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Abstract: This paper presents a new class of fractional order Runge–Kutta (FORK) methods for
numerically approximating the solution of fractional differential equations (FDEs). We construct
explicit and implicit FORK methods for FDEs by using the Caputo generalized Taylor series formula.
Due to the dependence of fractional derivatives on a fixed base point, in the proposed method, we
had to modify the right-hand side of the given equation in all steps of the FORK methods. Some
coefficients for explicit and implicit FORK schemes are presented. The convergence analysis of the
proposed method is also discussed. Numerical experiments are presented to clarify the effectiveness
and robustness of the method.
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1. Introduction

In recent years, the numerical approximation for the solutions of FDEs has attracted
increasing attention in many fields of applied sciences and engineering [1–3]. It is common
for FDEs to be used in formulating many problems in applied mathematics. Developing
numerical methods for fractional differential problems is necessary and important because
analytic solutions are usually challenging to obtain. Moreover, it is necessary to develop
numerical methods that are highly accurate and easy to use.

It is well known that fractional derivatives have different definitions; the most common
and important ones in applications are the Riemann–Liouville and Caputo fractional
derivatives. Models describing physical phenomena usually prefer the use of the Caputo
derivative. One of the reasons is that the Riemann–Liouville derivative needs initial
conditions containing the limit values of the Rieman–Liouville fractional derivative at the
origin of time. In contrast, the initial conditions for Caputo derivatives are the same as for
integer-order differential equations. Therefore, using the Caputo derivative, there is a clear
physical interpretation of the prescribed data; see [1,4,5].

Numerous research papers have been published on numerical methods for FDEs. Many
researchers considered the trapezoidal method, predictor-corrector method, extrapolation
method, and spectral method [6–16]. Some of these methods discretize fractional derivatives
directly. As an example, the L1 formula was created by a piecewise linear interpolation
approximation for the integrand function on each small interval [17,18]. In [19], the authors
applied quadratic interpolation approximation using three points to approximate the Caputo
fractional derivative, while in [20], a technique based on the block-by-block approach was
presented. This technique became a common method for equations with integral operators.
In [21], Caputo fractional differentiation was approximated by a weighted sum of the integer
order derivatives of functions. In [22], several numerical algorithms were proposed to ap-
proximate the Caputo fractional derivatives by applying higher-order piecewise interpolation
polynomials and the Simpson method to design a higher-order algorithm.
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These methods are appropriate options if the resulting system of equations, generated
from the numerical method, is linear and well-conditioned. However, they present a high
computational cost when the problem we are solving is badly conditioned or nonlinear.
In light of the above discussion and the analysis of other methods for FDEs, despite
many papers on numerical methods for FDEs, there are still insufficient efficient numerical
approaches for such equations. Therefore, further studies are still in demand. In this case,
step-by-step methods such as the Runge–Kutta method are a good option. They are favored
due to their simplicity in both calculation and analysis.

Several authors have used Runge–Kutta methods to solve ordinary, partial differential,
and integral equations [23–30]. Lubich and others have done some fundamental works
regarding Runge–Kutta methods for Volterra integral equations [28–30]. They used the
order conditions to derive various Runge–Kutta methods.

One of the efficient implicit Runge–Kutta methods for the numerical approximation
of some linear partial differential equations is the Rosenbrock procedure. It is a class of
semi-implicit Runge–Kutta methods for the numerical solution of some stiff systems of
ODEs. In Osterman and Rochet’s papers [31,32], the authors apply the Rosenbrock methods
to solve linear partial differential equations, obtaining a sharp lower bound for the order of
convergence. They show that the order of convergence is, in general, fractional. So, for the
numerical solution of some fractional linear partial differential equations, we can construct
fractional Rosenbrock-type methods, in which a special type of fractional semi-implicit
Runge–Kutta method could be considered.

This paper introduces a new class of fractional order Runge–Kutta methods for numer-
ical approximation to the solution of FDEs. Using the Caputo generalized Taylor series for-
mula for the Caputo fractional derivative, we construct explicit and implicit FORK methods
comparable to the well-known Runge–Kutta schemes for ordinary differential equations.

The remainder of the paper is organized as follows. In Section 2, we review some
definitions and properties of fractional calculus. We propose new explicit and implicit
FORK methods for solving FDEs in Sections 3 and 4. In Section 5, the theoretical analysis of
the convergency, stability, and consistency of the proposed methods is presented. Finally, in
Section 6, some numerical examples demonstrate the effectiveness of the methods proposed.
Also, in Appendix A two Mathematica computer programming codes are given.

2. Preliminaries

This section briefly reviews the definitions of the fractional integral and Caputo frac-
tional derivative and explores some of their properties. A more comprehensive introduction
to the fractional derivatives can be found in [1,4,33].

Definition 1. The Riemann–Liouville fractional integral operator of order α > 0 for a function
f (x) ∈ L1[a, b] with a ≥ 0 is defined as

Jα
a f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x ∈ [a, b], J0

a f (x) = f (x).

where L1[a, b] = { f | f is a measurable function on [a, b] and
∫ b

a | f (x)|dx < ∞}, Γ is the
Gamma function.

Definition 2. The Caputo fractional derivatives of order α > 0 of a function f (x) ∈ L1[a, b], with
a ≥ 0, is defined as

c
aDα

x f (x) = Jn−α
a Dn f (x)

=


1

Γ(n− α)

∫ x

a
(x− t)n−α−1Dn f (t)dt, n− 1 < α < n, n ∈ N,

Dn f (x), α = n.

(1)
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Theorem 1 (Generalized Taylor formula for Caputo fractional derivative [34]). Suppose that
(c

aDα
t )

k f (x) ∈ C(a, b] for k = 0, 1, . . . , n + 1, where 0 < α 6 1, then, ∀ x ∈ [a, b], there exist
ξ ∈ (a, x) such that

f (x) =
n

∑
i=0

(x− a)iα

Γ(1 + i α)
((c

aDα
t )

i f )(a) +
(x− a)(n+1)α

Γ(1 + (n + 1) α)
((c

aDα
t )

(n+1)) f )(ξ), (2)

where (c
aDα

t )
n = c

aDα
t

c
aDα

t · · · caDα
t︸ ︷︷ ︸

n times

.

There are also two important functions in fractional calculus. They are a direct gener-
alization of the exponential series, which play essential roles in solving the FDEs and in
stability analysis.

Definition 3. The Mittag–Leffler function is defined as

Eα(x) =
∞

∑
k=0

xk

Γ(1 + α k)
, <(α) > 0, x ∈ C.

In addition, the two-parameter Mittag–Leffler function is defined by

Eα,β(x) =
∞

∑
k=0

xk

Γ(β + α k)
, <(α) > 0, β ∈ C, x ∈ C.

We note that Eα(x) = Eα,1(x) and

E1(x) =
∞

∑
k=0

xk

Γ(1 + k)
=

∞

∑
k=0

xk

k!
= exp(x).

3. Fractional Order Runge–Kutta Methods

This section presents a new class of FORK methods for the numerical solutions of
FDEs. Consider the following FDE with 0 < α ≤ 1:

c
t0

Dα
t y(t) = f (t, y(t)), t ∈ [t0, T],

y(t0) = y0.
(3)

where y(t) ∈ C[t0, T] and f (t, y(t)) ∈ C[t0, T] × R. t0 is called the base point of
fractional derivative.

We set tn = t0 + n h, n = 0, 1, · · · , Nm, where h = (T − t0)/Nm is the step size, N is a
positive integer (in Section 5, we prove that m ≥ 1/α). For the existence and uniqueness of
the solution of the FDE (3), we consider the following theorem [4].

Theorem 2. Let α > 0, y0 ∈ R, K > 0 and T > 0 and also let the function f : G → R be
continuous and fulfill a Lipschitz condition with respect to the second variable, i.e.,

| f (t, y1)− f (t, y2)| ≤ L|y1 − y2|

with some constant L > 0 independent of t, y1 and y2. Define

G = {(t, y) : t ∈ [0, T], |y− y0| ≤ K}, M = Sup(t,z)∈G| f (t, z)|

and

T∗ =

{
T, M = 0,
min{T, (K Γ(α + 1)/M)1/α}, else.
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Then, there exists a unique function y ∈ C[0, T∗] solving the initial-value problem (3).

In the sequel, we assume f (t, y) has continuous partial derivatives with respect to
t and y to as high an order as we want.

Now, we introduce an s-stage explicit fractional order Runge–Kutta (EFORK) method
for FDEs, which is discussed completely with s = 2 and s = 3 stages.

Definition 4. A family of s-stage EFORK methods is defined as

K1 = hα f (t, y),

K2 = hα f (t + c2h, y + a21K1),

K3 = hα f (t + c3h, y + a31K1 + a32K2),
...

Ks = hα f (t + csh, y + as1K1 + as2K2 + · · ·+ as,s−1Ks−1), (4)

with

yn+1 = yn +
s

∑
i=1

wi Ki, (5)

where the unknown coefficients
{

aij
}s,i−1

i=2,j=1 and the unknown weights {ci}s
i=2, {wi}s

i=1 has
to be determined.

To specify a particular method, one needs to provide
{

aij
}s,i−1

i=2,j=1 and {ci}s
i=2, {wi}s

i=1 ac-
cordingly. Following Butcher, [23], a method of this type is designated by the following scheme:

c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1
w1 w2 · · · ws−1 ws

We expand yn+1 in (5), in powers of hα, such that it agrees with the Taylor series
expansion of the solution of the FDE (3) in a specified number of terms (see [35]). According
to (2), the generalized Taylor formula for α ∈ (0, 1] with respect to the Caputo fractional
derivative of the function y(t) is defined as follows:

y(t) = y(t0) +
(t− t0)

α

Γ(α + 1)
c
t0

Dα
t y(t0) +

(t− t0)
2α

Γ(2α + 1)
((c

t0
Dα

t )
2y)(t0)

+
(t− t0)

3α

Γ(3α + 1)
((c

t0
Dα

t )
3y)(t0) + · · · , (6)

where using (3),

c
t0

Dα
t y(t) = f (t, y), (c

t0
Dα

t )
2 y(t) = c

t0
Dα

t f (t, y), (c
t0

Dα
t )

3 y(t) = (c
t0

Dα
t )

2 f (t, y), · · · . (7)

Now, we obtain explicit expressions for (7).
Caputo fractional derivatives of composite function f (t, y(t)) can be computed by

fractional Taylor series:
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f (t, y(t)) = f (t0, y(t0)) +
(t− t0)

α

Γ(α + 1)
f α
t (t0, y(t0)) +

(y− y0)

1!
fy(t0, y(t0))

+
(t− t0)

2α

Γ(2α + 1)
f α,α
t,t (t0, y(t0)) +

(y− y0)
2

2!
fy,y(t0, y(t0))

+
(t− t0)

α(y− y0)

Γ(α + 1)
f α,1
t,y (t0, y(t0)) +

(t− t0)
3α

Γ(3α + 1)
f α,α,α
t,t,t (t0, y(t0)) + · · · , (8)

where f α
t is the Caputo fractional derivative of f (t, y(t)) with respect to t. After inserting

y(t)− y(t0) from (6) in (8) and by using the fractional derivative of (8) for α ∈ (0, 1], we have

c
t0

Dα
t f (t, y(t)) = f α

t (t0, y(t0)) +

(
f (t0, y(t0)) +

(t− t0)
α

Γ(α + 1)
c
t0

Dα
t f (t0, y(t0)) + . . .

)
fy(t0, y(t0))

+
(t− t0)

α

Γ(α + 1)
f α,α
t,t (t0, y(t0)) +

1
2

(
Γ(2α + 1)
Γ(α + 1)3 (t− t0)

α f 2(t0, y(t0)) + . . .
)

fy,y(t0, y(t0))

+

(
Γ(2α + 1)
Γ(α + 1)3 (t− t0)

α f (t0, y(t0)) + . . .
)

f α,1
t,y (t0, y(t0))

+
(t− t0)

2α

Γ(2α + 1)
f α,α,α
t,t,t (t0, y(t0)) + · · · ,

and so

c
t0

Dα
t f (t0, y(t0)) = f α

t (t0, y(t0)) + f (t0, y(t0)) fy(t0, y(t0)). (9)

In addition,

c
t0

D2α
t f (t, y(t)) = c

t0
Dα

t f (t0, y(t0)) fy(t0, y(t0)) + f α,α
t,t (t0, y(t0))

+

(
Γ(2α + 1)
2Γ(α + 1)2 f 2(t0, y(t0)) + . . .

)
fy,y(t0, y(t0))

+

(
Γ(2α + 1)
Γ(α + 1)2 f (t0, y(t0)) + . . .

)
f α,1
t,y (t0, y(t0))

+
(t− t0)

α

Γ(α + 1)
f α,α,α
t,t,t (t0, y(t0)) + · · · ,

which yields

c
t0

D2α
t f (t0, y(t0)) = f α

t (t0, y(t0)) fy(t0, y(t0)) + f (t0, y(t0)) f 2
y (t0, y(t0)) + f α,α

t,t (t0, y(t0))

+
1
2

f 2(t0, y(t0)) fy,y(t0, y(t0)) + f (t0, y(t0)) f α,1
t,y (t0, y(t0)). (10)

In a similar manner with (9) and (10), we can obtain the higher fractional derivatives
of f (t, y(t)).

Now, by using (9) and (10), we have

c
t0

Dα
t y(t0) = f (t0, y0),

(c
t0

Dα
t )

2y(t0) = f α
t (t0, y0) + f (t0, y0) fy(t0, y0),

(c
t0

Dα
t )

3y(t0) = f α
t (t0, y(t0)) fy(t0, y(t0)) + f (t0, y(t0)) f 2

y (t0, y(t0)) + f α,α
t,t (t0, y(t0)

+
1
2

f 2(t0, y(t0)) fy,y(t0, y(t0)) + f (t0, y(t0)) f α,1
t,y (t0, y(t0)), (11)

where f α,i
t,y , i = 1, 2, · · · , represents the ith integer derivative of the function f α

t with respect
to y. As we can see from (6), in Caputo fractional derivatives ((c

t0
Dα

t )
ky)(t0), k = 0, 1, 2, · · · ,

the argument t0 in y(t0) and starting value in (c
t0

Dα
t )

k are the same.



Fractal Fract. 2023, 7, 245 6 of 24

To construct an efficient numerical scheme, we should obtain a similar series with
the derivatives evaluated in any other point (tn > t0), such that the expansion can be
constructed independently from the starting point t0. In other words, we need

y(tn+1) = y(tn) +
hα

Γ(α + 1)
c
tn Dα

t y(tn) +
h2α

Γ(2α + 1)
((c

tn Dα
t )

2y)(tn)

+
h3α

Γ(3α + 1)
((c

tn Dα
t )

3y)(tn) + · · · , (12)

and ((c
tn

Dα
t )

iy)(tn), i = 1, 2, · · · . To do so, by using c
t0

Dα
t y(t), we obtain c

tn
Dα

t y(t) for
n = 1, 2, · · · , Nm − 1, as

c
tn Dα

t y(t) = c
t0

Dα
t y(t)− 1

Γ(1− α)

∫ tn

t0

(t− s)−αDy(s)ds

= c
t0

Dα
t y(t)− 1

Γ(1− α)

n−1

∑
i=0

∫ ti+1

ti

(t− s)−αDy(s)ds. (13)

By using the linear Lagrange interpolation formula for y(s) in support abscissas
{ti, ti+1}, we have

y(s) ' (s− ti)

(ti+1 − ti)
yi+1 −

(s− ti+1)

(ti+1 − ti)
yi

=
(s− ti)

h
yi+1 −

(s− ti+1)

h
yi, s ∈ [ti, ti+1], i = 0, 1, . . . , n− 1,

where, for a sufficiently small h, we have

Dy(s) ' 1
h
(yi+1 − yi), s ∈ [ti, ti+1], i = 0, 1, . . . , n− 1,

and∫ ti+1

ti

(t− s)−αDy(s)ds ' (yi+1 − yi)

h(1− α)

[
(t− ti)

1−α − (t− ti+1)
1−α
]
, i = 0, 1, · · · , n− 1.

From (13) and c
t0

Dα
t y(t) = f (t, y), we have

c
tn Dα

t y(t) = f (t, y)− 1
Γ(1− α)

n−1

∑
i=0

(yi+1 − yi)

h(1− α)

[
(t− ti)

1−α − (t− ti+1)
1−α
]
.

So we may write
c
tn Dα

t y(t) = Fn(t, y), n = 0, 1, 2, . . . . (14)

where F0(t, y) = f (t, y) and for n = 1, 2, 3, · · · , we have

Fn(t, y) = f (t, y)− 1
Γ(2− α)

n−1

∑
i=0

yi+1 − yi
h

[
(t− ti)

1−α − (t− ti+1)
1−α
]
.

Clearly, Fn(t, y) is continuous and satisfies the Lipschitz condition with respect to
the second variable, due to the properties of f (t, y). In what follows, for convenience of
notation, we rename Fn(t, y) as f (t, y), i.e., in any initial points tn > t0, n = 1, 2, . . . , Nm − 1,
we consider the right terms of (14) as f (tn, yn) instead of Fn(tn, yn) in any stages.

Now, to construct FORK methods, we can use the Taylor formula (6) and (11), where
c
tn

Dα
t y(t) is defined in (14).
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3.1. EFORK Method of Order 2α

Let us introduce the following EFORK method with two stages:

K1 = hα f (tn, yn),

K2 = hα f (tn + c2h, yn + a21K1),

yn+1 = yn + w1K1 + w2K2, (15)

where coefficients c2, a21 and weights w1, w2 are chosen to make the approximate value yn+1
as close as possible to the exact value y(tn+1). We expand K1 and K2 about the point (tn, yn),
where we use the Caputo Taylor formula (12) about point tn and standard integer-order
Taylor formula about yn as

K1 = hα f (tn, yn),

K2 = hα f (tn + c2h, yn + a21K1)

= hα

[
f (tn, yn) +

cα
2hα

Γ(α + 1)
f α
t + a21hα fn fy +

c2α
2 h2α

Γ(2α + 1)
f α,α
t,t +

a2
21h2α

2
f 2
n fy,y

+
cα

2 a21h2α

Γ(α + 1)
fn f α,1

t,y + · · ·
]

= hα fn + h2α

(
cα

2
Γ(α + 1)

f α
t + a21 fn fy

)
+h3α

(
c2α

2
Γ(2α + 1)

f α,α
t,t +

a2
21
2

f 2
n fy,y +

cα
2 a21

Γ(α + 1)
fn f α,1

t,y

)
+ · · · .

Substituting K1 and K2 in (15), we have

yn+1 = yn + (w1 + w2)hα fn + h2αw2

(
cα

2
Γ(α + 1)

f α
t + a21 fn fy

)
+ w2h3α

(
c2α

2
Γ(2α + 1)

f α,α
t,t +

a2
21
2

f 2
n fy,y +

cα
2 a21

Γ(α + 1)
fn f α,1

t,y

)
+ · · · (16)

Comparing (12) with (16) and matching coefficients of powers of hα, we obtain
three equations:

w1 + w2 =
1

Γ(α + 1)
,

w2
cα

2
Γ(α + 1)

=
1

Γ(2α + 1)
,

w2a21 =
1

Γ(2α + 1)
. (17)

From these equations, we see that, if cα
2 is chosen arbitrarily (nonzero), then

a21 =
cα

2
Γ(α + 1)

, w2 =
Γ(α + 1)

cα
2 Γ(2α + 1)

, w1 =
1

Γ(α + 1)
− Γ(α + 1)

cα
2 Γ(2α + 1)

. (18)

Inserting (17) and (18) in (16) we get

yn+1 = yn +
hα

Γ(α + 1)
fn +

h2α

Γ(2α + 1)
(

f α
t + fn fy

)
+

cα
2 h3α

Γ(2α + 1)

[
Γ(α + 1)

Γ(2α + 1)
f α,α
t,t +

1
2Γ(α + 1)

f 2
n fy,y +

1
Γ(α + 1)

fn f α,1
t,y

]
+ · · · . (19)
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Subtracting (19) from (12), we obtain the local truncation error Tn

Tn = y(tn+1)− yn+1 = h3α

(
1

Γ(3α + 1)
−

cα
2Γ(α + 1)

(Γ(2α + 1))2

)
f α,α
t,t

+ h3α

(
2

Γ(3α + 1)
−

cα
2

2Γ(α + 1)

)
f 2
n fy,y

+ h3α

(
1

Γ(3α + 1)
−

cα
2

Γ(α + 1)

)
fn f α,1

t,y + · · · . (20)

We conclude that no choice of the parameter cα
2 will make the leading term of Tn vanish

for all functions f (t, y). Sometimes, the free parameters are chosen to minimize the sum of
the absolute values of the coefficients in Tn. Such a choice is called the optimal choice.

cα
2 =

(Γ(2α + 1))2

Γ(3α + 1)Γ(α + 1)
, cα

2 =
4Γ(α + 1)
Γ(3α + 1)

, or cα
2 =

Γ(α + 1)
Γ(3α + 1)

.

From (20) we have Tn
hα = (hα)2. So, we deduce that the 2-stage EFORK method (15) is

of order 2α.
Now, the two-stage EFORK method by listing the coefficients is as follows:

c2 a21
w1 w2

,

Choosing w1 = w2 yields

(
2Γ(α+1)2

Γ(2α+1)

) 1
α 2Γ(α+1)

Γ(2α+1)
1

2Γ(α+1)
1

2Γ(α+1)

.

In addition, the optimal cases of the two-stage EFORK method are

(
(Γ(2α+1))2

Γ(3α+1)Γ(α+1)

) 1
α (Γ(2α+1))2

Γ(3α+1)Γ(α+1)2

1
Γ(α+1) −

Γ(3α+1)Γ(α+1)2

Γ(2α+1)3
Γ(3α+1)Γ(α+1)2

Γ(2α+1)3

,

(
4Γ(α+1)
Γ(3α+1)

) 1
α 4

Γ(3α+1)
1

Γ(α+1) −
Γ(3α+1)

4Γ(2α+1)
Γ(3α+1)

4Γ(2α+1)

,

(
Γ(α+1)

Γ(3α+1)

) 1
α 1

Γ(3α+1)
1

Γ(α+1) −
Γ(3α+1)
Γ(2α+1)

Γ(3α+1)
Γ(2α+1)

.

3.2. EFORK Method of Order 3α

Following (4) and (5), we define a three-stage EFORK method as

K1 = hα f (tn, yn),

K2 = hα f (t+c2h, yn + a21K1),

K3 = hα f (tn + c3h, yn + a31K1 + a32K2),

yn+1 = yn + w1K1 + w2K2 + w3K3 . (21)
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where unknown parameters {ci}3
i=2, {aij}3,i−1

i=2,j=1, and {wi}3
i=1 have to be determined ac-

cordingly. By using the same procedure as we followed for the two-stage EFORK method,
expanding K1, K2 and K3, comparing with (12) and matching coefficients of powers of hα,
we obtain the following equations:

w1 + w2 + w3 =
1

Γ(α + 1)
, a21 =

cα
2

Γ(α + 1)
, w2 c2α

2 + w3 c2α
3 =

Γ(2α + 1)
Γ(3α + 1)

,

a31 + a32 =
cα

3
Γ(α + 1)

, w2 cα
2 + w3 cα

3 =
Γ(α + 1)
Γ(2α + 1)

, w3 a32 cα
2 =

Γ(α + 1)
Γ(3α + 1)

. (22)

Now, we have six equations with eight unknown parameters. According to the Butcher
tableau for the three-stage EFORK method, we have

c2 a21
c3 a31 a32

w1 w2 w3

If c2 and c3 are arbitrarily chosen, we calculate weights {wi}3
i=1 and coefficients

{aij}3,i−1
i=2,j=1 from (22) as

(
1

2α!

) 1
α 1

2(α!)2(
1

4α!

) 1
α (α!)2(2α)!+2(2α)!2−(3α)!

4(α!)2(2(2α)!2−(3α)!) − (2α)!
4(2(2α)!)−(3α)!

8(α!)2(2α)!
(3α)! − 6(α!)2

(2α)! + 1
α!

2(α!)2(4(2α)!2−(3α)!)
(2α)!(3α)! − 8(α!)2(2(2α)!2−(3α)!)

(2α)!(3α)!

As a result, we obtain Tn
hα = (hα)3. In a similar procedure to the two and three-stage

EFORK methods, we can construct s-stage EFORK methods for s > 3.
As we can see, to obtain the higher fractional order Runge–Kutta methods, we must

consider a method with additional stages. In the next section, we express implicit fractional
order Runge–Kutta (IFORK) methods with low stages and high orders.

4. IFORK Methods

We define a s-stage IFORK method by the following equations:

Ki =
1
s

hα
s

∑
k=1

f (tn + cikh, yn +
s

∑
j=1

aijKj), i = 1, 2, . . . , s (23)

and

yn+1 = yn +
s

∑
i=1

wiKi, (24)

where

cα
i1 + cα

i2 + . . . + cα
is

α!
= s(ai1 + ai2 + · · ·+ ais), i = 1, 2, · · · , s (25)

and the parameters
{

aij
}s,s

i,j=1, {wi}s
i=1 are arbitrary. We state the IFORK method by listing

the coefficients as follows:

c11 c12 · · · c1s a11 a12 · · · a1s
c21 c22 · · · c2s a21 a22 · · · a2s
...

...
...

...
...

...
...

...
cs1 cs2 · · · css as1 as2 · · · ass

w1 w2 · · · ws
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Since the functions Ki are defined by a set of s implicit equations, the derivation of the
implicit methods is complicated. Therefore, only the case s = 2 is investigated.

Consider (23)–(25) with s = 2 as

Ki =
1
2

hα[ f (tn + ci1h, yn + ai1K1 + ai2K2) + f (tn + ci2h, yn + ai1K1 + ai2K2)], i = 1, 2 (26)

yn+1 = yn + w1K1 + w2K2 (27)

where
cα

i1 + cα
i2

α!
= 2(ai1 + ai2), i = 1, 2. (28)

By using a similar procedure as we followed for the EFORK method, we expand Ki
about the point (tn, yn), where we apply the Caputo Taylor formula (12) about tn and
standard integer-order Taylor formula about yn.

Ki =
1
2

hα[2 fn +
(cα

i1 + cα
i2)h

α

α!
f α
t + 2(ai1K1 + ai2K2) fy +

(cα
i1 + cα

i2)h
2α

(2α)!
f α,α
t,t

+ (ai1K1 + ai2K2)
2 fy,y +

(cα
i1 + cα

i2)h
α

α!
(ai1K1 + ai2K2) f α,1

t,y

+
(c3α

i1 + c3α
i2 )h

3α

(3α)!
f α,α,α
t,t,t +

(c2α
i1 + c2α

i2 )h
2α

(2α)!
(ai1K1 + ai2K2) f α,α,1

t,t,y

+
(cα

i1 + cα
i2)h

α

α!
(ai1K1 + ai2K2)

2

2
f α,1,1
t,y,y +

(ai1K1 + ai2K2)
3

3
fy,y,y + · · · ], (29)

where i = 1, 2 .
Since Equation (29) are implicit, we cannot obtain the explicit forms for K1 and K2. To

determine the explicit form Ki, we consider

Ki = hα Ai + h2αBi + h3αCi + · · · , i = 1, 2 (30)

where Ai, Bi and Ci are unknowns. Substituting (30) into (29) and matching the coefficients
of powers of hα, we get

Ai = fn,

Bi =
cα

i1 + cα
i2

2(α!)
[ f α

t + f fy] =
cα

i1 + cα
i2

2(α!)
Dα f ,

Ci =

(
ai1

cα
11 + cα

12
2(α!)

+ ai2
cα

21 + cα
22

2(α!)

)
fyDα f +

c2α
i1 + c2α

i2
2(2α)!

f α,α
t,t

+
1
4

(
cα

i1 + cα
i2

α!

)2(1
2

f 2 fyy + f f α,1
t,y

)
,

... (31)

Inserting (30) and (31) into (27), we have

yn+1 = yn + hα[w1 A1 + w2 A2] + h2α[w1B1 + w2B2] + h3α[w1C1 + w2C2] + · · · . (32)

Comparing (32) with (12) and equating the coefficient of powers of hα, we can get an
IFORK method of different orders.

4.1. IFORK Method of Order 2α

To obtain an IFORK method of order 2α, we equate the coefficients of hα and h2α in (12)
and (32) correspondingly to get
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w1 + w2 =
1
α!

,

w1
cα

11 + cα
12

α!
+ w2

cα
21 + cα

22
α!

=
2

(2α)!
,

where

2(a11 + a12) =
cα

11 + cα
12

α!
, 2(a21 + a22) =

cα
21 + cα

22
α!

.

There are now six arbitrary parameters to be prescribed. If we neglect K2, i.e., if we
choose a21 = a22 = a12 = 0, w2 = 0, from the above equations, we find

w1 =
1
α!

, cα
11 + cα

12 =
2(α!)2

(2α)!
, a11 =

α!
(2α)!

.

Therefore, a one-stage IFORK method of order 2α is obtained as follows:{
K1 = 1

2 hα[ f (tn + c11h, yn + a11K1) + f (tn + c12h, yn + a11K1)],
yn+1 = yn + w1K1.

(33)

4.2. IFORK Method of Order 3α

In addition, we can get an IFORK method of order 3α with two stages (26)–(28) when
equating the coefficients of hα, h2α and h3α in (12) and (32) accordingly. In such case, we
obtain the following system of equations:

w1 + w2 =
1
α!

,

w1
cα

11 + cα
12

α!
+ w2

cα
21 + cα

22
α!

=
2

(2α)!
,

w1

(
a11

cα
11 + cα

12
α!

+ a12
cα

21 + cα
22

α!

)
+ w2

(
a21

cα
11 + cα

12
α!

+ a22
cα

21 + cα
22

α!

)
=

2
(3α)!

,

w1
c2α

11 + c2α
12

(2α)!
+ w2

c2α
21 + c2α

22
(2α)!

=
2

(3α)!
,

w1

(
cα

11 + cα
12

α!

)2

+ w2

(
cα

21 + cα
22

α!

)2

=
8

(3α)!
,

where

2(a11 + a12) =
cα

11 + cα
12

α!
, 2(a21 + a22) =

cα
21 + cα

22
α!

.

The three free parameters can be chosen so that K1 or K2 are explicit. If we want K1 to
be explicit, we choose

c11 = a11 = a12 = 0.

Thus, the IFORK method of order 3α, which is explicit in K1 is given by
K1 = 1

2 hα[ f (tn, yn) + f (tn + c12h, yn)],
K2 = 1

2 hα[ f (tn + c21h, yn + a21K1 + a22K2) + f (tn + c22h, yn + a21K1 + a22K2)],
yn+1 = yn + w1K1 + w2K2 .

(34)

where the coefficients are given by

c11 c12 a11 a12
c21 c22 a21 a22

w1 w2

,
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0 0 0 0(
(2α)!(2(α!)−

√
2
√

(2α)!−2(α!)2)
(3α)!

) 1
α

(
(2α)!(2(α!)+

√
2
√

(2α)!−2(α!)2)
(3α)!

) 1
α (2α)!

(3α)!
(2α)!
(3α)!

1
α! −

(3α)!
2(2α)!2

(3α)!
2(2α)!2

5. Theoretical Analysis

To ensure that the obtained numerical solution of FORK algorithms approximates
the exact solution of FDEs correctly, we first discuss in this section the consistency of the
methods and second the convergence analysis of the FORK methods that may impose some
additional conditions under which the approximate solution, discussed in Sections 3 and 4,
converges to the exact solution of the problem.

5.1. Consistency

The EFORK and IFORK methods considered before belong to the class of methods
that are characterized by the use of yn on the computation of yn+1. This family of one-step
methods admits the following representation:

yn+1 = yn + hαΦ(tn, yn, yn+1, h), n = 0, . . . , Nm − 1, (35)

y0 = y(t0).

where Φ : [t0, T]×R2 × (0, h0]→ R and for the particular case of the explicit methods we
have the representation

yn+1 = yn + hαΦ(tn, yn, h), n = 0, . . . , Nm − 1, (36)

y0 = y(t0).

with Φ : [t0, T]×R× (0, h0]→ R.
We define the truncation error τn by

τn =
yn+1 − yn

hα
−Φ(tn, yn, yn+1, h). (37)

The one-step method (35) and (36) is said to be consistent with Equation (3) if

lim
h→0

τn = 0, Nm = (T − t0)/h.

Using (12) and (37), we may write

lim
h→0

τn = lim
h→0

yn+1 − yn

hα
− lim

h→0
Φ(tn, yn, yn+1, h),

=
1

Γ(α + 1)
c
tn Dα

t y(tn)− lim
h→0

Φ(tn, y(tn), y(tn+1), h),

=
1

Γ(α + 1)
Fn(tn, y(tn))− lim

h→0
Φ(tn, y(tn), y(tn + h), h).

Hence, we may conclude that the proposed one-step IFORK methods are consistent if
and only if

Φ(t, y, y, 0) =
1

Γ(α + 1)
Fn(t, y),

or briefly
Φ(t, y, y, 0) =

1
Γ(α + 1)

f (t, y).

Similarly, for explicit methods, we have

Φ(t, y, 0) =
1

Γ(α + 1)
f (t, y).
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As an example, consider the two-stage EFORK method (15) with (17),

yn+1 = yn + hα[w1 f (tn, yn) + w2 f (tn + c2h, yn + a21K1)],

where, in comparison to (36), we have

Φ(t, y, h) = [w1 f (t, y) + w2 f (t + c2h, y + a21K1)],

Hence, as h tends to 0, it yields

Φ(t, y, 0) = (w1 + w2) f (t, y),

and by using (17), we may write

Φ(t, y, 0) =
1

Γ(α + 1)
f (t, y).

Therefore, the two-stage EFORK method (15) is consistent. In addition, the three-stage
EFORK method (21) is consistent for

Φ(t, y, h) = [w1 f (t, y) + w2 f (t + c2h, y + a21K1) + w3 f (t + c3h, y + a31K1 + a32K2)],

Φ(t, y, 0) = (w1 + w2 + w3) f (t, y),

and so from (22)

Φ(t, y, 0) =
1

Γ(α + 1)
f (t, y).

Similarly, we can show the consistency of all proposed FORK methods in Sections 3 and 4.

5.2. Convergence Analysis

Here, we investigate the convergence behavior of the proposed FORK methods (with-
out loss of generality, we consider only explicit FORK methods). To do so, we express a
definition of regularity from [35].

Definition 5. A one-step method of the form (36)

yn+1 = yn + hα Φ(tn, yn, h), n = 0, 1, 2, . . . , Nm − 1, (38)

is said to be regular if the function Φ(t, y, h) is defined and continuous in the domain t ∈ [0, T],
y ∈ [0, T∗] and h ∈ [0, h0] (h0 is a positive constant) and if there exists a constant L such that

|Φ(t, y, h)−Φ(t, z, h)| ≤ L|y− z|,

for every t ∈ [0, T], y, z ∈ [0, T∗] and h ∈ [0, h0].

To discuss the convergence of the EFORK methods, first, we prove that the given
methods in Section 3 are regular. We know from Theorem 2 that f (t, y) satisfies a Lipschitz
condition with respect to the second variable. Thus,

|Φ(tn, yn, h)−Φ(tn, y∗n, h)| = h−α

∣∣∣∣∣ s

∑
i=1

wiKi −
s

∑
i=1

wiK∗i

∣∣∣∣∣
≤ h−α(w1|K1 − K∗1 |+ w2|K2 − K∗2 |+ . . . + ws|Ks − K∗s |)
≤ w1L|yn − y∗n|+ w2L|yn + a21K1 − y∗n − a21K∗1 |+ . . .

+ wsL|yn + as1K1 + as2K2 + . . . + assKs − y∗n − as1K∗1
− as2K∗2 − . . .− assK∗s |
≤ . . . ≤ L∗|yn − y∗n|.
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Therefore, the function Φ satisfies a Lipschitz condition in y and it is also continuous;
thus, EFORK methods are regular. To establish the convergence behavior, we need the
following Lemma from [35].

Lemma 1. Let ω0, ω1, ω2, . . . be a sequence of real positive numbers that satisfy

ωn+1 ≤ (1 + ζ)ωn + µ, n = 0, 1, 2 . . .

where ζ, µ are positive constants. Then,

ωn ≤ enζ ω0 +

(
enζ − 1

ζ

)
µ, n = 0, 1, 2, . . . .

We now discuss the behavior of the error en = y(tn)− yn in EFORK method for the
initial-value problem (3).

Theorem 3. Consider the initial value problem (3) and let f (t, y(t)) be continuous and satisfy
a Lipschitz condition with Lipschitz constant L, and also let (c

t0
Dα

t )
(s+1)y(t) be continuous for

t ∈ [t0, T], Then, the given EFORK method in Section 3 is convergent for mα ≥ 1 if and only
if it is consistent.

Proof. Let the EFORK method be consistent, and the method can be written in the form

yn+1 = yn + hαΦ(tn, yn, h). (39)

The exact value y(tn) will satisfy

y(tn+1) = y(tn) + hαΦ(tn, y(tn), h) + Tn, (40)

where Tn is the truncation error. By subtracting (39) from (40), we have

|en+1| ≤ |en|+ hα|(Φ(tn, y(tn), h)−Φ(tn, yn, h))|+ |Tn|.

Now, from the regularity of the EFORK method, it follows that

|en+1| ≤ |en|+ hαL|y(tn)− yn|+ |Tn| ≤ (1 + hαL)|en|+ |Tn|.

By using the Lemma 1, we have

|en| ≤ (1 + hαL)n|e0|+
(

enhα L − 1
hαL

)
|Tn|,

where we assumed that the local truncation error for a sufficiently large n is constant, i.e.,
T = Tn, n = 0, 1, 2, . . . In addition, assume that e0 = 0 and |Tn| = O(hpα), p ≥ 3; therefore,

|en| ≤ O(hpα)

(
enhα L − 1

hαL

)
.

In Section 3, we assumed Nm = (T − t0)/h, so we have

|en| ≤ O(h(p−1)α)

 e(T−t0)
1
m Lhα− 1

m − 1
L

.

Thus, the EFORK methods of Sections 3.1 and 3.2 are convergent if α− 1
m ≥ 0, i.e

mα ≥ 1. Conversely, let the EFORK method be convergent. It is sufficient that we give a
limit of (39) as h tends to 0. Now, the proof of the theorem is complete.
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5.3. Stability Analysis

For the stability analysis of the proposed methods in Sections 3 and 4, we consider the FDE:

c
t0

Dα
t y(t) = λy(t), λ ∈ C, 0 < α ≤ 1,

y(t0) = y0 . (41)

According to [1], the exact solution of (41) is y(t) = Eα(λ(t− t0)
α)y0. When Re(λ) < 0,

the solution of (41) asymptotically tends to 0 as t→ ∞.
We apply the two-stage EFORK method (15) to Equation (41) and obtain

K1 = hα f (tn, yn) = λhαyn,

K2 = hα f (tn + c2h, yn + a21K1) = λhα(yn + a21λhαyn)

=
[
λhα + a21(λhα)2

]
yn,

yn+1 = yn + w1K1 + w2K2 = yn +
1

2Γ(α + 1)

[
2λhα + a21(λhα)2

]
yn

=

[
1 +

λhα

Γ(α + 1)
+

a21(λhα)2

2Γ(α + 1)

]
yn =

[
1 +

λhα

Γ(α + 1)
+

cα
2(λhα)2

2(Γ(α + 1))2

]
yn

=

[
1 +

λhα

α!
+

cα
2(λhα)2

2(α!)2

]
yn.

Therefore, the growth factor for the two-stage EFORK method (15) is [35]

E(λhα) = 1 +
λhα

α!
+

cα
2(λhα)2

2(α!)2 ,

Now, consider the following definition ([35]):

Definition 6. A numerical method is called absolutely stable in the sense of Dahlquist if and only
if |E(λhα)| ≤ 1 when the method is applied with any positive step-size h to the test Equation (41).

The interval of the absolute stability of a numerical method is defined as [Re(λhα), 0)
if and only if |E(λhα)| ≤ 1. So, the two-stage method (15) is absolutely stable if

|1 + λhα

α!
+

cα
2(λhα)2

2(α!)2 | 6 1 .

If λ hα < 0, we can find the interval of absolute stability as follows:

−2α!
cα

2
6 λhα < 0. (42)

According to (42), the interval of absolute stability for the two-stage EFORK method (15)
depends on cα

2 . For instance, if cα
2 = 2(α!)2/(2α)! , then and so the interval of absolute

stability will be

−(2α)!
α!

6 λhα < 0.

In addition, for cα
2 = (Γ(2α+1))2

Γ(3α+1)Γ(α+1) , we have

−2(α!)2(3α)!
((2α)!)2 6 λhα < 0.
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If we choose cα
2 = 4Γ(α+1)

Γ(3α+1) , we get

−(3α)!
2

6 λhα < 0.

or, cα
2 = Γ(α+1)

Γ(3α+1) , we obtain
−2(3α)! 6 λhα < 0.

The graphs of E(λhα) for different two-stage EFORK methods are shown in Figures 1 and 2.
From these figures, for (λ < 0), we can find the interval of absolute stability for various α.
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Figure 1. The graph of E(λhα) for the two-stage EFORK method (15) with cα
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Figure 2. The graph of E(λhα) for two-stage EFORK method (15) with cα
2 = 4Γ(α+1)
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In addition, we apply the three-stage EFORK method (21) to Equation (41) and get

yn+1 =

[
1 +

λhα

α!
+

(λhα)2

(2α)!
+

(λhα)3

(3α)!

]
yn .

Thus, the growth factor for the three-stage EFORK method (21) is

E(λhα) = 1 +
λhα

α!
+

(λhα)2

(2α)!
+

(λhα)3

(3α)!
.

The three-stage EFORK method is absolutely stable if

|1 + λhα

α!
+

(λhα)2

(2α)!
+

(λhα)3

(3α)!
| 6 1.
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The graph of E(λhα) for the three-stage EFORK method (21) is shown in Figure 3. In
this figure, we can see the interval of absolute stability for various α.
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Figure 3. The graph of E(λhα) for three-stage EFORK method (21).

Finally, we apply the IFORK method (33) to Equation (41) and get

E(λhα) = 1 +
1
α! λhα

1− λhα α!
(2α)!

,

with the interval of absolute stability (−∞, 0), λ < 0. In a similar manner, we can obtain the
interval of absolute stability for IFORK method (34). As we can see, in implicit fractional
RK methods, the interval of absolute stability is very large, and they are stable.

6. Numerical Examples

In order to demonstrate the effectiveness and order of accuracy of the proposed
methods in Sections 3 and 4, two examples are considered. All computations have been
carried out on a Core i7 PC with Mathematica 13.2 software.

Example 1. Consider the fractional differential equation

c
0Dα

t y(t) = −y(t) +
t4−α

Γ(5− α)
, t ∈ [0, T],

y(0) = 0,

such that the exact solution is y(t) = t4Eα,5(−tα). The approximate solutions by the two-stage
EFORK method (15), three-stage EFORK method (21), and IFORK methods (33) and (34) are
reported in Tables 1–6 (In Appendix A some Mathematica computer programming codes are pre-
sented). The computed solutions are compared with the exact solution for different values of h, α,
and T. The absolute error in time T is given by

E(h, T) = |y(tNm)− yNm |,

and the orders of the presented method are computed according to the following relation:

Log2
E(h, T)

E(h/2, T)
.
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Table 1. Two-stage method (15) for T = 1, m = 3 in Example 1.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/3 1/40 1.09027× 10−2 1.1320
1/80 4.97465× 10−3 1.0013
1/160 2.48509× 10−3 0.9136
1/320 1.31920× 10−3 0.8533
1/640 7.30171× 10−4 ∗

Table 2. Two-stage method (15) for T = 1, m = 2 in Example 1.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/2 1/40 2.05503× 10−3 1.2248
1/80 8.79256× 10−4 1.1621
1/160 3.92907× 10−4 1.1171
1/320 1.81137× 10−4 1.0845
1/640 8.54183× 10−5 ∗

Table 3. Three-stage method (21) for T = 1, m = 4 in Example 1.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/4 1/40 9.94252× 10−4 0.8437
1/80 5.54011× 10−4 0.8214
1/160 3.13499× 10−4 0.8064
1/320 1.79258× 10−4 0.7958
1/640 1.03255× 10−4 ∗

Table 4. Three-stage method (21) for T = 1, m = 2 in Example 1.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/2 1/40 7.45694× 10−5 1.5942
1/80 2.46986× 10−5 1.5789
1/160 8.26771× 10−6 1.5625
1/320 2.79911× 10−6 1.5478
1/640 9.57367× 10−7 ∗

Table 5. IFORK methods for T = 1, m = 2 in Example 1.

α h IFORK (33) Log2
E(h,T)

E(h/2,T) IFORK (34) Log2
E(h,T)

E(h/2,T)

1/2 1/40 1.86448× 10−4 1.0832 3.56080× 10−4 1.7307
1/80 8.79978× 10−5 1.0492 1.07291× 10−4 1.6666

1/160 4.25221× 10−5 1.0291 3.37953× 10−5 1.6191
1/320 2.08361× 10−5 1.0174 1.10016× 10−5 1.5846
1/640 1.02928× 10−5 ∗ 3.66806× 10−6 ∗
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Table 6. IFORK methods for T = 1, m = 3 in Example 1.

α h IFORK (33) Log2
E(h,T)

E(h/2,T) IFORK (34) Log2
E(h,T)

E(h/2,T)

1/3 1/40 3.04275× 10−4 0.9083 5.12337× 10−3 1.4661
1/80 1.62123× 10−4 0.8746 1.85445× 10−3 1.3856

1/160 8.84207× 10−5 0.8482 7.09751× 10−4 1.2940
1/320 4.91160× 10−5 0.8255 2.89458× 10−4 1.2106
1/640 2.77152× 10−5 ∗ 1.25070× 10−4 ∗

From the Tables 1–6, we can conclude that the computed orders of truncation errors
are in good agreement with the obtained results of Sections 3 and 4. Figure 4, illustrates the
error curves of the two-stage EFORK method (15) and the three-stage EFORK method (21)
at T = 1, with α = 1/2, m = 2 and different values of N.

Example 2. Consider the following fractional differential equation from [6]:

c
0Dα

t y(t) =
2

Γ(3− α)
t2−α − 1

Γ(2− α)
t1−α − y(t) + t2 − t, t ∈ [0, T],

y(0) = 0,

with the exact solution y(t) = t2 − t. Again, for different values of h, α, and T, we compared, in
Tables 7–10, the obtained results by the two-stage EFORK method (15) and the three-stage EFORK
method (21) with the exact solution. In Tables 11 and 12, we report the results obtained by the
IFORK methods (33) and (34). From Tables 7–12, we can conclude that the computed orders are in
good agreement with the given results of Sections 3 and 4.
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Figure 4. The error curves of the two-stage EFORK method (15) (left), and the error curves of the
three-stage EFORK method (21) (right) for Example 1.

Table 7. Two-stage method (15) for T = 1, m = 3 in Example 2.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/3 1/40 1.00356× 10−1 1.1075
1/80 4.65748× 10−2 0.9928
1/160 2.34046× 10−2 0.9107
1/320 1.24493× 10−2 0.8523
1/640 6.89556× 10−3 ∗
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Table 8. Two-stage method (15) for T = 1, m = 2 in Example 2.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/2 1/40 1.77152× 10−2 1.2351
1/80 7.52581× 10−3 1.1738
1/160 3.33574× 10−3 1.1275
1/320 1.52680× 10−3 1.0928
1/640 7.15859× 10−4 ∗

Table 9. Three-stage method (21) for T = 1, m = 4 in Example 2.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/4 1/40 9.90939× 10−3 0.8383
1/80 5.54249× 10−3 0.8182
1/160 3.14342× 10−3 0.8047
1/320 1.79955× 10−3 0.7950
1/640 1.03718× 10−3 ∗

Table 10. Three-stage method (21) for T = 1, m = 2 in Example 2.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/2 1/40 5.79341× 10−4 1.5592
1/80 1.96590× 10−4 1.5566
1/160 6.68302× 10−5 1.5475
1/320 2.28624× 10−5 1.5374
1/640 7.87606× 10−6 ∗

Table 11. IFORK methods for T = 1, m = 2 in Example 2.

α h IFORK (33) Log2
E(h,T)

E(h/2,T) IFORK (34) Log2
E(h,T)

E(h/2,T)

1/2 1/40 1.52888× 10−3 1.0777 2.99223× 10−3 1.6608
1/80 7.24362× 10−4 1.0464 9.46328× 10−4 1.6244

1/160 3.50728× 10−4 1.0279 3.06932× 10−4 1.5943
1/320 1.72002× 10−4 1.0171 1.01649× 10−4 1.5703
1/640 8.49858× 10−5 ∗ 3.42297× 10−5 ∗

Table 12. IFORK methods for T = 1, m = 3 in Example 2.

α h IFORK (33) Log2
E(h,T)

E(h/2,T) IFORK (34) Log2
E(h,T)

E(h/2,T)

1/3 1/40 2.84493× 10−3 0.9005 4.77620× 10−2 1.4860
1/80 1.52403× 10−3 0.8707 1.70509× 10−2 1.3835

1/160 8.33483× 10−4 0.8463 6.53520× 10−3 1.2859
1/320 4.63592× 10−4 0.8246 2.68020× 10−3 1.2023
1/640 2.61754× 10−4 ∗ 1.16478× 10−3 ∗

As we can see, the computational orders for two and three-stage EFORK methods
approach 2α and 3α for h > 0, respectively. As seen in Tables and Figures, the three-stage
EFORK method provides better results than the two-stage EFORK method. Table 13 shows
the numerical results for different values of T.
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Table 13. E(h, T) for α = 1/2, m = 2 and different values of T.

T 2-Stage-Exam.1 3-Stage-Exam.1 2-Stage-Exam.2 3-Stage-Exam.2

0.5 4.81351× 10−6 4.20218× 10−8 9.29068× 10−5 5.57177× 10−7

1.0 8.54183× 10−5 9.57367× 10−7 3.00335× 10−3 7.87606× 10−6

1.5 4.51426× 10−4 6.00243× 10−6 2.78127× 10−3 3.63915× 10−5

2 1.45778× 10−3 2.20455× 10−5 6.26033× 10−3 9.38735× 10−5

3 7.50603× 10−3 1.37070× 10−4 1.78449× 10−2 3.26003× 10−4

In addition, Tables 5, 6, 11 and 12 show that the computational order from relations (33)
and (34) of IFORK methods approach 2α and 3α for h > 0, respectively.

Figure 5, illustrates the numerical results of the two-stage EFORK method (15) and
the three-stage EFORK method (21) at T = 1 for α = 1/2, m = 2 and different values of
N. Additionally, Figure 6 illustrates the numerical results of the IFORK method (33) for
Example 1 and Example 2 at T = 1 for α = 1/2, m = 2 and different values of N.
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Figure 5. The error curves of the two-stage EFORK method (15) (left), and the three-stage EFORK
method (21) (right) in Example 2.
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Figure 6. The error curves of the IFORK method (33) in Example 1 (left), and Example 2 (right).

In addition, the numerical results for the optimal case cα
2 = (Γ(2α+1))2

Γ(3α+1)Γ(α+1) in the two-
stage EFORK method are shown in Table 14 with α = 1/2 and different values of h.
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Table 14. Optimal two-stage method (15) for T = 1, m = 2.

α h E(h, T), Example 1 E(h, T), Example 2

1/2 1/40 7.35533× 10−4 6.12299× 10−3

1/80 3.55401× 10−4 2.94885× 10−3

1/160 1.72778× 10−4 1.43060× 10−3

1/320 8.45336× 10−5 6.99024× 10−4

1/640 4.15855× 10−5 3.43589× 10−4

7. Conclusions

This paper introduces new efficient FORK methods for FDEs based on Caputo general-
ized Taylor formulas. The proposed methods were examined for consistency, convergence,
and stability. The interval of absolute stability of FORK methods has been determined, and
implicit fractional order RK methods were shown to be A stable. Some examples were
provided to demonstrate the effectiveness of these numerical schemes. We can obtain these
results for Riemann–Liouville and Gronwald–Letnikov fractional derivatives accordingly.
Recently, a new concept of differentiation called fractal and fractional differentiation was
suggested and numerically examined by many researchers [36,37], where the differential
operator has two orders: the first is fractional order and the second is the fractal dimen-
sion. These differential (integral) operators have not been studied intensively yet. In
future work, we will extend the presented method for fractional differential equations with
fractal–fractional derivatives.
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Appendix A. Some Mathematica Codes of FORK Methods

3-stage EFORK method for Example 1.
N1 = Input[“Please Enter Nm:”];
T = Input[“Please Enter T:”];
α = Input[“Please Enter α:”];
h = T

N1
;

Do[tn = n ∗ h, {n, 0, N1}];
y0 = 0;

w1 = 8Γ[1+α]3Γ[1+2α]2−6Γ[1+α]3Γ[1+3α]+Γ[1+2α]Γ[1+3α]
Γ[1+α]Γ[1+2α]Γ[1+3α]

;

w2 =
2Γ[1+α]2(4Γ[1+2α]2−Γ[1+3α])

Γ[1+2α]Γ[1+3α]
;

w3 = − 8Γ[1+α]2(2Γ[1+2α]2−Γ[1+3α])
Γ[1+2α]Γ[1+3α]

;

a11 = 1
2∗Γ[α+1]2 ;
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a21 = Γ[1+α]2Γ[1+2α]+2Γ[1+2α]2−Γ[1+3α]
4Γ[1+α]2(2Γ[1+2α]2−Γ[1+3α])

;

a22 = − Γ[1+2α]
4(2Γ[1+2α]2−Γ[1+3α])

;

c2 =
(

1
2Γ[1+α]

)1/α
;

c3 =
(

1
4Γ[1+α]

)1/α
;

f0[t_, y_] = −y + t4−α

Γ[5−α]
;

Do[
K1 = hα fn[tn, yn];
K2 = hα fn[tn + c2 ∗ h, yn + a11 ∗ K1];
k3 = hα fn[tn + c3 ∗ h, yn + a22 ∗ K2 + a21 ∗ K1];
yn+1 = yn + w1 ∗ K1 + w2 ∗ K2 + w3 ∗ k3;
Print

[
“n=”, n, “: Explicit Error=”, Abs

[
yn+1 − tn+1

4 ∗ N[MittagLefflerE[α, 5,−tn+1
α]]
]]

;

fn+1[t_, y_] = fn[t, y]− (yn+1 − yn) ∗ (t−tn)(1−α)−(t−tn+1)(1−α)

h∗(1−α)∗Γ[1−α]
;

, {n, 0, N1 − 1}]

2-stage IFORK method for Example 1.
N1 = Input[“Please Enter Nm:”];
T = Input[“Please Enter T:”];
α = Input[“Please Enter α:”];
h = T

N1
;

Do[tn = n ∗ h, {n, 0, N1}];
y0 = 0;
w1 = 1

Γ[1+α]
− Γ[1+3α]

2Γ[1+2α]2
;

w2 = Γ[1+3α]
2Γ[1+2α]2

;

a22 = Γ[1+2α]
Γ[1+3α]

;

c21 = ( 1
Γ[1+3α]2

(2Γ[1 + α]Γ[1 + 2α]Γ[1 + 3α]

−
√

2
√

Γ[1 + 2α]2(−2Γ[1 + α]2 + Γ[1 + 2α])Γ[1 + 3α]2))1/α;
c22 = ( 1

Γ[1+3α]2
(2Γ[1 + α]Γ[1 + 2α]Γ[1 + 3α]

+
√

2
√

Γ[1 + 2α]2(−2Γ[1 + α]2 + Γ[1 + 2α])Γ[1 + 3α]2))1/α;
a21 = Γ[1+2α]

Γ[1+3α]
;

f0[t_, y_] = −y + t4−α

Γ[5−α]
;

Do[
K1 = hα fn[tn, yn];
K2 = 1

2 ∗ hα fn [tn+c21∗h,yn+a21∗K1]+ fn [tn+c22∗h,yn+a21∗K1]
1+hα∗a22

;
yn+1 = yn + w1 ∗ K1 + w2 ∗ K2;
Print

[
“n=”, n, “: Implicit Error=”, Abs

[
yn+1 − tn+1

4 ∗ N[MittagLefflerE[α, 5,−tn+1
α]]
]]

;

fn+1[t_, y_] = fn[t, y]− (yn+1 − yn) ∗ (t−tn)(1−α)−(t−tn+1)(1−α)

h∗(1−α)∗Γ[1−α]
;

, {n, 0, N1 − 1}]
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