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Abstract: A comb structure consists of a one-dimensional backbone with lateral branches. These
structures have widespread application in medicine and biology. Such a structure promotes an
anomalous diffusion process along the backbone (x-direction), along with classical diffusion along
the branches (y-direction). In this work, we propose a distributed-order time- and space-fractional
diffusion-wave equation to model a comb structure in the more general setting. The distributed-order
time- and space-fractional diffusion-wave equation is firstly formulated to study the anomalous
diffusion in the comb model subject to an irregular convex domain with the motivation that the
time-fractional derivative considers the memory characteristic and the space one with the variable
diffusion coefficient possesses the nonlocal characteristic. The finite element method is applied to
obtain the numerical solution. The stability and convergence of the numerical discretization scheme
are derived and analyzed. Two numerical examples of relevance to the comb model are given to
verify the correctness of the numerical method. Moreover, the influence of the involved parameters
on the three-dimensional and axial projection drawing particle distribution subject to an elliptical
domain are analyzed, and the physical meanings are interpreted in detail.

Keywords: distributed-order fractional derivative; anomalous diffusion; comb model; constitutive
relationship

PACS: 26A33; 65M12; 65M60; 35R11; 74Q15

1. Introduction

A comb model is used to study anomalous diffusion in a medium of a specific
structure [1]. Systematic research on this class of models is of great theoretical signif-
icance and application to comb structures such as dendritic spines [2] that arise in
medicine and biology. An example of an experimental setup to probe the dynamics of
actin polymerization is given in Figure 1a. The image at the top gives the optical micro-
graph of the microfluidics structure, and the image at the bottom is of the microfluidic
micrographs fluorescently labeled, polymerized actin filaments [3]. Figure 1b presents
the electron tomogram of a spiny dendrite [4]. From the two practical problems, it is
easily seen that the particle transport is not random but in the form of a comb, and this
specific structure is named a comb model [5]. Comb models are a powerful tool for
studying many other diffusion phenomena, such as the diffusion of cancer cells [6], the
fractal glioma development under RF electric field treatment [7] and the diffusion of
percolation clusters [8]. For this study, we assume for all the practical problems that
the transport of particles in a comb form can be simplified to the structure exhibited
in Figure 2. As the figure shows, the comb model contains a straight backbone on the
x-axis with the lateral branches attached perpendicularly to the backbone, which plays
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the role of traps [8]. Through the special structure of the comb model, the diffusion
process along the x-direction only happens on the x-axis and the transport between
any different fingers must take place through the backbone. As is well known, one of
the most striking characteristics for the classical normal diffusion is the linear growth
with time of the second moment of the particle positions. For the special structure
of the comb model, one important pattern of diffusion can be deduced, whereby the
subdiffusion with exponent 1/2 arises subject to the classical Fick’s constitution model
with a linear form [9]

~J(x, y, t) =
(
− kxδ(y)

∂u(x, y, t)
∂x

,−ky
∂u(x, y, t)

∂y

)
, (1)

where~J(x, y, t) refers to the diffusion flux vector, u(x, y, t) denotes the distribution function
at the special positions (x, y) and time t, kxδ(y) indicates the diffusion coefficient along the
x-direction while ky is the diffusion coefficient along the y-direction, δ(y) refers to the Dirac
delta function which reflects the special structure of the comb model.

(a) (b)

Figure 1. (a) Optical micrograph of a segment of the microfluidics comb-like structures (on top).
On the bottom: microfluidic micrographs of fluorescently labeled, polymerized actin filaments in
a comb-like structure [4]. (b) One of the examples of a physical environment suitable for the comb
model. Electron tomogram of a spiny dendrite. Image taken from Internet (http://www.cacr.caltech.
edu/projects/ldviz/results/levelsets/, accessed on 1 July 2013).

Figure 2. The schematic of a comb model.

Due to the geometrical structure and the non-uniformity of the medium transmission,
the classical Fick’s law in conventional diffusion with the paradox of an infinite transport
velocity [10,11] is no longer applicable. In order to study the transmission mechanism of
the concentration field for the anomalous diffusion in the comb model, three modifications
for the Fick’s model are presented. The first is the introduction of the relaxation parameter
ξ and the second considers the time-fractional derivatives with the motivation that the
relaxation parameter makes the transport process attach a finite transport velocity, while
the time-fractional derivative takes the memory characteristic of the transport process into
account. Furthermore, as discussed in [12], due to the special structure of the comb model,
the highly inhomogeneous characteristic happens along the x-axis, and this characteristic
can be reflected by the space-fractional derivative [13]. Thus, as the third modification,

http://www.cacr.caltech.edu/projects/ldviz/results/levelsets/
http://www.cacr.caltech.edu/projects/ldviz/results/levelsets/
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the second space-integer derivative is modified to a space-fractional derivative with vari-
able coefficients, which considers a left and right nonlocal characteristic. Based on the
time-fractional Cattaneo model [14] and the two-dimensional space-fractional constitutive
model [15], the following time- and space-fractional Cattaneo constitution relationship
with variable diffusion coefficients is formulated

~J(x, y, t) + ξ
∂~J(x, y, t)

∂t

=RL
0 D1−α

t

(
− δ(y)

(
d+(x, y)LDγ

x u(x, y, t)− d−(x, y)xDγ
Ru(x, y, t)

)
,−e(x, y)

∂u(x, y, t)
∂y

)
, (2)

where δ(y)d+(x, y) and δ(y)d−(x, y) represent the left and right variable diffusion coeffi-
cient along the x-direction, respectively; e(x, y) refers to the variable diffusion coefficient
along the y-direction; RL

0 D1−α
t refers to time-fractional derivative of order 1− α (0 < α < 1)

with the Riemann–Liouville definition; LDγ
x and xDγ

R, respectively, denote the left and right
Riemann–Liouville space-fractional derivatives of order γ (0 < γ < 1). The definitions are,
respectively, given by

RL
0 D1−α

t u(x, y, t) =
1

Γ(α)
∂

∂t

∫ t

0

1

(t− τ)1−α
u(x, y, τ)dτ,

LDγ
x u(x, y, t) =

1
Γ(1− γ)

∂

∂x

∫ x

L

1
(x− s)γ u(s, y, t)ds,

xDγ
Ru(x, y, t) =

−1
Γ(1− γ)

∂

∂x

∫ R

x

1
(s− x)γ u(s, y, t)ds,

where the symbol Γ(·) refers to the Euler gamma function, L and R refer to the left and
right boundaries along the x-direction.

By combining the constitutive relation (2) with the following mass conservation equation

∂u(x, y, t)
∂t

+∇ ·~J(x, y, t) = 0, (3)

we obtain the time- and space-fractional Cattaneo governing equation

ξ
∂1+αu(x, y, t)

∂t1+α
+

∂αu(x, y, t)
∂tα

=
∂

∂x

[
δ(y)

(
d+(x, y)LDγ

x u(x, y, t)− d−(x, y)xDγ
Ru(x, y, t)

)]
+

∂

∂y

[
e(x, y)

∂u(x, y, t)
∂y

]
, (4)

where the symbols ∂αu(x,y,t)
∂tα dα and ∂1+αu(x,y,t)

∂t1+α denote the Caputo fractional derivative oper-
ators of order α and 1 + α, respectively, in which the definitions are given as

∂αu(x, y, t)
∂tα

=
1

Γ(1− α)

∫ t

0

1
(t− τ)α

∂u(x, y, τ)

∂τ
dτ,

∂1+αu(x, y, t)
∂t1+α

=
1

Γ(1− α)

∫ t

0

1
(t− τ)α

∂2u(x, y, τ)

∂τ2 dτ.

As a generalization of the integer derivative, the fractional operator considers the
memory and nonlocal characteristics and has important applications in a variety of fields.
For the fractional governing Equation (4), a limitation is that it is suitable for describing
the probability density distribution of a very narrow class of diffusion processes because
it is characterized by a unique time-fractional exponent [16]. Motivated by this idea, by
integrating the fractional-order derivatives with respect to the order of differentiation, a
distribution-order operator was proposed by Caputo [17]. The governing equation with
the distributed-order operator exhibits memory and nonlocal effects over various time-
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fractional scales and becomes a powerful tool to describe transport phenomena in complex
heterogeneous media. However, as far as we are aware, the distributed-order time and
space diffusion-wave equation has not been considered to study the anomalous diffusion
in the comb model.

Motivated by the above discussions, as an original contribution to the literature, we
discuss and analyze the following distributed-order time- and space-fractional diffusion-
wave equation to study the anomalous diffusion in the comb model

ξ
∫ 2

1
ϕ1(β)

∂βu(x, y, t)
∂tβ

dβ +
∫ 1

0
ϕ0(α)

∂αu(x, y, t)
∂tα

dα (5)

=
∂

∂x

[
δ(y)

(
d+(x, y)LDγ

x u(x, y, t)− d−(x, y)x Dγ
Ru(x, y, t)

)]
+

∂

∂y

[
e(x, y)

∂u(x, y, t)
∂y

]
+ f (x, y, t),

where ϕ1(β) and ϕ0(α) denote weight functions and β ∈ (1, 2), ϕ1(β) ≥ 0, ϕ1(β) 6≡ 0,
0 <

∫ 2
1 ϕ1(β)dβ < ∞, α ∈ (0, 1), ϕ0(α) ≥ 0, ϕ0(α) 6≡ 0, 0 <

∫ 1
0 ϕ0(α)dα < ∞ and f (x, y, t)

is a source term.
As Ref. [6] indicated, the diffusion in the comb model, which is described by the Fick’s

model, is an example of a subdiffusive one-dimensional medium where a continuous-time
random walk takes place along the backbone while the diffusion along the y direction has a
traps effect. The classical Fick’s model possesses the local characteristic, and the fractional
derivative is proposed, considering the memory and nonlocal characteristics. For a further
development, the distributed-order time-fractional derivative is proposed by integrating the
fractional-order derivatives. In conclusion, Equation (5) is a development to describe the
continuous-time random walk, considering various memory and nonlocal characteristics.

The anomalous diffusion in the comb model has been applied to many different
fields in medicine and biology. In some applications of the comb model treating with the
numerical method, the infinite regions are approximated by the rectangular domains with
large sides [18]. However, by extending the computational modeling to irregular domains,
we can broaden the potential applicability of the comb model. Based on these discussions,
in this paper, the initial and boundary conditions are given by

u(x, y, 0) = φ0(x, y), ut(x, y, 0) = φ1(x, y), (x, y) ∈ Ω, (6)

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T], (7)

respectively, where Ω is an irregular convex domain.
The new governing Equation (5) is a generalization and development of the classical

model to study the anomalous diffusion in the comb model. By choosing ϕ0(α)=δ(α− α0),
ϕ1(β)=δ(β− α0 − 1), d+(x, y)=d−(x, y) = kx, e(x, y) = ky, γ = 1 and f (x, y, t) = 0,
Equation (5) reduces to the time-fractional Cattaneo governing equation [14]

ξ
∂α0+1u(x, y, t)

∂tα0+1 +
∂α0 u(x, y, t)

∂tα0
= kxδ(y)

∂2u(x, y, t)
∂x2 + ky

∂2u(x, y, t)
∂y2 .

For the choice ϕ0(α)=δ(α− α0), ξ = 0, d+(x, y)= kx, d−(x, y) = 0, e(x, y) = ky and
f (x, y, t) = 0, Equation (5) reduces to the time- and space-fractional governing equation
[19]

∂α0 u(x, y, t)
∂tα0

= kxδ(y)
∂γ+1u(x, y, t)

∂xγ+1 + ky
∂2u(x, y, t)

∂y2 .

Finally, by choosing ξ = 0, ϕ0(α)=δ(α− 1), d+(x, y)=d−(x, y) = kx, e(x, y) = ky,
γ = 1 and f (x, y, t) = 0, we obtain the anomalous diffusion based on the classical Fick’s
model [2]

∂u(x, y, t)
∂t

= kxδ(y)
∂2u(x, y, t)

∂x2 + ky
∂2u(x, y, t)

∂y2 .
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The study of distributed-order time- and space-fractional diffusion-wave equations is
of great significance to further improve and predict the anomalous diffusion phenomena in
the comb-like structures.

2. The Structure of the Paper

In this paper, the two-dimensional irregular convex domain is defined as Ω =
{(x, y)|xL(y) ≤ x ≤ xR(y), yD(x) ≤ y ≤ yU(x)}, where xL(y), xR(y), yD(x), yU(x) are the
left, right, lower and upper boundaries of Ω, respectively. Denote xmin = min

(x,y)∈Ω
xL(y),

xmax = max
(x,y)∈Ω

xR(y), ymin = min
(x,y)∈Ω

yD(x), ymax = max
(x,y)∈Ω

yU(x). Then, the inner product

is defined as

(u, v)Ω =
∫ ymax

ymin

∫ xR(y)

xL(y)
u(x, y)v(x, y)dxdy =

∫ xmax

xmin

∫ yU(x)

yD(x)
u(x, y)v(x, y)dxdy,

and the L2-norm is given as ||u||L2(Ω) =
(
(u, u)Ω

)1/2.
The fractional derivative space in one dimension was firstly established by Roop and

Ervin [20] and then developed further by Bu et al. [21,22], Yang et al. [23], Hao et al. [24] and
Wang et al. [25,26]. Due to the special form of the governing equation with a space-fractional
derivative of order γ in x and the integer derivative in y, some new definitions and lemmas of
the fractional derivative spaces are defined.

Definition 1. The definitions for the left (right) fractional derivative space with semi-norm and
norm are, respectively, given as

|u|
Jγ,1
L (Ω)

=

(
||LDγ

x u||2L2(Ω)
+

∣∣∣∣∣∣∣∣ ∂u
∂y

∣∣∣∣∣∣∣∣2
L2(Ω)

)1/2

, |u|
Jγ,1
R (Ω)

=

(
||x Dγ

Ru||2L2(Ω)
+

∣∣∣∣∣∣∣∣ ∂u
∂y

∣∣∣∣∣∣∣∣2
L2(Ω)

)1/2

,

||u||
Jγ,1
L (Ω)

=

(
||u||2L2(Ω)

+ |u|2
Jγ,1
L (Ω)

)1/2

, ||u||
Jγ,1
R (Ω)

=

(
||u||2L2(Ω)

+ |u|2
Jγ,1
R (Ω)

)1/2

,

where Jγ,1
L (Ω) (Jγ,1

R (Ω)) denotes the closure of C∞(Ω) with respect to || · ||Jγ,1
L (Ω)

(|| · ||Jγ,1
R (Ω)

).

Definition 2. The fractional Sobolev space with the semi-norm and norm of order µ are, respectively,
defined as

|u|Hµ(Ω) = || |ξ|
µF (û)(ξ)||L2(R2),

||u||Hµ(Ω) =

(
||u||2L2(Ω) + |u|

2
Hµ(Ω)

)1/2

,

where F (û)(ξ) is the Fourier transformation of the function û, and û is the zero extension of the
function u outside of Ω, Hµ(Ω) denotes the closure of C∞(Ω) with respect to || · ||Hµ(Ω).

Definition 3. For the symmetric fractional derivative space, when γ 6= 1/2, we define the semi-
norm and norm

|u|Jγ,1
S (Ω)

=

(
|(LDγ

x u, xDγ
Ru)Ω|+

∣∣∣∣(∂u
∂y

,
∂u
∂y

)
Ω

∣∣∣∣
)1/2

,

||u||Jγ,1
S (Ω)

=

(
||u||2L2(Ω) + |u|

2
Jγ,1
S (Ω)

)1/2

,

where Jγ,1
S (Ω) denotes the closure of C∞(Ω) with respect to || · ||Jγ,1

S (Ω)
.
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We denote Jγ,1
L,0 (Ω), Jγ,1

R,0(Ω), Hγ
0 (Ω), H1

0(Ω) and Jγ,1
S,0 (Ω) as the closure of C∞

0 (Ω) with
respect to || · ||Jγ,1

L (Ω)
, || · ||Jγ,1

R (Ω)
, || · ||Hγ(Ω), || · ||H1(Ω) and || · ||Jγ,1

S (Ω)
, respectively, where

C∞
0 (Ω) is the space of smooth functions with compact support in Ω. Based on the above

definitions, some useful and important lemmas are introduced.

Lemma 1. For u(x, y), v(x, y) ∈ Jγ,1
L,0 (Ω)

⋂
Jγ,1
R,0(Ω) (0 < γ < 1), we have(

LDγ
x u(x, y),

∂v(x, y)
∂x

)
= −

(
LD(γ+1)/2

x u(x, y), xD(γ+1)/2
R v(x, y)

)
, (8)

(
xDγ

Ru(x, y),
∂v(x, y)

∂x

)
= −

(
xD(γ+1)/2

R u(x, y), LD(γ+1)/2
x v(x, y)

)
. (9)

Proof. See [27].

Lemma 2. For u ∈ Hγ
0 (Ω) and 0 < γ < (γ + 1)/2, then

||u||L2(Ω) ≤ C2||LDγ
x u||L2(Ω) ≤ C1||LD(γ+1)/2

x u||L2(Ω), (10)

||u||L2(Ω) ≤ C4||xDγ
Ru||L2(Ω) ≤ C3||xD(γ+1)/2

R u||L2(Ω). (11)

For u ∈ H1
0(Ω), we have

||u||L2(Ω) ≤ C5

∣∣∣∣∣∣∣∣∂u
∂y

∣∣∣∣∣∣∣∣
L2(Ω)

, (12)

where C1, C2, C3, C4 and C5 are positive constants independent of u.

Proof. The proof of this Lemma follows that given in [28].

Lemma 3. For u(x, y) ∈ Jγ,1
L,0 (Ω) ∩ Jγ,1

R,0(Ω), we have

(
LD(γ+1)/2

x u, xD(γ+1)/2
R u

)
= cos

(
π(γ + 1)/2

)∣∣∣∣∣∣∣∣LD(γ+1)/2
x û

∣∣∣∣∣∣∣∣2
L2(R2)

, (13)

(
∂u
∂y

,
∂u
∂y

)
=

∣∣∣∣∣∣∣∣∂u
∂y

∣∣∣∣∣∣∣∣2
L2(R2)

. (14)

Proof. Similar to the derivation process in [27], we can obtain the results immediately.

Lemma 4. If u > 0, γ 6= n− 1/2, n ∈ N, then Jγ,1
L,0 (Ω), Jγ,1

R,0(Ω), Jγ,1
S,0 (Ω), Hγ

0 (Ω) and H1
0(Ω)

are equivalent with equivalent norms and semi-norms.

Proof. The proof of this lemma can be found in [28].

3. Derivation of the Finite Element Scheme for the Comb Model
3.1. Finite Element Fully Variational Formulation

In the following section, for the sake of simplicity, denote d1(x, y) = δ(y)d+(x, y),
d2(x, y) = δ(y)d−(x, y). Due to the irregular shape of the solution domain, the traditional
rectangular mesh cannot be used. The finite element method is applied to obtain the
solution of the governing Equation (5), subject to the initial conditions (6) and irregular
boundary conditions (7).
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Firstly, in the governing Equation (5), the distributed-order time-fractional derivatives
are discretized using the mid-point quadrature rule [29]

∫ 2

1
ϕ1(β)

∂β

∂tβ

(
∂2u
∂x2

)
dβ =

M1

∑
i=0

ω
(1)
i

∂βi

∂tβi

(
∂2u
∂x2

)
+ O(h2

β),

∫ 1

0
ϕ0(α)

∂α+1

∂tα+1 dα =
M2

∑
i=0

ω
(2)
i

∂αi+1u
∂tαi+1 + O(h2

α),

where ω
(1)
i = hβ ϕ1(αi), ω

(2)
i = hα ϕ0(αi), hα = 1

M2+1 and hβ = 1
M1+1 are fractional parame-

ter steps and αi =
ihα+(i+1)hα

2 for i = 0, 1, . . . , M2, βi =
ihβ+(i+1)hβ

2 for i = 0, 1, . . . , M1.
Let τ = T/N be the time step and tk = kτ (k = 0, 1, . . . , N) where N is a positive

integer. Denote uk−1/2 = uk+uk−1

2 for k = 1, . . . , N. For u(x, y, t) ∈ C(Ω× [0, T]), denote

uk = uk(·) = u(·, tk). We introduce∇tuk−1/2 = uk−uk−1

τ . At t = tk−1/2, the L2-scheme [30] to
approximate the fractional derivative of order βi (1 < βi < 2) with the Caputo definition is
given as

∂βi uk−1/2

∂tβi
=

τ1−βi

Γ(3− βi)

[
a(βi)

0 ∇tuk−1/2 −
k−1

∑
j=1

(a(βi)
k−1−j − a(βi)

k−j )∇tuj−1/2 − a(βi)
k−1u0

t

]
+ Rk,βi

0

=∇(βi)
t uk−1/2 + Rk,βi

0 , (15)

where a(βi)
j = (j + 1)2−βi − j2−βi , j = 0, 1, 2, ..., k− 1, |Rk,βi

0 | ≤ C(τ3−βi ).

Lemma 5. For the above a(βi)
j , define vector S = [S1, S2, S3, ..., SN ]

T and constant P, it holds that

2τ1−βi

Γ(3− βi)

N

∑
k=1

[
a(βi)

0 Sk −
k−1

∑
j=1

(a(βi)
k−j−1 − a(βi)

k−j )Sj − a(βi)
k−1P

]
Sk ≥

T1−βi

Γ(2− βi)

N

∑
k=1

S2
k −

T2−βi

τΓ(3− βi)
P2.

Proof. See [30].

The time Caputo fractional derivative of order αi (0 < αi < 1) is discretized by using
the L1-scheme [30], and the scheme at t = tk−1/2 is given as

∂αi uk−1/2

∂tαi
=

τ1−αi

2Γ(2− αi)

k

∑
j=1

b(αi)
k−j∇tuj−1/2 +

τ1−αi

2Γ(2− αi)

k−1

∑
j=1

b(αi)
k−j−1∇tuj−1/2 + Rk,αi

1

=∇(αi)
t uk− 1

2 + Rk,αi
1 , (16)

where b(αi)
j = (j + 1)1−αi − j1−αi , j = 0, 1, 2, ..., k− 1, |Rk,αi

1 | ≤ C(τ2−αi ).

Lemma 6. For the above b(αi)
j , choosing any positive integer M and vector [v1, v2, v3, ..., vM] ∈

RM, we have

M

∑
k=1

k

∑
j=1

b(αi)
k−j (vj, vk) +

M

∑
k=1

k−1

∑
j=1

b(αi)
k−j−1(vj, vk) ≥ 0.

Proof. See [31].
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At time t = tk−1/2, the semi-discrete scheme for the governing Equation (5) is given
as follows:

ξ
M1

∑
i=0

ω
(1)
i ∇

(βi)
t uk−1/2 +

1
2

M2

∑
i=0

ω
(2)
i ∇

(αi)
t uk−1/2

=
∂

∂x

[
d1(x, y)LDγ

x uk−1/2 − d2(x, y)xDγ
Ruk−1/2

]
+ e(x, y)

∂2uk−1/2

∂y2 + f k−1/2.

(17)

Define V = Hγ
0 (Ω) ∩ H1

0(Ω) to be the numerical solution space. In this work, we
choose to use triangular elements to mesh Ω. Because the domain is irregularly shaped, we
refer to this throughout this paper as an unstructured mesh. Denote {Γh} as a family of
unstructured triangulations of domain Ω, where h is the maximum diameter of any triangle
in Γh. Then, we obtain the conforming finite element subspace Vh ∈ V as

Vh = {vh|vh ∈ C(Ω) ∩V, vh|K is linear for all K ∈ Γh and vh|∂Ω = 0}.

Assume that uk
h is the approximation of u(x, y, t) at time t = tk. We can derive the

fully discrete formulation of (5)–(7): find uk
h ∈ Vh, for any k = 0, 1, . . . , N, such that

ξ
M1

∑
i=0

ω
(1)
i τ1−βi

Γ(3− βi)

[
aβi

0 (∇tuk−1/2
h , vh)−

k−1

∑
j=1

(a(βi)
k−1−j − a(βi)

k−j )(∇tu
j−1/2
h , vh)− a(βi)

k−1

(
(u0

h)t, vh

)]

+
1
2

M2

∑
i=0

ω
(2)
i τ1−αi

Γ(2− αi)

k

∑
j=1

b(αi)
k−j (∇tu

j−1/2
h , vh) +

1
2

M2

∑
i=0

ω
(2)
i τ1−αi

Γ(2− αi)

k−1

∑
j=1

b(αi)
k−j−1(∇tu

j−1/2
h , vh)

=− B(uk−1/2
h , vh)+( f k−1/2, vh), (18)

with the initial conditions and boundary conditions given by

u0
h = u0h, uk

h|(∂Ω) = 0, (19)

where u0h ∈ Vh is a reasonable approximation for u0. The expression for B(u, v) is given as

B(u, v) =
(

d1(x, y)LDγ
x u,

∂v
∂x

)
−
(

d2(x, y)xDγ
Ru,

∂v
∂x

)
+

(
e(x, y)

∂u
∂y

,
∂v
∂y

)
. (20)

3.2. Implementation of Finite Element Method with an Unstructured Mesh

In this section, we provide details of the implementation of the finite element method
with an unstructured mesh. Firstly, we use the software Gmsh [32] to partition the convex
domain Ω with unstructured triangular elements. For every triangular element ep, define
Ne as total number of the triangles and NP is the number of elements. Using piecewise
linear polynomials on every triangular element ep, for each time step, we can write uk

h in

the form uk
h =

NP
∑

n=1
uk

n ϕn(x, y), where ϕn(x, y) is the basis function and uk
n is the unknown

to be solved for. Denote ϕn(xm, ym) = δnm (n, m = 1, 2, . . . , Np), where δnm refers to
the Kronecker delta function, vh = ϕm(x, y), the mass matrix M = (ϕn, ϕm)Np×Np

, the

stiffness matrix A = B(ϕn, ϕm)Np×Np
, Fk = (Fk

1 , Fk
2 , . . . , Fk

Np
)T where Fk

m =
( f k+ f k−1

2 , ϕm
)
,
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ω0
m =

(
(u0

h)t,ϕm
)
, Uk =

[
uk

1, uk
2, . . . , uk

Np

]T , W0 =
[
ω0

1, ω0
2, . . . , ω0

Np

]T , then we can rewrite
(18) in matrix forms as follows

[(
2ξ

M1

∑
i=0

ωia
(βi)
0 + 2

M2

∑
i=0

rib
(αi)
0
)

M + τA
]

Uk

=

[(
2ξ

M1

∑
i=0

ωia
(βi)
0 + 2

M2

∑
i=0

rib
(αi)
0
)

M + τA
]

Uk−1 + 2ξτ
M1

∑
i=0

ωia
(βi)
k−1W0 + 2τFk

+2ξ
M1

∑
i=0

ωi

k−1

∑
j=1

(a(βi)
k−1−j − a(βi)

k−j )

[
MU j −MU j−1

]
− 2

M2

∑
i=0

ri

k−1

∑
j=1

(b(αi)
k−j + b(αi)

k−j−1)

[
MU j −MU j−1

]
,

where ωi =
ω
(1)
i τ1−βi

Γ(3−βi)
, ri =

ω
(2)
i τ1−αi

2Γ(2−αi)
.

The critical point to obtain the solution is to approximate the first and the second
terms of B(ϕn, ϕm). By applying the Gauss quadrature [23], we obtain(

d1(x, y)LDγ
x ϕn,

∂ϕm

∂x

)
= ∑

E∈Γh

∫
E

d1(x, y)LDγ
x ϕn

∂ϕm

∂x
dxdy

≈ ∑
E∈Γh

∑
(xci ,yci)∈GE

λid1(x, y)LDγ
x ϕn|(xci ,yci)

∂ϕm

∂x

∣∣∣∣
(xci ,yci)

,

(
d2(x, y)RDγ

x ϕn,
∂ϕm

∂x

)
= ∑

E∈Γh

∫
E

d2(x, y)xDγ
R ϕn

∂ϕm

∂x
dxdy

≈ ∑
E∈Γh

∑
(xci ,yci)∈GE

κid2(x, y)xDγ
R ϕn|(xci ,yci)

∂ϕm

∂x

∣∣∣∣
(xci ,yci)

,

where GE is the set of Gauss points in a certain element E and λi, κi are the weight
coefficients corresponding to the Gauss points (xci, yci). In this article, we used four Gauss
points in each triangle.

Remark 1. I would be precise on the number of Gauss points used and the accuracy of the approxi-
mation used.

In this paper, we use four Gauss points in every triangle.
The detailed computation process can be summarized in Algorithm 1.

Algorithm 1 Calculate (d1(x, y)LDγ
x ϕn, ∂ϕm

∂x ) and (d2(x, y)RDγ
x ϕn, ∂ϕm

∂x ) using finite element
method on an unstructured mesh

1: By using the software Gmsh, partition the convex domain Ω with unstructured trian-
gular elements ep and save the information for node number Ne, coordinates (x, y) and
element number NP;

2: for p = 1, 2, · · · , Ne do
3: For each triangle element ep, find the Gauss points (xi, yi) and corresponding weights

ωi;
4: for j = 1, 2, · · · , Np do
5: Find the support domain Ωej and construct the support domain Ωn

Lx and Ωn
xR;

6: Use the line y = yi to insert Ωej , find the intersection points and save the coordi-
nates (xk, yk);

7: Apply piecewise linear polynomials on ep and calculate the piecewise continuous
function ϕn(x, yc);

8: Calculate LD̃α
x ϕn

∣∣∣
(xi ,yi)

, xD̃α
R ϕn

∣∣∣
(xi ,yi)

.

9: end for
10: Calculate

(
d1(x, y)LDγ

x ϕn, ∂ϕm
∂x
)

and
(
d2(x, y)RDγ

x ϕn, ∂ϕm
∂x
)

11: end for
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4. Stability and Convergence

In this section, we analyze the stability and convergence of the discrete scheme on the
irregular convex domain. In the following section, for the sake of simplicity, we consider the
constant diffusion coefficient case d1(x, y) = d2(x, y) = e(x, y) = 1. Denote (·, ·) = (·, ·)Ω,
|| · ||0 = || · ||L2(Ω). Prior to presenting the numerical analysis, we firstly give the definitions
of the semi-norm | · |(γ,1) and norm || · ||(γ,1)

|u|(γ,1) =

(∣∣∣∣LD(γ+1)/2
x u

∣∣∣∣2
0 +

∣∣∣∣∣∣∣∣∂u
∂y

∣∣∣∣∣∣∣∣2
0

)1/2

, (21)

||u||(γ,1) =
(
||u||20 + |u|2(γ,1)

)1/2. (22)

In what follows, the constant C may be different in various sections.

4.1. Stability

Lemma 7. For any u ∈ V, the semi-norm |u|(γ,1) and norm ||u||(γ,1) are equivalent and there
exists positive constants C1 and C2 independent of u, such that

C1||u||(γ,1) ≤ |u|(γ,1) ≤ ||u||(γ,1) ≤ C2|u|H1(Ω).

Proof. From Lemma 2, we immediately have

||u||0 ≤ C||LD(γ+1)/2
x u||0 ≤ C|u|(γ,1).

By applying Lemma 2 and the Definitions (21) and (22), we have

||u||(γ,1) = C2(||u||20 + |u|2(γ,1))
1/2 ≤ C2|u|(γ,1) ≤ C|u|Jγ,1

L (Ω)
≤ C2|u|H1(Ω).

By using Lemma 4 and applying the definitions of the norm and semi-norm, we have

||u||(γ,1) =
(
||u||20 + |u|2(γ,1)

)1/2 ≥
(
|u|2(γ,1)

)1/2
= |u|(γ,1). (23)

The proof is completed.

Lemma 8. For any u, v ∈ Hγ
0 (Ω) ∩ H1

0(Ω), there exists constants C1 and C2 such that the
function B(u, v) satisfies |B(u, v)| ≤ C1||u||(γ,1)||v||(γ,1) and B(u, u) ≥ C2||u||2(γ,1).

Proof. Firstly, by using Lemma 1, Lemma 4 and Lemma 7, the Definitions (21) and (22) and
applying the Cauchy–Schwartz inequality, namely (u, v) ≤ ||u||0||v||0, we have

|B(u, v)| ≤
[∣∣(LD(γ+1)/2

x u,x D(γ+1)/2
R v)

∣∣+ ∣∣(x D(γ+1)/2
R u,L D(γ+1)/2

x v)
∣∣+ ∣∣( ∂u

∂y
,

∂v
∂y
)∣∣]

≤
[∣∣∣∣LD(γ+1)/2

x u
∣∣∣∣

0

∣∣∣∣x D(γ+1)/2
R v

∣∣∣∣
0 +

∣∣∣∣x D(γ+1)/2
R u

∣∣∣∣
0

∣∣∣∣LD(γ+1)/2
x v

∣∣∣∣
0 +

∣∣∣∣∣∣∣∣ ∂u
∂y

∣∣∣∣∣∣∣∣
0

∣∣∣∣∣∣∣∣ ∂v
∂y

∣∣∣∣∣∣∣∣
0

]

≤C
(
|u|(γ,1)|v|(γ,1) + |u|(γ,1)|v|(γ,1) + |u|(γ,1)|v|(γ,1)

)
≤ C||u||(γ,1)||v||(γ,1),

B(u, u) ≥
[∣∣∣∣(LD(γ+1)/2

x u, x D(γ+1)/2
R u)

∣∣∣∣+ ∣∣∣∣(x D(γ+1)/2
R u, LD(γ+1)/2

x u)
∣∣∣∣+ ∣∣∣∣( ∂u

∂y
,

∂u
∂y

)∣∣∣∣
]

≥ C

[∣∣∣∣(LD(γ+1)/2
x u, x D(γ+1)/2

R u)
∣∣∣∣+ ∣∣∣∣( ∂u

∂y
,

∂u
∂y

)∣∣∣∣
]
≥ C|u|2H1(Ω)

≥ C||u||2(γ,1).
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Theorem 1. (Stability) The fully discrete scheme (18) is unconditionally stable and it holds that

||uN
h ||(γ,1) ≤ C

[
max

1≤k≤N
|| f k−1/2||20 + ||φ1||21 + ||φ0||(γ,1)

]
.

Proof. Denote vh = ∇tuk−1/2
h . By multiplying 2τ with each item and summing k from 1 to

N, the discrete scheme (18) changes as

2τξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t uk−1/2

h ,∇tuk−1/2
h ) + 2τ

N

∑
k=1

M2

∑
i=0

ω
(2)
i

(
∇(αi)

t uk−1/2
h ,∇tuk−1/2

h

)

+2τ
N

∑
k=1

B
(
uk−1/2

h ,∇tuk−1/2
h

)
− 2τ

N

∑
k=1

(
f k−1/2,∇tuk−1/2

h
)
= 0. (24)

For the first term with the initial condition (u0
h)t = φ1, by using Lemma 5, we have

2τξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t uk−1/2

h ,∇tuk−1/2
h ) ≥ 2τξa1

N

∑
k=1

∣∣∣∣∇tuk−1/2
h

∣∣∣∣2
0 − ξa2||φ1||20, (25)

where a1 =
M1
∑

i=0

ω
(1)
i T1−βi

2Γ(2−βi)
, a2 =

M1
∑

i=0

ω
(1)
i T2−βi

Γ(3−βi)
.

By applying Lemma 6, we have

2τ
N

∑
k=1

M2

∑
i=0

ω
(2)
i

(
∇(αi)

t uk−1/2
h ,∇tuk−1/2

h

)
≥ 0. (26)

Define a symmetrical and continuous function

B0(u, v) =
∣∣∣∣(LD(γ+1)/2

x u,x D(γ+1)/2
R v

)∣∣∣∣+ ∣∣∣∣(xD(γ+1)/2
R u,L D(γ+1)/2

x v
)∣∣∣∣+ ∣∣∣∣(∂u

∂y
,

∂v
∂y

)∣∣∣∣, (27)

then we have B(u, v) ≤ CB0(u, v). For the newly defined function B0
(
uk−1/2

h ,∇tuk−1/2
h

)
,

we have B0
(
uk−1/2

h ,∇tuk−1/2
h

)
= 1

2τ

[
B0
(
uk

h, uk
h
)
− B0

(
uk−1

h , uk−1
h
)]

[21,22]. Perform the

summation of k from 1 to N, and we derive the following inequality

2τ
N

∑
k=1

B
(
uk−1/2

h ,∇tuk−1/2
h

)
≤ 2τC

N

∑
k=1

B0
(
uk−1/2

h ,∇tuk−1/2
h

)
=2τC

N

∑
k=1

1
2τ

[
B
(
uk

h, uk
h
)
− B

(
uk−1

h , uk−1
h
)]

= C
(

B(uN
h , uN

h )− B(u0
h, u0

h)
)
. (28)

By using the important inequality 2ab ≤ a2

2ε + 2εb2, the fifth item changes as

N

∑
k=1

2τ
(

f k−1/2,∇tuk−1/2
h

)
≤

N

∑
k=1

τ

[
|| f k−1/2||20

2a1ξ
+ 2a1ξ

∣∣∣∣∇tuk−1/2
h

∣∣∣∣2
0

]

≤ T
2a1ξ

max
1≤k≤N

|| f k−1/2||20 + 2a1ξ
N

∑
k=1

τ
∣∣∣∣∇tuk−1/2

h

∣∣∣∣2
0. (29)

Then, by using the inequality of (25)–(29), Equation (24) changes as

B(uN
h , uN

h ) ≤ C

[
T

2a1ξ
max

1≤k≤N
|| f k−1/2||20 + a2ξ||φ1||20 + B(u0

h, u0
h)

]
.
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Applying Lemma 8, we have

||uN
h ||

2
(γ,1) ≤ C

[
max

1≤k≤N
|| f k−1/2||20 + ||φ1||20 + ||φ0||(γ,1)

]
.

Therefore, the scheme is unconditionally stable.

4.2. Convergence

Prior to providing the convergence of the discrete scheme, we first give an approxi-
mation property. Define the interpolation operator Ih: Hs+1(Ω)→ Vh, for any u ∈ Hµ(Ω),
1 < µ ≤ s + 1, there exists a constant C depending only on Ω such that [28]

||u− Ihu||H1(Ω) ≤ Chµ−1||u||Hµ(Ω). (30)

For any u ∈ V and vh ∈ Vh, we define a projection operator Ph: V → Vh possessing
the following property

B(Phu, vh) = B(u, vh). (31)

Then, we have the following lemma.

Lemma 9. If u ∈ Hµ(Ω) ∩V, 1 < µ ≤ s + 1, there exists a constant C independent of h and u
such that

||Phu− u||(γ,1) ≤ Chµ−1||u||µ. (32)

Proof. Because

||Phu− u||2(γ,1) ≤ CB(Phu− u, Phu− u) ≤ CB(Phu− u, Ihu− u),

and

B(Phu− u, Ihu− u) ≤ C||Phu− u||(γ,1)||Ihu− u||(γ,1).

Using the approximation properties, we have

||Phu− u||(γ,1) ≤ C||Ihu− u||(γ,1) ≤ C||Ihu− u||H1(Ω) ≤ Chµ−1||u||µ.

Theorem 2. (Convergence) Assume that uN = u(x, y, tN) is the exact solution with u, ∂αi u
∂tαi , ∂βi u

∂tβi
∈

L∞(Hµ(Ω); 0, T), 1 < µ ≤ s + 1, then the numerical solution uN
h satisfies

||un
h − u(tn)||2(γ,1) ≤Cτ2 min{|3−βi |,|2−αi |}

+Ch2(µ−1)

[
||uN ||2µ + ||ϕ||2µ + ||φ||2µ + max

1≤k≤N

∣∣∣∣∣∣∣∣ ∂βi uk−1/2

∂tβi

∣∣∣∣∣∣∣∣2
µ

+ max
1≤k≤N

∣∣∣∣∣∣∣∣ ∂αi uk−1/2

∂tαi

∣∣∣∣∣∣∣∣2
µ

]
.

Proof. Let en = un
h − u(tn), then the newly defined en satisfies

ξ
M1

∑
i=0

ω
(1)
i (∇(βi)

t ek−1/2, vh) + ξ
M1

∑
i=0

ω
(1)
i (Rβi ,k

0 , vh) +
M2

∑
i=0

ω
(2)
i τ1−αi

2Γ(2− αi)

k

∑
j=1

b(αi)
k−j (∇tej−1/2, vh)

+
M2

∑
i=0

ω
(2)
i τ1−αi

2Γ(2− αi)

k−1

∑
j=1

b(αi)
k−j−1(∇tej−1/2, vh) +

M2

∑
i=0

ω
(2)
i (Rαi ,k

1 , vh) + B(ek−1/2, vh) = 0. (33)
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Define en = ρn + θn, where ρn = Phu(tn)− u(tn) and θn = un
h − Phu(tn). Then, for any vh,

by using the Definition (31), we have

B(ρk−1/2, vh) = B
(

Phu(tk−1/2)− u(tk−1/2), vh

)
= 0.

In addition, choosing the interpolations as the initial values of u0
h at time t0, i.e.,

u0
h = Ihφ0, we obtain

B(θ0, θ0) ≤ CB0(θ
0, θ0) ≤ C

[
||u(t0)− u0

h||
2
(γ,1) + ||Phu(t0)− u(t0)||2(γ,1)

]
≤ Ch2(µ−1)||φ0||2µ.

Similarly, choosing (u0
h)t = Ihφ1, the norm ||(θ0

h)t||
2
0 satisfies the following relationship

||(θ0
h)t||

2
0 ≤ C||(u(t0)− u0

h)t||
2
(γ,1) + ||(Phu(t0)− u(t0))t||

2
(γ,1) ≤ Ch2(µ−1)||φ1||2µ.

Defining vh = ∇tθ
k−1/2 and summing k from 1 to N, Equation (33) can be rewritten as

ξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t θk−1/2,∇tθ

k−1/2) +
N

∑
k=1

M2

∑
i=0

ω
(2)
i

(
∇(αi)

t θk−1/2,∇tθ
k−1/2

)
+

N

∑
k=1

B(θk−1/2,∇tθ
k−1/2)

=− ξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t ρk−1/2,∇tθ

k−1/2)−
N

∑
k=1

M2

∑
i=0

ω
(2)
i

(
∇(αi)

t ρj−1/2,∇tθ
k−1/2

)

−
N

∑
k=1

ξ
M1

∑
i=0

ω
(1)
i (Rβi ,k

0 ,∇tθ
k−1/2)−

N

∑
k=1

M2

∑
i=0

ω
(2)
i (Rαi ,k

1 ,∇tθ
k−1/2).

Note that ||·||0 ≤ ||·||(γ,1). By applying Lemma 9, the norm ||∇(βi)
t ρk−1/2||20 can be

estimated as ∣∣∣∣∣∣∇(βi)
t ρk−1/2

∣∣∣∣∣∣2
0
=
∣∣∣∣∣∣∇(βi)

t ρk−1/2 − ∂βi ρk−1/2

∂tβi
+

∂βi ρk−1/2

∂tβi

∣∣∣∣∣∣2
0

≤
∣∣∣∣∣∣∇(βi)

t ρk−1/2 − ∂βi ρk−1/2

∂tβi

∣∣∣∣∣∣2
0
+
∣∣∣∣∂βi ρk−1/2

∂tβi

∣∣∣∣2
0

=
∣∣∣∣Rβi ,k

0 ||
2
0 + ||

∂βi

∂tβi
[Phu(tk−1/2)− u(tk−1/2)]

∣∣∣∣2
0

≤ Cτ2(3−βi) + Ch2(µ−1)
∣∣∣∣∣∣∂βi uk−1/2

∂tβi

∣∣∣∣∣∣2
µ

.

Similarly, we derive

∣∣∣∣∣∣∇(αi)
t ρk−1/2

∣∣∣∣∣∣2
0
≤ Cτ2(2−αi) + Ch2(µ−1)

∣∣∣∣∣∣∂αi uk−1/2

∂tαi

∣∣∣∣∣∣2
µ

.

By applying the inequality in Lemma 9, the norms ||ρN ||2(γ,1) and ||ρ0||2(γ,1) satisfy

||ρN ||2(γ,1) = ||Phu(tN)− u(tN)||2(γ,1) ≤ Ch2(µ−1)||uN ||2µ,

||ρ0||2(γ,1) = ||Phu(t0)− u(t0)||2(γ,1) ≤ Ch2(µ−1)||u0||2µ.

By using Lemma 5 and the initial condition (θ0
h)t = φ1, the following inequality holds

ξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t θk−1/2,∇tθ

k−1/2) ≥ a1ξ
N

∑
k=1
||∇tθ

k−1/2||20 −
ξa2

2τ
||(θ0

h)t||
2
0. (34)
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Applying Lemma 6, we have the following inequality

N

∑
k=1

M2

∑
i=0

ω
(2)
i τ1−αi

2Γ(2− αi)

k

∑
j=1

b(αi )
k−j (∇tθ

j−1/2,∇tθ
k−1/2) +

N

∑
k=1

M2

∑
i=0

ω
(2)
i τ1−αi

2Γ(2− αi)

k−1

∑
j=1

b(αi )
k−j−1(∇tθ

j−1/2,∇tθ
k−1/2) ≥ 0. (35)

Applying the mid-point formula, we have the result

N

∑
k=1

B
(
θk−1/2,∇tθ

k−1/2) ≥ C
N

∑
k=1

B0
(
θk−1/2,∇tθ

k−1/2) = C
1

2τ

[
B0
(
θN , θN)− B0

(
θ0, θ0)]. (36)

By using the important inequality −ab ≤ εa2 + b2/(4ε), we have

− ξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t ρk−1/2,∇tθ

k−1/2)

≤ξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

χ1

[
Cτ2(3−βi) + Ch2(µ−1)

∣∣∣∣∣∣ ∂βi uk−1/2

∂tβi

∣∣∣∣∣∣2
µ

]
+ ξ

M1

∑
i=0

ω
(1)
i

N

∑
k=1

1
4χ1
||∇tθ

k−1/2||20 (37)

≤NC
[

τ2(3−βi) + h2(µ−1) max
1≤k≤N

∣∣∣∣∣∣ ∂βi uk−1/2

∂tβi

∣∣∣∣∣∣2
µ

]
+ ξ

M1

∑
i=0

ω
(1)
i

N

∑
k=1

1
4χ1
||∇tθ

k−1/2||20,

−
N

∑
k=1

M2

∑
i=0

ω
(2)
i

(
∇(αi)

t ρj−1/2,∇tθ
k−1/2

)

≤
M2

∑
i=0

ω
(2)
i

N

∑
k=1

χ2

(
Cτ2(2−αi) + Ch2(µ−1)

∣∣∣∣∣∣∂αi uk−1/2

∂tαi

∣∣∣∣∣∣2
µ

)
+

N

∑
k=1

M2

∑
i=0

ω
(2)
i

4χ2
||∇tθ

k−1/2||20

≤NC
(

τ2(2−αi) + h2(µ−1) max
1≤k≤N

∣∣∣∣∣∣∂αi uk−1/2

∂tαi

∣∣∣∣∣∣2
µ

)
+

N

∑
k=1

M2

∑
i=0

ω
(2)
i

4χ2
||∇tθ

k−1/2||20, (38)

where χ1 = a3
a1

, χ2 = a4
ξa1

, a3 =
M1
∑

i=0
ω
(1)
i and a4 =

M2
∑

i=0
ω
(2)
i .

Similarly,

−
N

∑
k=1

ξ
M1

∑
i=0

ω
(1)
i (Rβi ,k

0 ,∇tθ
k−1/2) ≤ NCτ2(3−βi) + ξ

N

∑
k=1

M1

∑
i=0

ω
(1)
i

1
4χ3
||∇tθ

k−1/2||20, (39)

−
N

∑
k=1

M2

∑
i=0

(Rαi ,k
1 ,∇tθ

k−1/2) ≤ NCτ2(2−αi) +
M2

∑
i=0

N

∑
k=1

ω
(2)
i

1
4χ4
||∇tθ

k−1/2||20, (40)

where χ3 = a3
a1

and χ4 = a4
ξa1

.
By using the inequalities (34)–(40), we obtain

1
2τ

[B(θN , θN)− B(θ0, θ0)] ≤ NC
[

τ2(3−βi) + h2(µ−1) max
1≤k≤N

∣∣∣∣∣∣∂βi uk−1/2

∂tβi

∣∣∣∣∣∣2
µ

]
+NC

(
τ2(2−αi) + h2(µ−1) max

1≤k≤N

∣∣∣∣∣∣∂αi uk−1/2

∂tαi

∣∣∣∣∣∣2
µ

)
+

ξa2

2τ
Ch2(µ−1)||φ1||2µ.

By utilizing Lemma 8, the above equation changes as

||θN ||2(γ,1) ≤Cτ2 min{|3−βi |,|2−αi |} + Ch2(µ−1)
[

max
1≤k≤N

∣∣∣∣∣∣ ∂βi uk−1/2

∂tβi

∣∣∣∣∣∣2
µ
+ max

1≤k≤N

∣∣∣∣∣∣ ∂αi uk−1/2

∂tαi

∣∣∣∣∣∣2
µ
+ ||φ0||2µ + ||φ1||2µ

]
.
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The simplified form is given as

||uN
h − u(tN)||2(γ,1) ≤ ||ρ

N ||2(γ,1) + ||θ
N ||2(γ,1) ≤ Cτ2 min{|3−βi |,|2−αi |}

+ Ch2(µ−1)
[
||uN ||2µ + ||φ0||2µ + ||φ1||2µ + max

1≤k≤N

∣∣∣∣ ∂βi uk−1/2

∂tβi

∣∣∣∣2
µ
+ max

1≤k≤N

∣∣∣∣ ∂αi uk−1/2

∂tαi

∣∣∣∣2
µ

]
.

The proof is completed.

Remark 2. By using the triangular linear basis function, i.e., s = 1, it can be concluded from
Theorem 2 that the error satisfies

||un
h − u(tn)||(γ,1) ≤ C(τmin{3−βi ,2−αi} + h).

5. Numerical Examples

In this section, we present two numerical examples: one is in a rectangular domain
with the main purpose to demonstrate the effectiveness of our theoretical analysis, and
the other is in an elliptical domain for analyzing the effects of different parameters on the
particle distributions. In the mid-point quadrature rule [29], we choose M1 = 9, M2 = 9.

Example 1. Firstly, we consider the following two-dimensional distributed-order time- and space-
fractional diffusion-wave equation on a rectangular domain

ξ
∫ 2

1
ϕ1(β)

∂βu(x, y, t)
∂tβ

dβ +
∫ 1

0
ϕ0(α)

∂αu(x, y, t)
∂tα

dα

=
∂

∂x

[
d1(x, y)

∂γu(x, y, t)
∂xγ

− d2(x, y)
∂γu(x, y, t)

∂(−x)γ

]
+

∂

∂y

[
e(x, y)

∂u(x, y, t)
∂y

]
+ f (x, y, t),

subject to

u(x, y, 0) =x2(1− x)2y2(1− y)2, ut(x, y, 0) = 0, (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T],

where Ω = (0, 1) × (0, 1). The exact solution of this problem is given by u(x, y, t) =
(t2 + 1)x2(1− x)2y2(1− y)2.

In Table 1, we take the special case with ξ = 1, γ = 0.8, d1(x, y) = d2(x, y) = e(x, y) =
x2 + y2 to compute the Hγ error, L2 error and convergence order of h with τ = 1

1000 at
t = 1 with different weight coefficients ϕ1(β) = wi(β) and ϕ0(α) = ri(α), i = 1, 2, 3, which
are given by w1(β) = 0.5δ(β− 1.5) + 0.5δ(β− 1.8), r1(α) = 0.5δ(α− 0.5) + 0.5δ(α− 0.8),
w2(β) = 2−β

2 , r2(α) = 1−α
2 , w3(β) = β2/2, r3(α) = α2/2. By examining the spatial

convergence orders shown in Table 1, we notice that the expected convergence orders
proved in Theorem 2 are obtained. With a different choice of the weight coefficient, the
numerical solutions are in agreement with the theoretical analysis which indicates the
validity of the proposed method.

Example 2. In this example, we consider the following two-dimensional distributed-order time-

and space-fractional diffusion-wave equation on an elliptical domain Ω = {(x, y)| x2

R2
a
+ y2

R2
b
< 1}

ξ
∫ 2

1
ϕ1(β)

∂βu(x, y, t)
∂tβ

dβ +
∫ 1

0
ϕ0(α)

∂αu(x, y, t)
∂tα

dα

=
∂

∂x

[
d1(x, y)

∂γu(x, y, t)
∂xγ

− d2(x, y)
∂γu(x, y, t)

∂(−x)γ

]
+

∂

∂y

[
e(x, y)

∂u(x, y, t)
∂y

]
+ f (x, y, t),
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Table 1. The Hγ error, L2 error and convergence order of h with τ = 1
1000 at t = 1 for the case ξ = 1,

γ = 0.8, d1(x, y) = d2(x, y) = e(x, y) = x2 + y2 with different ϕ1(β) and ϕ0(α).

h Hγ Error Order L2 Error Order

w1(β)
r1(α)

3.1123 × 10−1 5.6929 × 10−3 - 3.7301 × 10−4 -
1.6759 × 10−1 3.0879 × 10−3 0.99 1.1009 × 10−4 1.97
8.6682 × 10−2 1.5643 × 10−3 1.03 2.7245 × 10−5 2.12
4.3719 × 10−2 7.5272 × 10−4 1.07 6.3251 × 10−6 2.13

w2(β)
r2(α)

3.1123 × 10−1 5.6922 × 10−3 - 3.8367 × 10−4 -
1.6759 × 10−1 3.0878 × 10−3 0.99 1.1271 × 10−4 1.98
8.6682 × 10−2 1.5642 × 10−3 1.03 2.8032 × 10−5 2.11
4.3719 × 10−2 7.5270 × 10−4 1.07 6.5047 × 10−6 2.13

w3(β)
r3(α)

3.1123 × 10−1 5.6972 × 10−3 - 3.7652 × 10−4 -
1.6759 × 10−1 3.0889 × 10−3 0.99 1.1075 × 10−4 1.97
8.6682 × 10−2 1.5645 × 10−3 1.03 2.7391 × 10−5 2.12
4.3719 × 10−2 7.5275 × 10−4 1.07 6.3932 × 10−6 2.13

subject to

u(x, y, 0) =
1

100

(
x2

R2
a
+

y2

R2
b
− 1

)2

, ut(x, y, 0) = 0, (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T],

where T = 1. The exact solution of this problem is given by u(x, y, t) = t2+1
100

(
x2

R2
a
+ y2

R2
b
− 1
)2

.

In the following discussions, for the sake of simplicity, all the numerical results listed
in the tables and figures are evaluated at Ra = 0.5, Rb = 1. In Table 2, the Hγ error, L2
error and convergence order of h with τ = 1

1000 at t = 1 with different ϕ1(β) = wi(β),
ϕ0(α) = ri(α), i = 1, 2 are presented, where w1(β) = δ(β − 1.8), r1(α) = δ(α − 0.8),
w2(β) = 2−β

2 , r2(α) =
1−α

2 . The linear triangular elements are applied for this numerical
example to verify the theoretical analysis. As we can see, the Hγ spatial convergence
order is close to 1 while the L2 spatial convergence order is close to 2, which coincide with
the theoretical analysis in Theorem 2. Through the above analysis, we see that our finite
element algorithm also works well for an elliptical domain.

The solution behaviors with the effects of the different involved parameters, such as the
relaxation parameter and the weight coefficient, are highlighted by graphical illustrations
and analyzed in detail. We choose ξ = 1, f (x, y, t) = 0, d1(x, y) = 1−x

2 δ(y), d2(x, y) =
1+x

2 δ(y), e(x, y) = x2 + y2 + 1, t = 1 to observe the behaviors of the temporal evolution
of the particle distribution, with the effect of the weight coefficients as shown in Figure

3. We use the exponential function with the form δ(x) ≈ 1
2
√

πσ
e−

x2
4σ to approximate the

Dirac delta function in the numerical simulation. Similar to [16], the weight coefficients are
chosen as the power-law form with ϕ1(β) = nβn−1, ϕ0(α) = nαn−1 where n = 1/2, 1, 3. We
observe that the impacts of the weight coefficients are significant on the solution behaviors.
For n = 1/2, the weight coefficient is monotonically decreasing with the increase of β while
monotonically increasing with the increase of α, and at this stage, the distribution presents
as a diffusion form. For n = 1, the weight coefficient is constant which means that the
weight for every fractional parameter is equal and the wave characteristic appears. With
the increase of n, for n = 3, the weight coefficient is monotonically increasing with the
increase of β and the decrease of α. As shown in Figure 3, the wave characteristic of the
distribution becomes stronger.
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Table 2. The Hγ error, L2 error and convergence order of h with τ = 1
1000 at t = 1 for the case ξ = 1,

γ = 0.8, d1(x, y) = d2(x, y) = e(x, y) = x2 + y2 with different ϕ1(β) and ϕ0(α).

h Hγ Error Order L2 Error Order

w1(β)
r1(α)

3.0312 × 10−1 1.3401 × 10−2 – 8.9386 × 10−4 –
1.8428 × 10−1 6.7962 × 10−3 1.36 2.2350 × 10−4 2.79
8.3913 × 10−2 3.4331 × 10−3 0.87 5.3636 × 10−5 1.81
4.5308 × 10−2 1.6953 × 10−3 1.14 1.2951 × 10−5 2.31

w2(β)
r2(α)

3.0312 × 10−1 1.3252 × 10−2 – 1.0536 × 10−3 –
1.8428 × 10−1 6.7495 × 10−3 1.36 2.5810 × 10−4 2.83
8.3913 × 0−2 3.4048 × 10−3 0.87 6.3027 × 10−5 1.79
4.5308 × 10−2 1.6816 × 10−3 1.14 1.5874 × 10−5 2.24

Figure 3. The three-dimensional and axial projection drawing particle distribution when n = 1/2,
n = 1 and n = 3.

Figure 4 presents the influence of parameter ξ on the particle distributions for t = 1,
f (x, y, t) = 0, d1(x, y) = 1−x

2 δ(y), d2(x, y) = 1+x
2 δ(y), e(x, y) = x2 + y2 + 1, ϕ1(β) = 1 and

ϕ0(α) = 1. As the relaxation parameter increases from ξ = 0 to ξ = 1, the central region
of the particle distribution begins to cave inward, which indicates that the distributions
have a wave characteristic. The larger the relaxation parameter is, the stronger the wave
characteristic will be. The reason is that the relaxation parameter is added on the distributed-
order time-fractional derivative of order (1, 2), which possesses the wave characteristics.
With an increase in the relaxation parameter, the fractional derivative of order (1, 2) with
the wave characteristic plays a greater role in the particles’ transport.
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Figure 4. The three-dimensional and axial projection drawing particle distribution when ξ = 0,
ξ = 1/2 and ξ = 1.

6. Conclusions

In this paper, we presented an original distributed-order time- and space-fractional
diffusion-wave equation to analyze the anomalous diffusion in comb structures. The
solution of the governing equation was obtained using the finite element method for the
case where the coefficients are taken as constant. Two examples were given: one was in a
rectangular domain and the other one was in an elliptical domain. In the two examples,
the Hγ error, L2 error and convergence order of h with τ = 1

1000 at t = 1 subject to different
weight coefficients showed that the results demonstrated the effectiveness of the numerical
method. For the elliptical domain, the influence of the involved parameters, such as the
relaxation parameter and the weight coefficient on the particle distribution, were analyzed,
and the physical meaning of the diffusion-wave characteristics was discussed in detail.

Author Contributions: Conceptualization, L.L. and S.Z.; methodology, S.Z.; software, L.F.; validation,
L.Z., J.Z. and F.L.; formal analysis, I.T.; investigation, S.Z.; resources, S.C.; data curation, L.L.; writing—
original draft preparation, S.Z.; writing—review and editing, L.Z.; visualization, S.C.; supervision,
L.L.; project administration, L.L.; funding acquisition, L.L. All authors have read and agreed to the
published version of the manuscript.

Funding: The work is supported by the Project funded by the National Natural Science Founda-
tion of China (No. 11801029), the Fundamental Research Funds for the Central Universities (No.
QNXM20220048) and the Open Fund of the State key laboratory of advanced metallurgy in the
University of Science and Technology Beijing (No. K22-08) and the Australian Research Council
(ARC) via the Discovery Project (DP180103858). Authors Liu and Zheng wish to acknowledge that
this research is partially supported by the Natural Science Foundation of China (No. 11772046).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Iomin, A.; Méndez, V.; Horsthemke, W. Fractional Dynamics in Comb-Like Structures; World Scientific: Singapore, 2018.
2. Iomin, A.; Méndez, V. Reaction-subdiffusion front propagation in a comblike model of spiny dendrites. Phys. Rev. E 2013, 88,

012706. [CrossRef] [PubMed]
3. Iomin, A.; Zaburdaev, V.; Pfohl, T. Reaction front propagation of actin polymerization in a comb-reaction system. Chaos Solitons

Fract. 2016, 92, 115–122. [CrossRef]

http://doi.org/10.1103/PhysRevE.88.012706
http://www.ncbi.nlm.nih.gov/pubmed/23944491
http://dx.doi.org/10.1016/j.chaos.2016.09.011


Fractal Fract. 2023, 7, 239 19 of 19

4. Méndez, V.; Iomin, A. Comb models for transport along spiny dendrites. In Handbook of Applications of Chaos Theory; CRC Press:
Boca Raton, FL, USA, 2014.

5. Méndez, V.; Iomin, A. Comb-like models for transport along spiny dendrites. Chaos Solitons Fract. 2013, 53, 46–51. [CrossRef]
6. Iomin, A. Toy model of fractional transport of cancer cells due to self-entrapping. Phys. Rev. E 2006, 73, 061918. [CrossRef]

[PubMed]
7. Iomin, A. A toy model of fractal glioma development under RF electric field treatment. Eur. Phys. J. E 2012, 35, 42–46. [CrossRef]
8. Arkhincheev, V.E.; Baskin, E.M. Anomalous diffusion and drift in a comb model of percolation clusters. Zh. Eksp. Teor. Fiz. 1991,

100, 292–300.
9. Baskin, E.; Iomin, A. Superdiffusion on a Comb Structure. Phys. Rev. Lett. 2004, 93, 120603. [CrossRef]
10. Christov, C.I.; Jordan, P.M. Heat conduction paradox involving second-sound propagation in moving media. Phys. Rev. Lett. 2015,

94, 154301. [CrossRef]
11. Compte, A.; Metzler, R. The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A-Math.

Gen. 1997, 30 7277–7289. [CrossRef]
12. Iomin, A. Fractional kinetics of glioma treatment by a radio-frequency electric field. Eur. Phys. J. Spec. Top. 2013, 222, 1875–1884.

[CrossRef]
13. Liu, F.; Yang, Q.; Turner, I. Two new implicit numerical methods for the fractional cable equation. J. Comput. Nonlin. Dyn. 2011, 6,

011009. [CrossRef]
14. Qi, H.T.; Xu, H.Y.; Guo, X.W. The Cattaneo-type time fractional heat conduction equation for laser heating. Comput. Math. Appl.

2013, 66, 824–831. [CrossRef]
15. Oloniiju, S.D.; Goqo, S.P.; Sibanda, P. A chebyshev spectral method for heat and mass transfer in mhd nanofluid flow with space

fractional constitutive model. Front. Heat Mass Transf. 2019, 13, 13–19. [CrossRef]
16. Eab, C.H.; Lim, S.C. Fractional Langevin equation of distributed order. Phys. Rev. E 2011, 83, 031136. [CrossRef]
17. Caputo, M. Distributed order differential equations modeling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 2001, 4,

421–442.
18. Bai, Y.; Wan, S.; Zhang, Y.; Wang, X. Unsteady Falkner-Skan flow of fractional Maxwell fluid towards a stretched wedge with

buoyancy effects. Phys. Scripta 2022, 98, 015218. [CrossRef]
19. Elwakil, S.A.; Zahran, M.A.; Abulwafa, E.M. Fractional (space-time) diffusion equation on comb-like model. Chaos Solitons Fract.

2004, 20, 1113–1120. [CrossRef]
20. Ervin, V.J.; Roop, J.P. Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Part. D. E.

2006, 22, 558–576. [CrossRef]
21. Bu, W.; Tang, Y.; Yang, J. Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J. Comput.

Phys. 2014, 276, 26–38. [CrossRef]
22. Bu, W.; Tang, Y.; Wu, Y.; Yang, J. Finite difference/finite element method for twodimensional space and time fractional Bloch-Torrey

equations. J. Comput. Phys. 2015, 293, 264–279. [CrossRef]
23. Yang, Z.; Yuan, Z.; Nie, Y.; Wang, J.; Zhu, X.; Liu, F. Finite element method for nonlinear Riesz space fractional diffusion equations

on irregular domains. J. Comput. Phys. 2017, 330, 863–883. [CrossRef]
24. Hao, Z.; Park, M.; Lin, G.; Cai, Z. Finite element method for two-sided fractional differential equations with variable coeffificients:

Galerkin approach. J. Sci. Comput. 2019, 79, 700–717. [CrossRef]
25. Wang, H.; Yang, D. Wellposedness of variable-coefficient conservative fractional elliptic differential equations. Siam J. Numer.

Anal. 2013, 51, 1088–1107. [CrossRef]
26. Wang, H.; Yang, D.; Zhu, S. Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their

finite element approximations. Siam J. Numer. Anal. 2014, 52, 1292–1310. [CrossRef]
27. Ervin, V.J.; Roop, J.P. Variational solution of fractional advection dispersion equations on bounded domains in Rd. Numer. Methods

Partial Differ. Equat. 2007, 23, 256–281. [CrossRef]
28. Roop, J.P. Variational Solution of the Fractional Advection Dispersion Equation. Ph.D. Thesis, Clemson University, Clemson, SC,

USA, 2004.
29. Moghaddam, B.P.; Machado, J.A.T.; Morgado, M.L. Numerical approach for a class of distributed order time fractional partial

differential equations. Appl. Numer. Math. 2019, 136, 152–162. [CrossRef]
30. Sun, Z.; Wu, X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56, 193–209. [CrossRef]
31. Fan, H.; Zhao, Y.; Wang, F.; Shi, Y.; Tang, Y. A superconvergent nonconforming mixed FEM for multi-term time-fractional mixed

diffusion and diffusion-wave equations with variable coefficients. East Asian J. Appl. Math 2021, 11, 63–92. [CrossRef]
32. Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D flnite element mesh generator with built-in pre-and post-processing facilities. Int. J.

Numer. Meth. Eng. 2009, 79, 1309–1331. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.chaos.2013.05.002
http://dx.doi.org/10.1103/PhysRevE.73.061918
http://www.ncbi.nlm.nih.gov/pubmed/16906875
http://dx.doi.org/10.1140/epje/i2012-12042-9
http://dx.doi.org/10.1103/PhysRevLett.93.120603
http://dx.doi.org/10.1103/PhysRevLett.94.154301
http://dx.doi.org/10.1088/0305-4470/30/21/006
http://dx.doi.org/10.1140/epjst/e2013-01970-4
http://dx.doi.org/10.1115/1.4002269
http://dx.doi.org/10.1016/j.camwa.2012.11.021
http://dx.doi.org/10.5098/hmt.13.19
http://dx.doi.org/10.1103/PhysRevE.83.031136
http://dx.doi.org/10.1088/1402-4896/acaa0a
http://dx.doi.org/10.1016/j.chaos.2003.09.032
http://dx.doi.org/10.1002/num.20112
http://dx.doi.org/10.1016/j.jcp.2014.07.023
http://dx.doi.org/10.1016/j.jcp.2014.06.031
http://dx.doi.org/10.1016/j.jcp.2016.10.053
http://dx.doi.org/10.1007/s10915-018-0869-5
http://dx.doi.org/10.1137/120892295
http://dx.doi.org/10.1137/130932776
http://dx.doi.org/10.1002/num.20169
http://dx.doi.org/10.1016/j.apnum.2018.09.019
http://dx.doi.org/10.1016/j.apnum.2005.03.003
http://dx.doi.org/10.4208/eajam.180420.200720
http://dx.doi.org/10.1002/nme.2579

	Introduction
	The Structure of the Paper
	Derivation of the Finite Element Scheme for the Comb Model
	Finite Element Fully Variational Formulation
	Implementation of Finite Element Method with an Unstructured Mesh

	Stability and Convergence
	Stability
	Convergence

	Numerical Examples
	Conclusions
	References

