
of green and blue channels will be denoted by Vg

2 and Vb
2 , respectively.

Step 4. Create six plain-image-dependent and time-varying perturbation values ϑ
r,g,b
1,2

by evaluating

ϑ
r,g,b
1,1 = γτ(t) +

1
α(M× N)2

k1

∑
i=1

Vr,g,b
1 (i, j), (4)

ϑ
r,g,b
2,1 = γτ(t) +

1
α(M× N)2

k2

∑
i=1

Vr,g,b
2 (i, j), (5)

ϑ
r,g,b
1,m = γτ(t) +

1
α(M× N)2

mk1

∑
i=(m−1)k1+1

Vr,g,b
1 (i, j), (6)

ϑ
r,g,b
2,n = γτ(t) +

1
α(M× N)2

nk2

∑
i=(n−1)k2+1

Vr,g,b
2 (i, j), (7)

where m = 2, 3, ..., a and n = 2, 3, ..., b. Here, α and γ are two scaling factors. A secret
baseline past time moment is selected, e.g., 07:53:19:579 11 March 2005, and the value of
τ(t) is obtained by calculating the time difference up to the present time for when a plain
image is encrypted. The unit of time is milliseconds or smaller units. The scaling factor γ is
used to set the value of ντ(t) in the predetermined required range.
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Step 5. The training data χ for RC has 3(a + b) elements. The six time series ϑ
r,g,b
1,2 are

utilized to perturb the training data, such that χ is updated by:

χ = χ + ϑ
r,g,b
1,2 . (8)

Note that there are 6! possible choices for perturbing χ by the ϑ
r,g,b
1,2 time series.

Step 6. The training process for the RC is carried out using updated χ, and the attained
Υi RC output is stored into a vector ρ of length 6M.N.

Step 7. Define

ρr = mod[1010 × ρ(j), M.N] + 1, j = 1, 2, ...M.N

ρg = mod[1010 × ρ(j), M.N] + 1 + 1, j = M.N + 1, M.N + 2, ...2M.N

ρb = mod[1010 × ρ(j), M.N] + 1, j = 2M.N + 1, 2M.N + 2, ...3M.N

where the repeated values are replaced with non-repeated ones in each vector in such a
way where each vector covers all values in the range from 1 to M.N.

Step 8. The shuffling process for Vr
1 , Vg

1 , and Vb
1 is carried by rearranging them

as follows:
Vr

1 (j) = Vr
1 (ρr(j)),

Vg
1 (j) = Vg

1 (ρg(j)),

Vb
1 (j) = Vb

1 (ρb(j))

Step 9. The remaining 3M.N elements in the chaotic output of the RC are modified
as follows

ϕr = mod[1010 × ρ(j), M.N] + 1, j = 3M.N + 1, 3M.N + 2, ...4M.N

ϕg = mod[1010 × ρ(j), M.N] + 1 + 1, j = 4M.N + 1, 4M.N + 1, ...5M.N

ϕb = mod[1010 × ρ(j), M.N] + 1, j = 5M.N + 1, 5M.N + 2, ...6M.N

Step 10. Apply the bitwise XOR operation between the shuffled pixels and the modi-
fied chaotic sequences as follows

CVr
1 (j) = ϕr(j)⊕Vr

1 (j),

CVg
1 (j) = ϕg(j)⊕Vg

1 (j),

CVb
1 (j) = ϕb(j)⊕Vb

1 (j). (9)

Step 11. The resulting cipher image is finally attained by reshaping CVr,g,b
1 into the

M× N cipher image.
Step 12. The decryption process is executed by reversing the aforementioned steps.
Three colored images are used in the numerical simulations, namely, Baboon, Pepper,

and House images, respectively. Figure 17 shows the plain, shuffled, cipher images for the
three images when the proposed algorithm is applied.
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Figure 17. The plain, shuffled, and encrypted images for Baboon, Pepper, and House images.

5. Security Analysis of the RC Encryption Scheme

Now, the performance of the proposed RC-based digital image encryption technique
is evaluated to verify its reliability against possible attacks such as brute force attacks,
differential attacks, statistical attacks, chosen-plaintext attacks (CPA), and chosen-ciphertext
attacks (CCA).

5.1. The Histogram Analysis

The flatness of the histograms of pixel distributions in cipher images is a key measure
of the efficiency of the encryption scheme, and confirms that crucial statistical features are
suppressed by the cryptosystem. The obtained histograms for the three color components
in plain shuffled and encrypted example images are illustrated in Figures 18–20.
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Figure 18. Histograms for (a) red, (b) green, and (c) blue color components of Baboon image for plain,
shuffled, and cipher images, in left, middle, and right columns, respectively. The x-axis represents
the pixel values of the image for the red color component (in (a)), green color component (in (b)),
and blue color component (in (c)). The y-axis represents the number of occurrences of different pixel
values in the image.
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Figure 19. Similar to Figure 16 but for Pepper image.

The quantification for the flatness of the histograms can be evaluated through the
variance of the histogram, which is defined by [65]

∆(H) =
1

2562

256

∑
i=1

256

∑
j=1

1
2
(Hi − Hj)

2, (10)

where H denotes the the vector of histogram values, such that Hm represents the numbers
of pixels with the value of m. From Table 2, it is clear that the percentage of reduction
achieved in the variances of plain image and cipher image histograms is greater than
99.8% for all color components. This ensures the reliability of the proposed RC encryption
technique.
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Figure 20. Similar to Figure 16 but for House image.

Table 2. The variance of histogram obtained from the three experimental images.

Variance

Plain Encrypted Reduction (%)

Red 176,920 349.142 99.8027

Baboon Green 348,200 514.235 99.8524

Blue 188,610 374.423 99.8017

Red 520,530 775.473 99.8511

Pepper Green 695,920 659.471 99.9082

Blue 1,122,000 690.532 99.9385

Red 440,620 597.405 99.8645

House Green 756,780 728.218 99.9038

Blue 577,050 747.452 99.8705
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5.2. Analysis of Key Space

To evaluate the performance of our RC cryptosystem in opposition to possible brute
force attacks, the size of its key space should be determined. It is accepted that a threshold
value of 2100 can be considered as the minimum adequate secret key space that makes
the potential brute-force attacks unfeasible [65–69]. The secret key space of the proposed
RC-based encryption scheme mainly includes the 3(a + b) values of the training data, in
addition to possible choices for perturbing vectors. This implies that for the standard
binary64 IEEE 754 floating-point format, the constituted keyspace has an approximate size
of 2159(a+b)6!. For a = 50 and b = 50, this implies that the secret key space is 215,9006!, which
obviously outperforms the minimum requirement of 2100.

5.3. Correlation Analysis

The similarity between adjacent pixels in encrypted and plain images is investigated
through correlation analysis. The reliable encryption scheme resists possible statistical
attacks by greatly reducing the values of the correlation coefficients of pixels in encrypted
images to be as small as possible. We define the correlation coefficient between two vectors
ψ1 and ψ2 by

κ =
cov(ψ1, ψ2)

σψ1 σψ2

, (11)

where σψ1 =
√

var(ψ1), σψ2 =
√

var(ψ2) and

var(ψ) =
1
N

N

∑
i=1

(ψi − E(ψ))2. (12)

cov(ψ1, ψ2) =
1
N

N

∑
i=1

(ψ1i − E(ψ1))((ψ2i − E(ψ2)). (13)

Note that the values of the adjacent pixels are referred to as ψ1 and ψ2. The correlation
coefficients are determined in key directions in the encrypted and plain images, i.e., in the
horizontal, vertical, and diagonal directions. The obtained results are depicted in Table 3,
where it is shown that the present scheme successfully suppresses the values of correlation
coefficients to around zero.

Table 3. The correlation coefficients of adjacent pixels in experimental images for all directions.

Correlation Coefficients

Horizontal Vertical Diagonal

Red Plain 0.9193 0.864 0.8403
Cipher 0.0004 0.0025 0.0006

Baoon Green Plain 0.8795 0.7997 0.7628
Cipher 0.00052 0.0004 0.001

Blue Plain 0.9285 0.8827 0.8597
Cipher 0.0007 0.0008 0.0001

Red Plain 0.9681 0.9703 0.9519
Cipher 0.0001 0.00002 0.0006

Pepper Green Plain 0.9786 0.979 0.9616
Cipher 0.0003 0.0019 0.0002

Blue Plain 0.9654 0.9643 0.9414
Cipher 0.0013 0.0008 0.0005
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Table 3. Cont.

Correlation Coefficients

Horizontal Vertical Diagonal

Red Plain 0.9484 0.9467 0.9087
Cipher 0.0003 0.0001 0.0004

House Green Plain 0.9286 0.9481 0.8893
Cipher 0.0003 0.0002 0.0003

Blue Plain 0.9704 0.9718 0.9472
Cipher 0.0006 0.0003 0.0006

5.4. Information Entropy

In order to quantify the level of randomness and unpredictability in the suggested
encryption technique, the information entropy analysis is employed. The information
entropy for each color channel in a particular image is defined as

Hr,g,b =
255

∑
i=0

pr,g,b
i log2

1

pr,g,b
i

, (14)

where H refers to the value of entropy in units of bits, and the probability of pixels with a
value i is denoted by pi.

The information entropy values have been obtained for the three color components in
the encrypted images. The results are shown in Table 4. Knowing that the optimum value
for information entropy is 8, it can be observed that the resulting information entropy from
the proposed scheme is very close to this optimal value. This confirms the reliability of the
RC encryption technique.

Table 4. The information entropy (bits) for different color components of encrypted images.

Plain Red Green Blue

Baboon 7.9995 7.9994 7.9996

Pepper 7.9997 7.9998 7.9995

House 7.9995 7.9996 7.9998

5.5. Analysis of a Differential Attack

The resistance of the encryption scheme against the well-known differential attacks
can be investigated by computing the NPCR (Number of Pixels Changing Rate) and the
UACI (Unified Average Changing Intensity). These two quantities can precisely quantify
the sensitivity of the cryptosystem to change in a single pixel in the two plain images. They
can be defined as follows [65,66]

NPCR(%) =
1

M× N

M

∑
i=1

N

∑
j=1

Λ(ς1(i, j)− ς2(i, j))× 100, (15)

UACI(%) =
1

M× N

M

∑
i=1

N

∑
j=1

|ς1(i, j)− ς2(i, j)|
255

× 100, (16)

where Λ(a− b) = 0 if a = b, and 1, otherwise. In addition, ςm(i, j) denotes the pixel value
of the encrypted image m, m = 1, 2. Note that the associated plain images differ in a single
pixel value. Table 5 illustrates the obtained results of UACI and NPCR. It is demonstrated
that the NPCR values are greater than 99.6. On another side, the UACI is greater than 33.5.
Thus, the proposed cryptosystem is highly sensitive to tiny changes in plain images.
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Table 5. NPCR and UACI measures for cipher images of the proposed encryption scheme.

Image NPCR(%) U ACI(%)

Red 99.621 33.559
Baboon Green 99.635 33.534

Blue 99.631 33.541

Red 99.647 33.512
Pepper Green 99.617 33.539

Blue 99.611 33.545

Red 99.618 33.531
House Green 99.607 33.522

Blue 99.616 33.562

Finally, the main benefits of the proposed RC encryption scheme are summarized
as follows:

(1) The proposed scheme requires much less running time, compared with encryption
techniques relying on fractional order chaotic systems. Using a 16 GB RAM PC with Intel
Core i7-8550U CPU @ 1.8 GHz, it takes around 1.85 s for the proposed scheme, versus 6.2 s
for the conventional fractional chaotic systems-based scheme.

(2) A very large and adaptive secret key space. Indeed, the size of the key space can be
easily extended to any appropriate required size.

(3) The secret keys are affected by plain images, as well as the time difference to the
encryption process moment. In other words, we assume that the same plain images are
to be encrypted at distinct moments. Then, different secret keys will be utilized for the
proposed cryptosystem, and hence, they induce different cipher images. Then, the present
scheme can efficiently resist differential attacks.

(4) As the proposed cryptosystem uses time-varying secret keys, it is immune to the
powerful known-plaintext attack (KPA). More specifically, we assume that the attacker
obtains some plain images and the associated cipher images. It is obvious that the opponent
neither achieves his goals nor obtains any useful information regarding the values of secret
keys that will be employed for other plain images.

(5) The more powerful chosen-ciphertext attack (CCA) can also be resisted by our
scheme. In this attack, preselected cipher images are supplied to the receiver side to
obtain the corresponding plain images. The present system is also immune to the special
attack when uniform zero-pixel images are used. Note that the aforementioned attacks
can cause degenerate security performance in some conventional chaos-based encryption
schemes [66–69].

The comparisons with some encryption schemes in the literature are carried out
in Table 6 and reveal that some schemes have a slightly larger value of NPCR or UACI
than the present encryption scheme. For example, the scheme in Ref. [5] of Table 6 has
NPCR = 99.679 versus NPCR = 99.621 for the suggested scheme. This implies that it is only
a 0.06% increase above the NPCR value of the RC-based scheme. The other encryption
schemes do not introduce a decisive increase in NPCR and UACI over our scheme.

On the other side, the secret key space of the proposed RC-based scheme achieves a
3600% (or 36 times) increase over the key space of the scheme in [5]. Indeed, the proposed
cryptosystem has a distinct, very large, and adaptive key space relative to other encryption
schemes. Another interesting advantage of our scheme is that it employs time-varying
parameters. In other words, we assume that the same plain images are to be encrypted
at different moments. The proposed scheme will use different secret keys for each time
and produce different cipher images. As the proposed cryptosystem uses time-varying
secret keys, it is immune to the powerful KPA attack. More specifically, when the opponent
obtains some plain images and the associated cipher images, it is obvious that the attacker
neither achieves his goals, nor obtains any useful information regarding the values of secret
keys that will be employed for other plain images.
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Table 6. Comparison with some encryption schemes in literature for the Baboon image. TVP refers to
time-varying parameters and secret keys.

Work Key Space UACI NPCR Max. Corr.
Coeff. TVP

Present work Larger than
215,900 33.534 99.621 0.0025 YES

[3] 2321 32.480 99.57 0.0210 NO

[4] 2372 31.572 99.65 0.0024 NO

[5] 2187 33.452 99.607 0.0082 NO

[6] 2624 33.481 99.61 0.0021 NO

[7] 2441 33.464 99.679 0.0013 NO

6. Conclusions

This work is an attempt to present an effective machine learning approach that is
capable of predicting the time evolution of the observed nonlinear behaviors of a financial
dynamical system. The well-known RNNs, such as LSTM, require large amounts of training
data, and the training process is computationally expensive. The presented RC forecasting
system has been verified to be a very useful tool to predict the complicated dynamics
of fractional order hyperchaotic systems. Comparisons are carried out with the LSTM
technique. It is found that the suggested RC-based scheme enlarges the prediction interval
to at least five times greater than that of LSTM. In addition, the RC-based technique has a
minimum running time (approximately 2% of the execution time of LSTM).

Moreover, a proposed RC-based encryption scheme is presented, where the RC model
is employed to mimic the chaotic behavior of a prespecified nonlinear system. Compared
with other encryption schemes, the proposed scheme has a very large and adaptive secret
key space, which further enforces its immunity to brute force attacks. In addition, the
proposed scheme requires much less running time compared with encryption techniques
relying on fractional order chaotic systems. Furthrmore, the RC encryption scheme in-
troduces time-varying secret keys, which increases its immunity against KPA, CCA, and
differential attacks.

Future work can include the investigation of modified forms of RC with other types of
nonlinearity, a more simple structure, a small number of nodes, and improved performance.
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