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Abstract: In this study, we proposed a sliding mode control method based on fixed-time sliding
mode surface for the synchronization of uncertain fractional-order hyperchaotic systems. In ad-
dition, we proposed a novel self-evolving non-singleton-interval type-2 probabilistic fuzzy neural
network (SENSIT2PFNN) to estimate the uncertain dynamics of the system. Moreover, an adaptive
compensator was designed to eliminate the influences of random uncertainty and fuzzy uncertainty,
thereby yielding an asymptotically stable controlled system. Furthermore, an adaptive law was
introduced to optimize the consequence parameters of SENSIT2PFNN. The membership layer and
rule base of SENSIT2PFNN were optimized using the self-evolving algorithm and whale optimization
algorithm, respectively. The simulation results verified the effectiveness of the proposed methods for
the synchronization of uncertain fractional-order hyperchaotic systems.

Keywords: uncertain fractional-order hyperchaotic system; non-singleton interval type-2 probabilistic
fuzzy neural network; fixed-time sliding mode controller; whale optimization algorithm; self-evolving

1. Introduction

Fractional calculus was born more than three centuries ago. It is a theory that extends
integral calculus to arbitrary order [1,2]. In the two to three centuries following its birth, it
was studied as a pure theoretical science with almost no practical application. However,
in recent years, increased attention has been paid to the synchronization of fractional-
order hyperchaotic systems because of their potential applications in many aspects of
science and engineering, such as information processing, biological systems, and chemical
science [3,4]. In addition, because fractional-order hyperchaotic systems exhibit uncertainty,
unpredictability, and high sensitivity to initial conditions, they are extensively used in
engineering fields such as secure communication and encryption. Different synchronization
types and control schemes are available, such as projection synchronization [5,6], anti-
synchronization [7,8], robust synchronization [9,10], generalized synchronization [11,12],
the adaptive control scheme [13,14], and the sliding mode control scheme [15]. The sliding
mode control scheme includes the finite-time sliding mode and fixed-time sliding mode. In
the finite-time sliding mode, the system state becomes stable within a period depending on
the initial values of the system after reaching the sliding surface, whereas the system state
becomes stable within a fixed period that depends only on the system parameters after
reaching the sliding surface in the fixed-time sliding mode [16,17].

The sliding mode control scheme exhibits good robustness and can effectively suppress
uncertain external interferences; however, it is only applicable to deterministic systems
with known dynamics. To solve this problem, a general controller can be designed for
uncertain systems by combining the fuzzy neural network (FNN) with the approximation
characteristics. Type-1 and type-2 FNNs can effectively approximate nonlinear systems,
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and the synchronization of fractional-order hyperchaotic systems can be realized using
fuzzy controllers [18]. A generalized type-2 FNN has been proposed to approximate un-
known nonlinear systems, solving the multi-switch synchronization problem encountered
in fractional-order hyperchaotic systems [19]. A fuzzy sliding mode control scheme has
been proposed to improve the robustness of the unknown time-varying disturbance of
fractional-order hyperchaotic systems [20–22]. A type-2 fuzzy disturbance observer has
been developed to describe variable-order hyperchaotic systems, and a robust controller has
been designed to solve the synchronization problem encountered in fractional-order hyper-
chaotic systems [23,24]. The aforementioned FNN controller ignores two problems. The first
problem is the curse of dimensionality, i.e., the number of rules of the FNN increases expo-
nentially with the increase in input dimensions, which, in turn, greatly increases the system
load. To solve this problem, many self-evolving fuzzy systems have been proposed [25–27].
The second problem is random uncertainty. In the synchronization process, due to the
interference of the environment, unknown and missing data dimensions, and randomness
of the fractional-order hyperchaotic system, various fuzzy and random uncertainties are
generated, which greatly affect the performance of the control system [28–30].

Based on the above discussion, to solve the synchronization problem encountered
in uncertain fractional-order hyperchaotic systems and avoid the curse of dimension and
various uncertainty problems that may be encountered in the synchronization process,
in this paper, we proposed a novel self-evolving non-singleton type-2 probabilistic FNN
(SENSIT2PFNN) with fixed-time sliding mode control scheme based on the improved
whale optimization algorithm (WOA) [31]. The effectiveness of WOA has been verified
in fields such as COVID-19 disease detection [32], water demand prediction [33], neural
network hyperparameter optimization [34], and multicell production planning [35]. The
main contributions of this study are as follows:

1. A novel SENSIT2PFNN was proposed to solve the problems of fuzzy uncertainty
and random uncertainty encountered in fuzzy systems. The network structure
was modified using the self-evolution algorithm, the rule base was optimized us-
ing the improved WOA, and the network adaptive law was used to optimize the
network parameters.

2. By using the proposed SENSIT2PFNN to approximate the linear and uncertain non-
linear parts of uncertain fractional-order hyperchaotic systems, a universal fractional-
order hyperchaotic synchronization controller was developed.

3. The developed fixed-time sliding mode controller eliminates the influence of approxi-
mation error and external interference and realizes the fixed-time synchronization of
various uncertain fractional-order hyperchaotic systems.

By using the aforementioned control scheme, the synchronization of the uncertain
fractional-order hyperchaotic system was realized. The rest of this article is organized as
follows. In Section 2, the problem formulation and preliminary are discussed. In Section 3,
the proposed SENSIT2PFNN structure is presented. In Section 4, the proposed fixed-time
sliding mode controller and its stability analysis are presented. The synchronization results
of uncertain fractional-order hyperchaotic systems are discussed in Section 5. Finally, the
conclusion is presented in Section 6.

2. Problem Formulation and Preliminary

Definition 1 ([36]). The Riemann–Liouville fractional differential with order α of function f (t) can
be expressed as follows:

t0
Dα

t f (t) =
1

Γ(m− α)

dm

dt

∫ t

t0

f (τ)

(t− τ)α−m+1 dτ, (1)

where m− 1 < α ≤ m, m ∈ N, and Γ(·) is the Gamma function.
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Property 1 ([37]). The following equations are established using the definitions by Riemann–
Liouville and Caputo:

RL,C
t0

Dα
t (

RL,C
t0

D−β
t f (t)) = RL,C

t0
Dα−β

t f (t), (2)

where α ≥ β ≥ 0, RL represents the derivative defined by Riemann–Liouville, and C represents the
derivative defined by Caputo.

Consider the following system:

.
x(t) = f (x(t)), x(0) = x0, (3)

where x ∈ Rn , and f : Rn → Rn is a nonlinear function. The system defined using Equation (3)
is stable at the origin.

Definition 2 ([38]). When the system defined using Equation (3) is globally finite-time sta-
ble and the convergence time T(x0) is bounded, the system’s origin is called a fixed-time stable
equilibrium point.

Lemma 1 ([38]). Consider the following system:

.
y = −αym/n − βyp/q, y(0) = y0, (4a)

where α, β > 0; m, n, p, and q are positive odd integers and satisfy the conditions m > n and
p < q. The system’s equilibrium point is a fixed-time stable equilibrium point, and the upper bound
of the convergence time can be expressed as follows:

T <
1
α

n
m− n

+
1
β

q
q− p

. (4b)

Lemma 2 ([39]). For any non-negative real number ξ1, ξ2, . . . , ξn, the following inequalities exist:


n
∑

i=1
ξ

p
i ≥

(
n
∑

i=1
ξi

)p
, 0 < p ≤ 1

n
∑

i=1
ξ

p
i ≥ n1−p

(
n
∑

i=1
ξi

)p
, p > 1

. (5)

The following n-dimensional uncertain fractional-order hyperchaotic systems
are considered:

Drive system :



Dαx1 = f1(x, t) + ∆ f1(x, t)
...

Dαxi = fi(x, t) + ∆ fi(x, t)
...

Dαxn = fn(x, t) + ∆ fn(x, t)

, (6)

Response system :



Dαy1 = g1(y, t) + ∆g1(y, t) + dg
1(t) + u1(t)

...
Dαyi = gi(y, t) + ∆gi(y, t) + dg

i (t) + ui(t)
...

Dαyn = gn(y, t) + ∆gn(y, t) + dg
n(t) + un(t)

, (7)

where ∆ fi and ∆gi are uncertain bounded functions; dg
i is bounded external interfer-

ence; dg
i ≤ |εd|, fi, and gi are nonlinear bounded functions; ui is the control signal;

y = [y1, y2, . . . , yn]
T and x = [x1, x2, . . . , xn]

T are the state vectors of the response sys-
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tem and drive system, respectively; 0 < α < 1 is the fractional-order derivative; and
i = 1, . . . , n.

The synchronization error is defined as ei = yi − xi. The control objective is to design
the controller ui such that lim

t→∞
‖ei‖ = 0.

The i-th subsystem is defined as follows:

Dαyi = Fi(y, t) + dg
i (t) + ui(t), (8)

where Fi(y, t) = gi(y, t) + ∆gi(y, t) as shown in Figure 1, and (ĝi) is estimated using the
proposed NST2PFNN.
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Figure 1. Control block diagram of the i-th subsystem. 

The i-th error subsystem can be obtained by using Equations (9)–(11): 

Figure 1. Control block diagram of the i-th subsystem.

Set
Fi(y, t) = g∗i + εi, (9)

where εi is the estimation error (|εi| ≤ ε∗), and g∗i is the best estimated value (
∣∣g∗i ∣∣ ≤ εg∗ ).

The control law is defined as follows:

ui = u′ i + usi , (10)

u′ i = Dαxi − ĝi − e′ i, (11)

where e′ i = Dα−1(β1(1/2)m1/n1 sig(ei)
2m1/n1−1 + λ1(1/2)p1/q1 sig(ei)

2p1/q1−1); Dα is the
fractional differential operator with order α, β1 > 0, and λ1 > 0; m1, n1, p1, and q1
are positive odd integers with m1 > n1 and p1 < q1; and ĝi is the bounded output of
SENSIT2PFNN with |ĝi| ≤ ε ĝ.

The i-th error subsystem can be obtained by using Equations (9)–(11):

Dαei = g∗i + εi − ĝi − e′ i + usi + dg
i . (12)

We aimed to design a fixed-time sliding mode control law (usi ) such that the error
system given by Equation (12) can become stable within a fixed period independent of the
initial value.

3. Self-Evolving Non-Singleton Type-2 Probabilistic Fuzzy Neural Network
3.1. Network Structure

To facilitate the self-evolution of the membership layer structure presented, type-2
asymmetric Gaussian functions are employed as the activation functions of all the neural
network layers because they offer good flexibility. As shown in Figure 2, the NSIT2PFNN
model has six layers:
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ĝ

1ω Mω

Input Layer

Fuzzification Layer

Membership 
Layer

Probabilistic 
Layer

Rule Layer

Output Layer

 
Figure 2. Structure of NSIT2PFNN. 

Input layer: The input of this layer is the output of the error system. 
Fuzzification layer: In this layer, the single point input of the neural network is fuzz-

ified into a type-2 membership function (MF), representing the uncertainty of the input. 
Let the type-2 MF generated by the i-th input be 

ieB . 
ieB  utilizes an asymmetric Gauss-

ian MF with a mean value of ie  and a standard deviation width of [ , ]
i i i

L L L
e e eσ σ σ∈ –

[ , ]
i i i

R R R
e e eσ σ σ∈ : 

2

2

2

2

2

2

2

2

( )exp( ),

( )
( )exp( ),

( )exp( ),

( )
( )exp( ),

i

ei

i

i

ei

i

i
iL

e

B
i

iR
e

i
iL

e

B
i

iR
e

x e
x e

x
x e

e x

x e
x e

x
x e

e x

σ
μ

σ

σ
μ

σ

 −
− −∞ < ≤

= 
− − < ≤ ∞


 −

− −∞ < ≤
= 

− − < ≤ ∞






. (13)

Figure 2. Structure of NSIT2PFNN.

Input layer: The input of this layer is the output of the error system.
Fuzzification layer: In this layer, the single point input of the neural network is

fuzzified into a type-2 membership function (MF), representing the uncertainty of the input.
Let the type-2 MF generated by the i-th input be B̃ei . B̃ei utilizes an asymmetric Gaussian
MF with a mean value of ei and a standard deviation width of σL

ei
∈ [σL

ei
, σL

ei
]–σR

ei
∈ [σR

ei
, σR

ei
]:

µB̃ei
(x) =


exp(− (x−ei)

2

σL2
ei

),−∞ < x ≤ ei

exp(− (x−ei)
2

σR2
ei

), ei < x ≤ ∞

µ
B̃ei

(x) =


exp(− (x−ei)

2

σL2
ei

),−∞ < x ≤ ei

exp(− (x−ei)
2

σR2
ei

), ei < x ≤ ∞

. (13)

As shown in Figure 3, to obtain the upper and lower membership degrees of the i-th
input of the network under the j-th MF, the input of the network must be non-singleton
blurred [40]:

ej
i =


[(σ

Lj
i )

2
ei+(σR

ei
)

2
mj

i ]

[(σ
Lj
i )

2
+(σR

ei
)

2
]

, ei ≤ mj
i

[(σ
Rj
i )

2
ei+(σL

ei
)

2
mj

i ]

[(σ
Rj
i )

2
+(σL

ei
)

2
]

, ei > mj
i

ej
i =


[(σ

Lj
i )

2
ei+(σR

ei
)

2mj
i ]

[(σ
Lj
i )

2
+(σR

ei )
2
]

, ei ≤ mj
i

[(σ
Rj
i )

2
ei+(σL

ei
)

2mj
i ]

[(σ
Rj
i )

2
+(σL

ei )
2
]

, ei > mj
i

, (14)

where j = 1, . . . , K; mj
i σ

Lj
i , and σ

Rj
i are, respectively, the mean and standard deviations of

the j-th type-2 MF(Ãj
i) of the i-th input; and ej

i is the fuzzy value of the i-th input under the
j-th MF.
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Membership layer: The membership degree of the i-th input under the j-th MF is
calculated in this layer:

µ
Ãj

i
(ej

i) =


exp[− (ej

i−mj
i)

2

σ
Lj2
i

], ej
i ≤ mj

i

exp[− (ej
i−mj

i)
2

σ
Rj2
i

], ej
i > mj

i

µ
Ãj

i
(ej

i) =


exp[− (ej

i−mj
i)

2

σ
Lj2
i

], ej
i ≤ mj

i

exp[− (ej
i−mj

i)
2

σ
Rj2
i

], ej
i > mj

i

, (15)

where Ãj
i is the j-th MF of the i-th input; µ

Ãj
i

and µ
Ãj

i
are, respectively, the upper and lower

membership degrees of the i-th input under the j-th MF; and σ
Lj
i and σ

Rj
i are, respectively

the left and right width of the MF.
Probabilistic layer: In this layer, the Gaussian function is usually employed as the

probability function (PF). To improve calculation efficiency, as shown in Figure 4, the
triangle function was used in this study:

µPk
ij
(µ

Ãj
i
) =



0, µ
Ãj

i
≥ mk

p + σk
p, µ

Ãj
i
≤ mk

p − σk
p

µ
Ãj

i
−mk

p+σk
p

σk
p

, mk
p − σk

p < µ
Ãj

i
≤ mk

p

−µ
Ãj

i
+mk

p+σk
p

σk
p

, mk
p < µ

Ãj
i
≤ mk

p + σk
p

µ
Pk

ij
(µ

Ãj
i
) =



0, µ
Ãj

i
≥ mk

p + σk
p, µ

Ãj
i
≤ mk

p − σk
p

µ
Ãj

i
−mk

p+σk
p

σk
p

, mk
p − σk

p < µ
Ãj

i
≤ mk

p

−µ
Ãj

i
+mk

p+σk
p

σk
p

, mk
p < µ

Ãj
i
≤ mk

p + σk
p

, (16)

where Pk
ij is the k-th PF of the j-th MF, µPk

ij
and µ

Pk
ij

are the output of the k-th node of the j-th

input variable, mk
p is the center of the triangle, and σk

p is the center width of the triangle.
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Rule layer: Each node in this layer represents a fuzzy rule, which calculates the upper
and lower firing degrees based on product reasoning. Each rule is defined as follows:

Rulel : IF e1 is ÃP1
1 and . . . and en is ÃPn

n , then ĝ is ωl , (17)

where Ã
Pj
i is the pj-th type-2 MF of the i-th input, and ωl is the consequent parameter of

the l-th rule. Let the total number of rules be M, and the upper and lower firing degrees of
the l-th rule are

zl = (µ
Ãj

i
×Π

k
µPk

ij
)× · · · × (µÃK

n
×Π

k
µPk

nK
)

zl = (µ
Ãj

i
×Π

k
µ

Pk
ij
)× · · · × (µ

ÃK
n
×Π

k
µ

Pk
nK
)

, (18)

where zl and zl are, respectively, the upper and lower firing degrees of the l-th rule, and K
is the number of MFs per network input.

Output layer: The output of deblurring can be expressed as follows:

ĝ =

M
∑

i=1
(zi + zi)ωi

M
∑

i=1
(zi + zi)

. (19)

To facilitate the subsequent derivation process, ĝ can be written as follows:

H = 1
M
∑

i=1
(zi+zi)

[(
z1 + z1

)
· · ·
(
zM + zM)]T

Wi =
[
ωi

1 · · ·ωi
M]T , W̃i = W∗i − Ŵi

ĝi = Ŵi
T H, g∗i = W∗Ti H

, (20)

where Wi is the weight vector of the i-th neural network, W∗i is the optimal estimate of the
weight, and Ŵi is the weight estimate.

3.2. Self-Evolution Algorithm

(1) Optimizing the rule base of neural networks with the improved WOA.

Due to the curse of dimensionality, an FNN with n inputs and K membership functions
for each input generates up to Kn rules, which greatly increases unnecessary calculations.
WOA offers the advantages of simple mechanisms, few parameters, and strong optimiza-
tion ability. To make WOA suitable for the optimization of the NSIT2PFNN rule base, it
was modified appropriately in this study; the steps are shown in Figure 5.
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Figure 5. Block diagram of the improved WOA. Figure 5. Block diagram of the improved WOA.

First, the total number of rules M of the network was obtained, and the individual
position vector of the population with dimension M was randomly generated. Next, the
population size was set as 30 and binarized (set as 0 if it was less than 0.5 and as 1 for the
rest). Each position was multiplied with the neural network rules to calculate the optimal
fitness value for the current optimal individual position. The basic parameters, such as
b and p, were initialized such that when |b| ≤ 1 and p ≤ 0.5, the individual population
updates its position by following the “round up the prey” strategy; when |b| ≤ 1 and
p > 0.5, the individual population updates its position by following the “bubble net
predation” strategy; and when |b| > 1, the individual population updates its position by
following the “search for prey” strategy. After a round of position updates was completed,
all position information was brought into the neural network rule base, the fitness value
was calculated, the optimal individual position was retained, and the cycle was terminated
upon reaching the maximum number of iterations. In this paper, the maximum number of
iterations was set as 50, and the following fitness function was used:

J =
∫ ∞

0

n

∑
i=1
|ei(t)|dt. (21)

Remark 1. In this paper, only two numbers were used in the individual coordinate values of the
population to be optimized: 0 and 1. In such cases, the traditional WOA is no longer applicable, and
all population individuals and the search space must be binarized after each iteration to generate a
new population. The binarization algorithm can be expressed as follows:

ai(t) =
{

1 round(ai(t))%2 = 1
0 round(ai(t))%2 = 0

, (22)

where ai(t) is the i-th coordinate value of an individual in the population.

(2) Self-evolution of the membership layer of NSIT2PFNN

The structure of the membership layer of NSIT2PFNN was optimized by considering
the following three type-2 MFs of the i-th input: Ã1

i (σ
L1
i , m1

i , σR1
i ), Ã2

i (σ
L2
i , m2

i , σR2
i ), and
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Ã3
i (σ

L3
i , m3

i , σR3
i ), where σ

Lj
i ∈ [σ

Lj
i , σ

Lj
i ], j = 1, 2, 3 is the left width of the standard deviation

of the MF, mj
i , j = 1, 2, 3 is the mean point of the MF, σ

Rj
i ∈ [σ

Rj
i , σ

Rj
i ], j = 1, 2, 3 is the right

width of the standard deviation of the MF, and the standard deviation width of each input
of lower MF is half of that of the upper MF. As shown in Figure 6, for each input ei, if
the maximum upper membership degree is lower than the set value min_Degree (0.2), a
new type-2 MF is generated. Its mean point is ei, and the width of the left (right) standard
deviation is the distance from its mean point to the mean point of the adjacent MF:{

σ
Rj
ei = m1

i − ei

σ
Lj
ei = ei −m3

i

. (23)
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Theorem 1. The state variable of the error subsystem given by Equation (12) converges to zero 
within a fixed time 1T  after reaching the sliding surface: 

Figure 6. Adding a new MF.

The right (left) standard deviation width of its adjacent MF was changed in the
same manner.

If the number of MFs exceeds the set value max_Mf (value 3), the farthest MF is
deleted, as shown in Figure 7.
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4. Controller Design and Stability Analysis

We designed a fixed-time sliding mode controller usi to stabilize the error subsystem
given by Equation (12). The sliding surface can be selected as follows:
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si = Dα−1ei + Dα−2(β1(1/2)m1/n1 sig(ei)
2m1/n1−1

+λ1(1/2)p1/q1 sig(ei)
2p1/q1−1)

, (24)

where si is the sliding surface of the i-th subsystem; β1 > 0; λ1 > 0; m1, n1, p1, and q1 are
positive odd integers such that m1 > n1 and p1 < q1; and sig(·)x = |·|xsig(·).

When the state variable of the error system reaches the sliding surface, it satisfies the
following condition:

Dα−1ei = −Dα−2(β1(1/2)m1/n1 sig(ei)
2m1/n1−1

+λ1(1/2)p1/q1 sig(ei)
2p1/q1−1)

. (25)

Theorem 1. The state variable of the error subsystem given by Equation (12) converges to zero
within a fixed time T1 after reaching the sliding surface:

T1 <
1

n1−m1/n1 β1

n1

m1 − n1
+

1
λ1

q1

q1 − p1
. (26)

Proof. According to the Lyapunov function:

V1(t) =
1
2

n

∑
i=1

e2
i . (27)

According to Property 1, the derivative of the Lyapunov function with respect to time
t can be obtained as follows:

.
V1 =

n
∑

i=1
ei

.
ei

=
n
∑

i=1
ei(D2−α(Dα−1ei))

= −
n
∑

i=1
(β1(

1
2 e2

i )
m1/n1 + λ1(

1
2 e2

i )
p1/q1)

. (28)

According to Lemma 2:

.
V1 ≤ −n1−m1/n1 β1(

1
2

n
∑

i=1
e2

i )
m1/n1

− λ1(
1
2

n
∑

i=1
e2

i )
p1/q1

= −n1−m1/n1 β1V1
m1/n1 − λ1V1

p1/q1

. (29)

According to Lemma 1, the state variable of the error subsystem converges to zero
within a fixed time T1 after reaching the sliding surface. Thus, Theorem 1 is proved.

The sliding mode control law usi can be designed as follows:

usi = −β2(1/2)m2/n2 sig(si)
2m2/n2−1

−λ2(1/2)p2/q2 sig(si)
2p2/q2−1 − ηisig(si)

. (30)

Then:
ui = u′ i + usi

= Dαxi − ĝi − e′ − β2(1/2)m2/n2 sig(si)
2m2/n2−1

−λ2(1/2)p2/q2 sig(si)
2p2/q2−1 − ηisig(si)

. (31)

�
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Theorem 2. The error subsystem given by Equation (12) converges to the sliding mode surface si
under the control law (Equation (31)).

Proof. According to the Lyapunov function:

V2 =
n

∑
i=1

(
1
2

s2
i +

1
2

W̃T
i W̃i). (32)

According to Equation (20), the derivative of the Lyapunov function with respect to
time t is obtained as follows:

.
V2 =

n

∑
i=1

(si
.
si − W̃T

i

.
Ŵi). (33)

Substituting Equations (12), (20), and (24) into Equation (33), we obtain:

.
V2 =

n
∑

i=1
(si(Dαei + e′ i)− W̃T

i

.
Ŵi)

=
n
∑

i=1
(si(g∗i + εi − ĝi − e′ i + usi + dg

i + e′ i)− W̃T
i

.
Ŵi)

=
n
∑

i=1
(si(W∗Ti H + εi − ŴT

i H + usi + dg
i )− W̃T

i

.
Ŵ)

. (34)

Setting
.

Ŵ = si H, we obtain:

.
V2 =

n
∑

i=1
si(εi − β2(1/2)m2/n2 sig(si)

2m2/n2−1

−λ2(1/2)p2/q2 sig(si)
2p2/q2−1 − ηisig(si) + dg

i )

=
n
∑

i=1
(siεi − β2(

1
2 s2

i )
m2/n2

−λ2(
1
2 s2

i )
p2/q2 − η|si|+ sid

g
i )

. (35)

Setting ηi > ε∗ + εd + ε ĝ + εg∗ , we obtain:

.
V2 ≤

n

∑
i=1

(−β2(
1
2

s2
i )

m2/n2

− λ2(
1
2

s2
i )

p2/q2

) ≤ 0. (36)

Thus, according to the Lyapunov stability theorem, Theorem 2 is proved. �

Theorem 3. The error subsystem given by Equation (12) converges to the sliding mode surface si
within a fixed time t under the action of the control law (Equation (31)):

T2 <
1

n1−m2/n2 β2

n2

m2 − n2
+

1
λ2

q2

q2 − p2
. (37)

Proof. According to the Lyapunov function:

V3(t) =
1
2

n

∑
i=1

s2
i . (38)
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Substituting Equations (12) and (24) into Equation (38) and differentiating it, we obtain:

V3(t) =
n
∑

i=1
si

.
si =

n
∑

i=1
si(Dαei + e′ i)

=
n
∑

i=1
si(g∗i + εi − ĝi − e′ i + usi + dg

i + e′ i)

=
n
∑

i=1
si(g∗i + εi − ĝi − β2(1/2)m2/n2 sig(si)

2m2/n2−1

−λ2(1/2)p2/q2 sig(si)
2p2/q2−1 − ηisig(si) + dg

i )

. (39)

Setting ηi > ε∗ + εd + ε ĝ + εg∗ , we obtain:

V3(t) ≤
n

∑
i=1

(−β2(
1
2

s2
i )

m2/n2

− λ2(
1
2

s2
i )

p2/q2

). (40)

According to Lemma 2:

.
V3 ≤ −n1−m2/n2 β2(

1
2

n
∑

i=1
s2

i )
m2/n2

− λ2(
1
2

n
∑

i=1
s2

i )
p2/q2

= −n1−m2/n2 β2V3
m2/n2 − λ2V3

p2/q2

. (41)

According to Lemma 1, the error subsystem converges to the sliding mode surface si
within a fixed time T2 under the action of control law (Equation (31)). Thus, Theorem 3
is proved. �

5. Simulation

We verified the effectiveness of the proposed fractional-order hyperchaotic system
synchronization scheme by performing simulation experiments.

As performed in a previous study [41], we used the fractional-order hyperchaotic
Chen system as the drive system and the fractional-order hyperchaotic Lorenz system as
the response system. The respective formulas are as follows:

Drive system :


Dαx1 = 35(x2 − x1) + x4

Dαx2 = 7x1 + 12x2 − x1x3
Dαx3 = x1x2 − 8x3

Dαx4 = x2x3 + 0.3x4

, (42)

Response system :


Dαy1 = 10(y2 − y1) + y4 + ∆g1 + dy

1 + u1
Dαy2 = 28y1 − y2 − y1y3 + ∆g2 + dy

2 + u2
Dαy3 = y1y2 − 8/3y3 + ∆g3 + dy

3 + u3
Dαy4 = −y2y3 − y4 + ∆g4 + dy

4 + u4

, (43)

where the nonlinear unknown function ∆gi and external interference dy
i are selected

as follows:
∆g1 + dy

1 = 0.25 cos(6t)y1 − 0.15 sin(t)
∆g2 + dy

2 = −0.2 cos(2t)y2 + 0.1 sin(3t)
∆g3 + dy

3 = 0.15 sin(3t)y3 + 0.2 cos(5t)
∆g4 + dy

4 = −0.2 cos(t)y4 − 0.15 cos(t)

. (44)

The proposed method was used for synchronization control. The parameters of
NSIT2PFNN are presented in Table 1. The initial values were set as follows:

[x1(0), x2(0), x3(0), x4(0)]=[3, 1, 4,−1], and [y1(0), y2(0), y3(0), y4(0)]=[1, 2, 3, 4], with
the fractional order α = 0.98. The control parameters were set as ηi = 8, β1 = β2 = 12,
λ1 = λ2 = 12, p1 = p2 = 5, q1 = q2 = 9, n1 = n2 = 5, and m1 = m2 = 9.
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Table 1. Initial parameters of NSIT2PFNN.

Initial Parameters of MF Initial Parameters of PF

A1
i A2

i A3
i P1

ij P2
ij P3

ij

σL1
i m1

i σR1
i σL2

i m2
i σR2

i σL3
i m3

i σR3
i σ1

p m1
p σ2

p m2
p σ3

p m3
p

−20 −10 0 −10 0 10 0 10 20 1 0.4 1 0.5 1 0.6

The synchronization results are shown in Figures 8 and 9, and the root mean square
error (RMSE) values are presented in Table 2 for comparison. The proposed method was
employed for the synchronization of fractional-order hyperchaotic financial systems with
different initial values [42], novel fractional-order hyperchaotic systems, and fractional-
order hyperchaotic Chen systems [43]. The control and network parameters were the same
for all. The RMSE values are presented in Table 2 for comparison.
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As shown in Figures 8 and 9 and Table 2, the proposed method achieved full synchro-
nization of the uncertain fractional-order hyperchaotic system and yielded lower RMSE,
higher control accuracy, and better control effect than the three synchronization schemes.

6. Conclusions

In this study, to address the synchronization problem encountered in uncertain
fractional-order hyperchaotic systems, a novel self-evolving NSIT2PFNN model was pro-
posed to estimate nonlinear functions in system dynamics. In the proposed model, the
structure of the neural network is not fixed, and the structure of the membership layer and
the number of fuzzy rules can be adjusted adaptively.

In addition, a fixed-time sliding mode controller based on the FNN was designed to
eliminate the approximation error and external interference, and three synchronization sim-
ulation experiments using different fractional-order hyperchaotic systems were performed.

The simulation results demonstrated that the proposed controller could achieve a good
control effect when there are various uncertainties in the dynamic process of the system. In
future studies, we will extend the proposed method to other uncertain nonlinear systems.
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