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Abstract: Long-run bifurcation analysis aims to describe the asymptotic behavior of a dynamical
system. One of the main objectives of mathematical epidemiology is to determine the acute threshold
between an infection’s persistence and its elimination. In this study, we use a more comprehensive
SVIR epidemic model with large jumps to tackle this and related challenging problems in epidemi-
ology. The huge discontinuities arising from the complexity of the problem are modelled by four
independent, tempered, α-stable quadratic Lévy processes. A new analytical method is used and
for the proposed stochastic model, the critical value R?

0 is calculated. For strictly positive value of
R?

0 , the stationary and ergodic properties of the perturbed model are verified (continuation scenario).
However, for a strictly negative value of R?

0 , the model predicts that the infection will vanish expo-
nentially (disappearance scenario). The current study incorporates a large number of earlier works
and provides a novel analytical method that can successfully handle numerous stochastic models.
This innovative approach can successfully handle a variety of stochastic models in a wide range of
applications. For the tempered α-stable processes, the Rosinski (2007) algorithm with a specific Lévy
measure is implemented as a numerical application. It is concluded that both noise intensities and
parameter α have a great influence on the dynamical transition of the model as well as on the shape
of its associated probability density function.

Keywords: dynamical system; noise; bifurcation; ergodicity; lévy processes; jumps
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1. Introduction

For the last two centuries, infectious diseases have been identified as the greatest
impediment to human civilization. These infectious illnesses (particularly the emerging
epidemics) have caused a huge number of health and economic problems [1], and thus,
investigating the dynamics and control of such diseases is the focal point of today’s re-
searchers. For instance, the pandemic COVID-19 has very serious consequences (for health,
economy, culture, education, etc.), with more than 200 million confirmed cases worldwide,
including more than 4 million deaths [2]. Human influenza, a contagious respiratory
infection caused by influenza viruses, has a seasonal pattern and, to date, is assumed to be
a major public health problem. In Morocco, it affects about 1 to 5 million people each year
and causing between 17,000 and 30,000 deaths [2]. The Ebola virus illness produced a large
outbreak in West Africa in 2016, with at least 28,600 officially recognized cases and over
11,325 deaths [2]. In this situation, developing tools to better understand the dynamics
driving the epidemic’s spread is critical for guiding public health strategies [3]. Developing
a mechanistic model that drives the dynamics of such diseases and contains the criteria

Fractal Fract. 2023, 7, 226. https://doi.org/10.3390/fractalfract7030226 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7030226
https://doi.org/10.3390/fractalfract7030226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-1127-4395
https://orcid.org/0000-0002-1261-0418
https://orcid.org/0000-0003-0463-0360
https://orcid.org/0000-0003-1983-9669
https://doi.org/10.3390/fractalfract7030226
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7030226?type=check_update&version=2


Fractal Fract. 2023, 7, 226 2 of 30

that characterise them is a natural way to describe their prevalence [4]. Nonetheless, due to
the unique way infectious diseases spread, the finding of a straightforward technique that
precisely predicts their behavior is highly desired [5]. In that respect, mathematical biology,
notably through compartmental formulations, is considered the most substantial means to
depict the epidemiological dynamics of pathogen transmission. Furthermore, the subject
research may aid policymakers and health officials in developing and implementing an
effective control strategy to reduce the spread of an infectious disease [6]. Besides other
control interventions, vaccination is assumed to be the most effective strategy for restricting
the spread of COVID-19 [7]. Many countries have approved vaccines for emergency use
from Pfizer/BioNTech, Janssen, Sinopharm, Astra-Zeneca, and Sputnik V [2]. As of 23 April
2022, the health department reported that 24,898,497 people had been vaccinated in Morocco,
providing significant group immunity against this virus. Consequently, the epidemiologi-
cal condition began to improve, with the goal of completely eliminating the disease. We
focus on an infection model with four groups in this study by considering the vaccination
strategy’s application (see Table 1).

Table 1. A list of the different groups of the studied population.

Group Biological Classification

G1 Sensitive people
G2 Vaccinated people
G3 Infected people
G4 Recovered people with total immunity

The movements between these groups are characterized by the following deterministic
system:


dG1(t) =

( Logistic growth︷ ︸︸ ︷
rG1(t)

(
1− G1(t)

K

)
−β1

Functional response︷ ︸︸ ︷
H1
(
G1(t), G3(t)

)
G3(t)− (u+ v)G1(t)

)
dt,

dG2(t) =
(

vG1(t)− β2H2
(
G2(t), G3(t)

)
G3(t)− (u+ ς)G2(t)

)
dt,

dG3(t) =
(

β1H1
(
G1(t), G3(t)

)
G3(t) + β2H2

(
G2(t), G3(t)

)
G3(t)− (u+ a+ c)G3(t)

)
dt,

dG4(t) =
(

ςG2(t) + cG3(t)− uG4(t)
)

dt,

(1)

where, r designates the inherent growth rate of G1, K is the standard carrying capacity of
the environment, v is the vaccination rate, β1 is the transmission coefficient between G1
and G3, β2 indicates the infection transmission rate between G2 and G3 before obtaining the
immunity, ς is the recovery rate of G2, u and a are respectively the natural and the infection-
induced death rates, lastly, c is the recovery rate of G3. Due to some analytical reasons,
we assume that η?? = r− (u+ v) is positive. The functionsH1

(
G1, G3

)
andH2

(
G2, G3

)
appearing in system (1) denote the general incidence rates and biologically, these functions
shows the number of cases being infected in a unit time. These two interference functions
characterize the cross-infections, and their forms include the vast majority of response
examples found in the literature. For ease of reading, in the remaining parts of this
manuscript, we outline the transmission mechanisms of the above-mentioned model by
the flow diagram shown in Figure 1. Analytically, we suppose that the general interference
responsesH1,H2 ∈ C2(R+ ×R+,R+) and satisfies the following two conditions:

• Ca: H1(0, G3) = 0, H2(0, G3) = 0 ∀G3 ≥ 0; H1 is increasing in G1 and decreasing
in G3; H2 is increasing in G2 and decreasing in G3; and there exists two positive
constants ∆1, ∆2 such that

∂H1(G1, G3)

∂G1
≤ ∆1,

∂H2(G2, G3)

∂G2
≤ ∆2,
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for all G1, G2, G3 ≥ 0.

• Cb: H1 andH2 follow the uniform continuity property at G3 = 0:
lim

G3→0
sup
G1>0
{|H1(G1, G3)−H1(G1, 0)|} = 0,

lim
G3→0

sup
G2>0
{|H2(G2, G3)−H2(G2, 0)|} = 0.

The above properties are readily satisfied by the typical examples listed in Tables 2 and 3.

rG1(1- G1/K)
G1

G2

G4
ϖG1

uG1

uG2 ςG2

(a+u)G3 uG4

cG3

β1H
1 (G

1,G
3)G

3

β2H2 (G2,G3)G3

G3

Figure 1. The diagram of the deterministic epidemic model (1). Different transfer rates between the
classes are illustrated by arrows.

Table 2. List of some prototypes of the general interference functionH1.

Name Expression

Bilinear H1
(
G1, G3

)
= G1

Saturated 2 H1
(
G1, G3

)
=

G1

q+ G1
, (q > 0)

Dual saturated H1
(
G1, G3

)
=

G2
1

(q1 + G1)(q2 + G1)
, (q1, q2 > 0)

Beddington-DeAngelis H1
(
G1, G3

)
=

G1

1 + q1G1 + q2G3
, (q1, q2 > 0)

Crowley-Martin H1
(
G1, G3

)
=

G1

(q1 + G1)(q2 + G3)
, (q1, q2 > 0)

Modified Crowley-Martin H1
(
G1, G3

)
=

G1

1 + q1G1 + q2G3 + q3G1G3
, (q1, q2, q3 > 0)

In [8], the authors treated the epidemic model (1) in its particular case with functional
response type 1. They proved that the deterministic critical value is expressible in the form
of:

R◦ =
β1Kη??(u+ ς) + β2Kvη??

r(u+ ς)(u+ a+ c)
=

1
(u+ a+ c)

(
β1

=G◦1︷ ︸︸ ︷
Kη??

r
+β2

=G◦2︷ ︸︸ ︷
Kη??v

r(u+ ς)

)
.

This quantity allows us to classify the dynamics of infection and predict its long-run
behavior. That is, if R◦ < 1, then the infection will disappear, while the endemic nature of
the infection occurs for R◦ > 1.
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Table 3. List of some prototypes of the general interference functionH2.

Name Expression

Bilinear H2
(
G2, G3

)
= G2

Saturated H2
(
G2, G3

)
=

G2

q? + G2
, (q? > 0)

Dual saturated H2
(
G2, G3

)
=

G2
2

(q?1 + G2)(q?2 + G2)
, (q?1 , q?2 > 0)

Beddington-DeAngelis H2
(
G2, G3

)
=

G2

1 + q?1G2 + q?2G3
, (q?1 , q?2 > 0)

Crowley-Martin H2
(
G2, G3

)
=

G2

(q?1 + G2)(q?2 + G3)
, (q?1 , q?2 > 0)

Modified Crowley-Martin H2
(
G2, G3

)
=

G2

1 + q?1G2 + q?2G3 + q?3G2G3
, (q?1 , q?2 , q?3 > 0)

In reality, external variations affect the spread of an infection and make it more tricky
to predict its behavior [9]. Epidemic systems are totally sophisticated and complex. One of
the characteristics of complexity is the randomness and uncertainties, either in the reasons
for a phenomenon that has occurred, or in the prediction of its long-term evolution [10].
The stochastic approach highlights many assumptions and concerns when studying the
dynamics of a system. For this reason, multiplicative and additive noise sources carry
out a significant role in the transient dynamics of biological and physical systems [11].
Technically, if the noise level is abnormally high, the signal can be drowned out, similar
logic for biological systems where noises help in reducing the infection [12]. Regarding
the physical understanding of biological models, the above two types of casual noise have
been widely used. Patently, additive noise is characterized by its proactive role in the
transient dynamics of dynamical systems, and multiplicative noise is responsible for noise-
induced transitions [13]. In such situations, deterministic formulations, which are able to
make very instructive predictions and forecasts, are not close enough to reality to warrant
reliance [14–17]. Consequently, we need an improved and sophisticated mathematical
framework that takes into consideration the randomness effect, especially when studying
the prevalence of a highly harmful infectious disease like COVID-19 [18]. In this regard,
plenty of researchers have proposed and developed a variety of perturbed models that
simulate the dynamics of a number of diseases from different perspectives [19–25]. In all
these surveys, the transit from the deterministic setting to the probabilistic one is done by
presuming that the parameter values fluctuate around their value in a natural way, which
is often expressed by perturbing the system with white noises. The introduction of these
fluctuations is considered to be one of the most logical and eminent ways of depicting any
real phenomenon under slight and continuous oscillations. Regrettably, concept is lacking in
describing the spread of infection during large and unexpected environmental disturbances,
during economic crises, or through the use of human interventions (vaccination strategy
in the case of COVID-19 [7]). For this ground, we looking to the use of Lévy processes
which are famous for their capability to decently formulate this sort of stochasticity. This
formulation can be upgraded by using the the quadratic Lévy noise to model the complexity
of certain physical impulses caused by massive extrinsic disturbances [26–28]. In addition,
the standard Lévy formulation is based on distributions which have partially-weighty tails,
and consequently they have limited potential to simulate radical and brutal phenomena
which usually lead to unexpected variations in the total number of individuals [27–35].

Stable Lévy distributions were originally introduced for financial returns by Man-
delbrot in 1963 [36]. They offer an advantage over the log-normal assumption in that
extreme and great events can exist in the model. They have not been widely used due to
the difficulty of performing the calculations [37]. Most models using stable distributions
also assume that they are stationary; when the parameters are fitted to a stationary stable
model, the tails turn out to be systematically too heavy. A α-stable Lévy process can be
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represented as a combination of a (compound) Poisson process and a Brownian motion.
For small values of α, we see that the process is dominated by big jumps. For medium
values (e.g., α = 1, i.e., Cauchy process) we get both small and large jumps. For α close
to 2, we get Brownian motion with occasional jumps (see Figure 2). α-stable processes for
α ∈ (0, 2) have infinite variance, which makes them somewhat inconvenient. Nevertheless,
they are important in physics, biology, meteorology, and have been used in option pricing
in finance [38–40].

Time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z
⋆ 0.
2
(t
)

-6

-5

-4

-3

-2

-1

0

Tempered α-Stable Process

α=0.2

Time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z
⋆ 0.
8
(t
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Tempered α-Stable Process

α=0.8

Time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z
⋆ 1.
9
(t
)

-2

0

2

4

6

8

10

Tempered α-Stable Process

α=1.9

Figure 2. Numerical illustration of sample paths of the single-sided tempered α-stable process Y(t)
when α = 0.2, 0.8, 1.2 and 1.9. The inputs tuning of the used algorithm are as follows: ς?,− = 0,
ς?,+ = 2.8, κ?,− = 1.2 and κ?,+ = 1.2.

In many epidemiological models, the largest jumps are frequently ignored. Lévy’s
tempered motion adopts a different approach, exponentially tempering the probability of
massive jumps, so that remarkably large jumps are extremely unlikely and all moments
exist [41]. Tempering stable processes offer technical advantages, since the jumps process
remains an infinitely divisible Lévy process whose governing equation can be identified
and whose transition densities can be calculated at any scale [42]. These transition densities
solve a tempered fractional diffusion equation, quite similar to the fractional diffusion
equation. Like the truncated Lévy flights, they evolve from an early super-diffusive
behavior to a late diffusive behavior of the disease.

In this research, we investigate the impact of tempered α-stable Lévy distribution on
the dynamics of an epidemiological model. This scope is new and puts forward a novel
analytical approach that deals with epidemic models under heavy variations. Inspired
by the above facts and motivations, the improved version of system (1) will take the
following shape:



dG1(t) =

Deterministic part︷ ︸︸ ︷(
rG1(t)

(
1− G1(t)

K

)
− β1H1

(
G1(t), G3(t)

)
G3(t)− (u+ v)G1(t)

)
dt+

Fluctuations︷ ︸︸ ︷
dS1(t) ,

dG2(t) =
(

vG1(t)− β2H2
(
G2(t), G3(t)

)
G3(t)− (u+ ς)G2(t)

)
dt + dS2(t),

dG3(t) =
(

β1H1
(
G1(t), G3(t)

)
G3(t) + β2H2

(
G2(t), G3(t)

)
G3(t)− (u+ a+ c)G3(t)

)
dt + dS3(t),

dG4(t) =
(

ςG2(t) + cG3(t)− uG4(t)
)

dt + dS4(t),

(2)

where
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dS1(t) =

Quadratic white noise︷ ︸︸ ︷(
ζ1LG1(t) + ζ1QG2

1(t)
)
dB1(t) +

Quadratic tempered stable jumps︷ ︸︸ ︷∫
χ

(
θ1L(u)G1(t−) + θ1Q(u)G2

1(t
−)
)
C̃α

1 (dt, du),

dS2(t) =
(
ζ2LG2(t) + ζ2QG2

2(t)
)
dB2(t) +

∫
χ

(
θ2L(u)G2(t−) + θ2Q(u)G2

2(t
−)
)
C̃α

2 (dt, du),

dS3(t) =
(
ζ3LG3(t) + ζ3QG2

3(t)
)
dB3(t) +

∫
χ

(
θ3L(u)G3(t−) + θ3Q(u)G2

3(t
−)
)
C̃α

3 (dt, du),

dS4(t) =
(
ζ4LG4(t) + ζ4QG2

4(t)
)
dB4(t) +

∫
χ

(
θ4L(u)G4(t−) + θ4Q(u)G2

4(t
−)
)
C̃α

4 (dt, du).

To well characterize the probabilistic part of the updated model, firstly, we define the
underlying probability space (ΩE , E ,PΩ) with its associated filtration {Et}t≥0 (right contin-
uous, increasing and E0 encompasses all PΩ-null collections). Before moving further, let us
explain the notations, processes and measures appearing in system (2):

• G`(t−) indicate the left limits of G`(t) (` = 1, 2, 3, 4).
• B`(t) (` = 1, 2, 3, 4) are alternately independent Wiener processes presented on

(ΩE , E , {Et}t≥0,PΩ).
• ζ`L (` = 1, 2, 3, 4) denote the linear diffusion amplitudes; and ζ`Q (` = 1, 2, 3, 4)

represent the strengths of quadratic fluctuations.
• C̃α

` (` = 1, 2, 3, 4) are the mutually independent compensator processes associated
respectively with the Poisson random measures N` (` = 1, 2, 3, 4).

• N` (` = 1, 2, 3, 4) are independent to B` (` = 1, 2, 3, 4).
• Zα

` (·) (` = 1, 2, 3, 4) are the tempered α-stable Lévy measures defined on a measurable
set χ ⊂ (0, ∞).

• Zα
` (χ) < ∞ (` = 1, 2, 3, 4) and C̃α

` (t, du) (` = 1, 2, 3, 4) are {Et}-martingales, where
N1(t, du) = C̃α

1 (t, du) + tZα
1(du),

N2(t, du) = C̃α
2 (t, du) + tZα

2(du),
N3(t, du) = C̃α

3 (t, du) + tZα
3(du),

N4(t, du) = C̃α
4 (t, du) + tZα

4(du).

• The tempered α-stable Lévy measures Zα
` (` = 1, 2, 3, 4) are expressed as follows:

Zα
` (Y) =

∫
R+

∫
χ

e−ττ−α−11Y (τy)Hα(dy)dτ, α ∈ (0, 2). (3)

Here, Hα(·) denotes a measure on χ such that
∫

χ
min

(
‖y‖2, ‖y‖α

)
Zα(dy) < ∞. Ac-

cording to the theory presented in [29], we take

Hα(dy) = φ?
−(dy) + φ?

+(dy),

where {
φ?
− = ς?,−κα

?,−δ(−1/κ?,− ,−1/κ?,− ,−1/κ?,− ,−1/κ?,−),
φ?
+ = ς?,+κα

?,+δ(1/κ?,+ ,1/κ?,+ ,1/κ?,+ ,1/κ?,+),

for all ς?,−, ς?,+ ≥ 0, κ?,−, κ?,+ > 0 and δz is the Dirac mass measure at point z in R4.
From (3), we infer that the measure Zα

i (i = 1, 2, 3, 4) are rewritten as follows:

Zα
` (Y) =

∫
R+

ψ?
−e−ττ−α−1dτ +

∫
R+

ψ?
+e−ττ−α−1dτ, α ∈ (0, 2), (4)
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where {
ψ?
− = ς?,−1Y (−τ/κ?,−,−τ/κ?,−,−τ/κ?,−,−τ/κ?,−),

ψ?
+ = ς?,+1Y (τ/κ?,+, τ/κ?,+, τ/κ?,+, τ/κ?,+).

• We principally presume that the intensities θ`L(u) and θ`Q(u) (` = 1, 2, 3, 4) are
positive continuous functions that meet the following primary criterion:
Cc: 

∫
χ

θ2
`L(u)Z

α
` (du) < ∞, ` = 1, 2, 3, 4,∫

χ
θ2
`Q(u)Z

α
` (du) < ∞, ` = 1, 2, 3, 4.

Analogous to the aforementioned deterministic setup, the chief target of stochastic
modeling in epidemiology is to define the decisive value responsible for eradication and
insistence of the illness, that is, the long-run bifurcation. Since system (2) is perturbed
by a quadratic noise, its analysis is both a complicated and fascinating subject. Many
researchers have recently addressed the long-term behaviour of infection models using
Brownian motion in higher order representation (see for example, [23–25]). To our knowledge,
to date, biological models driven by quadratic tempered α-stable jumps have not been
investigated due to some analytical complexities. The present research strives to cope with
the long-run bifurcation of system (2). Of course, ergodic steady distribution implies the
permanence of the epidemic. Technically, the well-known approach to checking ergodicity
is the Khasminskii theorem, which provides in most cases insufficient criteria [43,44]. Thus,
the pivotal question of this research is: what is the acute threshold (extended deterministic
threshold) between the permanence and eradication of the infection? Specifically, the
present study suggests a novel method for dealing with biological systems perturbed by
quadratic noises. We will also explore the sharp criterion for the ergodic property of our
model and the disappearance of illness (6). By using two auxiliary equations with tempered
α-stable quadratic noises, we establish the threshold quantity R?

0 . In other words, if R?
0 > 0,

then model (2) has a single steady ergodic distribution, and if R?
0 is strictly negative, then

the density of the infected class will disappear.
The remaining parts of this research are ordered in the following arrangement: In

Section 2, we start by giving some necessary lemmas and techniques, then we introduce
the value R?

0 associated with the stochastic system (2). In Section 3, we treat the dynamical
bifurcation by proving that R?

0 is the sharp threshold between stationarity and extinction
of the illness. Section 4 numerically validates the mathematical outcomes and explores
the effect of tempered α-stable quadratic Lévy noises on the behavior of a general SVIR
infection model (2).

2. Some Preliminaries and Required Lemmas

The first question in exploring the dynamics of an epidemic model is whether it
admits a unique and positive global solution over time. The following lemma shows these
properties and ensures the well-posedness of the proposed probabilistic system (2).

Lemma 1. Let Cc holds. Then, the stochastic system (2) is biologically and mathematically well-
posed in the sense that it has a single solution G(t) =

(
G1(t), G2(t), G3(t), G4(t)

)
∈ R4,?

+ which
is positive and global in time, where

R4,?
+ = {(z1, z2, z3, z4) : z1 > 0, z2 > 0, z3 > 0, z4 > 0}.

To create a link between stationarity and permanence properties, we need the following
lemma.
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Lemma 2. There exists a specific constant η† > 0 such that

lim sup
t→∞

E{Ω,P}
[
G1(t)

]
≤ η†,

lim sup
t→∞

E{Ω,P}
[
G2(t)

]
≤ η†,

lim sup
t→∞

E{Ω,P}
[
G3(t)

]
≤ η†,

lim sup
t→∞

E{Ω,P}
[
G4(t)

]
≤ η†.

The above result can be proven by employing an analytical treatment identical to that
of Lemma 2.1 in [45].

Next, we explore some long-run characteristics of the boundary equations associated
with model (2) in the case of G3(t) = 0 (absence of the infection). Because of that reason,
we use the following two-block auxiliary system with quadratic Lévy noise:

dS1(t) =

Deterministic part when G3(t)=0︷ ︸︸ ︷(
rS1(t)

(
1− S1(t)

K

)
− (u+ v)S1(t)

)
dt+

Fluctuations︷ ︸︸ ︷
dSS

1 (t) ,

S1(0) = G1(0) > 0,

dS2(t) =
(

vS1(t)− (u+ ς)S2(t)
)

dt + dSS
2 (t),

S2(0) = G2(0) > 0,

(5)

where
dSS

1 (t) =
(
ζ1LS1(t) + ζ1QS2

1(t)
)
dB1(t) +

∫
χ

(
θ1L(u)S1(t−) + θ1Q(u)S2

1(t
−)
)
C̃α

1 (dt, du),

dSS
2 (t) =

(
ζ2LS2(t) + ζ2QS2

2(t)
)
dB2(t) +

∫
χ

(
θ2L(u)S2(t−) + θ2Q(u)S2

2(t
−)
)
C̃α

2 (dt, du).

Lemma 3. Let
(
S1(t), S2(t)

)
be two Markov processes that verify the two-block auxiliary system

(5). Then, we have the following properties:

1. System (5) is well-posed.
2. S1(t) ≥ G1(t) a.s. and S2(t) ≥ G2(t) a.s. (stochastic comparison result [46]).

3. If η?? − 0.5ζ2
1L −

∫
χ

(
θ1L(u)− ln

(
1 + θ1L(u)

))
Zα

1(du) > 0, then for each process, there

exists a single invariant probability measure, named respectively as πS1 and πS2 .
4. S1 and S2 follow the ergodic property.

The proof of this lemma is almost analogous to that of Lemma 2.2 in [11].

Lemma 4. Presume that η?? − 0.5ζ2
1L −

∫
χ

(
θ1L(u)− ln

(
1 + θ1L(u)

))
Zα

1(du) > 0. Then, the

time averages of S1(t) and S2(t) are estimated as follows:
lim
t→∞

1
t

∫ t

0
S1(s)ds ≤ K

(r+Kζ1Lζ1Q)

{
η?? − 0.5ζ2

1L −
∫

χ

(
θ1L(u)− ln

(
1 + θ1L(u)

))
Zα

1(du)
}

= ϕS
1 > 0,

lim
t→∞

1
t

∫ t

0
S2(s)ds ≤ vK

(u+ ς)(r+Kζ1Lζ1Q)

{
η?? − 0.5ζ2

1L −
∫

χ

(
θ1L(u)− ln

(
1 + θ1L(u)

))
Zα

1(du)
}

=
vϕS

1
(u+ ς)

> 0.

Proof. See Appendix A.
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Remark 1. Throughout this research, we always assume that η?? − 0.5ζ2
1L −

∫
χ

(
θ1L(u)− ln

(
1 +

θ1L(u)
))

Zα
1(du) > 0. By using the properties of functions H1, H2 (especially, the hypothesis Ca)

and Lemma 4, we deduce that
∫
R+

H1
(

x, 0
)
πS1(dx) ≤ ∆1

∫
R+

xπS1(dx) = lim
t→∞

∆1

t

∫ t

0
S1(s)ds < ∞,∫

R+

H2
(

x, 0
)
πS2(dx) ≤ ∆2

∫
R+

xπS2(dx) = lim
t→∞

∆2

t

∫ t

0
S2(s)ds < ∞.

By using Remark 1, we properly introduce the well-defined threshold of the proba-
bilistic system (2) which can be expressed in the following form:

R?
0 = β1

∫
R+

H1
(
x, 0
)
πS1(dx) + β2

∫
R+

H2
(

x, 0
)
πS2(dx)− (u+ a+ c)

− 0.5ζ2
3L −

∫
χ

(
θ3L(u)− ln

(
1 + θ3L(u)

))
Zα

3(du).

Remark 2. Note that in the case of the functional response type 1, the threshold is

R?,1
0 = β1

∫ ∞

0
xπS1(dx) + β2

∫ ∞

0
xπS2(dx)− (u+ a+ c)− 0.5ζ2

3L −
∫

χ

(
θ3L(u)− ln

(
1 + θ3L(u)

))
Zα

3(du).

Since the expressions of πS1 and πS2 are unknown, Lemma 4 gives the exact value of the threshold
which is presented as:

R?,1
0 = β1G◦1 + β2G◦2 − (u+ a+ c)− 0.5ζ2

3L −
∫

χ

(
θ3L(u)− ln

(
1 + θ3L(u)

))
Zα

3(du).

In the next subsection, we shall show that R?
0 is the threshold among the stationarity

and the disappearance of the infection.

3. Long-Run Bifurcation of the Stochastic System (2)
3.1. The Stationarity Case

This section demonstrates a novel method for proving the perturbed system’s sta-
tionarity and, of course, its ergodicity. The following intriguing lemma describes this
procedure.

Lemma 5 (Limited possibilities result, [47]). LetM ∈ Rn be a stochastic process that verifies the

Feller property. Then, the ergodicity and stationarity hold or lim
t→∞

sup
ζ̂

1
t

∫ t

0

∫
Rn

PΩ
(
x; s,D

)
ζ̂(dx)ds =

0 for all closed and bounded subset D ⊂ Rn and all elementary distributions ζ̂ on Rn, where
PΩ
(

x; s,D
)

is the probability forM in D withM(0) = x ∈ Rn.

Remark 3. Since the fundamental dynamics of the group G4 has no effect on the behavior of the
disease, we can omit the fourth equation of (2) and we will only deal with the following reduced
system:

dG1(t) =
(
rG1(t)

(
1− G1(t)

K

)
− β1H1

(
G1(t), G3(t)

)
G3(t)− (u+ v)G1(t)

)
dt + dS1(t),

dG2(t) =
(

vG1(t)− β2H2
(
G2(t), G3(t)

)
G3(t)− (u+ ς)G2(t)

)
dt + dS2(t),

dG3(t) =
(

β1H1
(
G1(t), G3(t)

)
G3(t) + β2H2

(
G2(t), G3(t)

)
G3(t)− (u+ a+ c)G3(t)

)
dt + dS3(t).

(6)
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In this case, we set

R3,?
+ = {(z1, z2, z3) : z1 > 0, z2 > 0, z3 > 0},

and we simply survey the long-run conduct of the first three groups.

Theorem 1. Assume that R?
0 > 0 holds. Then, system (6) admits a single ergodic steady distribu-

tion π?(·).
Biological interpretation 1. The ergodicity reveals that the perturbed model (2) has a
limiting stable distribution that prophesies the continuation of the infection. This means
that the infected group will tend to stay for a long time.

Proof. See Appendix B.

Remark 4. From Lemma 2 and Theorem 1, we can establish more indications on the insistence of
the stochastic processes G1, G2, G4 and G4. Specifically, we obtain

lim
t→∞

t−1
∫ t

0
G1(τ)dτ =

∫
R4,?
+

c1π?(dc1, dc2, dc3, dc4) < ∞,

lim
t→∞

t−1
∫ t

0
G2(τ)dτ =

∫
R4,?
+

c2π?(dc1, dc2, dc3, dc4) < ∞,

lim
t→∞

t−1
∫ t

0
G3(τ)dτ =

∫
R4,?
+

c3π?(dc1, dc2, dc3, dc4) < ∞,

lim
t→∞

t−1
∫ t

0
G4(τ)dτ =

∫
R4,?
+

c4π?(dc1, dc2, dc3, dc4) < ∞.

By way of explanation, this shows the continuation of all groups of the population.

3.2. The Disappearance Case

Theorem 2. If R?
0 < 0, then G3 verifies that

lim sup
t→∞

t−1 ln G3(t) ≤ R?
0 < 0 (almost surely),

which implies that the group G3(t) will disappear with full probability. Furthermore, the distribu-
tions of G1(t) and G2(t) converge (weakly) to the invariant measures πS1 and πS2 , respectively.

Biological interpretation 2. The quantity R?
0 contains linear random intensities, which are

related to the infected class G3. This designates that if R?
0 is strictly less than zero, the

stochastic fluctuations help to the inhibition of the illness.

Proof. See Appendix B.

4. Numerical Verification

This part of the manuscript is devoted to the verification of Theorems 1 and 2 through
numerical examples. Through computer simulations, we generated plots for trajectories
and histograms, from which the complex dynamical behaviours of the perturbed system
(2) can be easily interpreted. Moreover, we chose some reasonable parameter values to
verify our hypothetical framework. According to the work presented in [48], we use the
following compensated tempered Poisson process:

iY(t) =
∫ t

0

∫
χ

u C̃α
i (ds, du), i = 1, 2, 3, 4, (7)
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with the associated Lévy measure (4). To numerically apply the method proposed in [29],
we define the following setup inputs tuning:

• (aj)j≥1 is an i.i.d. Bernoulli random sequence with the associated distribution(
ς?,−/(ς?,− + ς?,+), ς?,+/(ς?,− + ς?,+)

)
.

• (bj)j≥1 and (b
′
j)j≥1 are i.i.d. exponential random variables with the parameter 1, where

Bj = b
′
1 + · · ·+ b

′
j.

• (cj)j≥1 are i.i.d. uniform random variables.
• (dj)j≥1 is an i.i.d. uniform U(0, 1) random sequence.

According to Theorem 5.3 in [29], all of the above sequences are supposed to be mutually
independent. Furthermore, the process iY with (4) can be presented as follows:

• When 0 < α < 1, then iY(t) = ∑∞
j=1 1(0,t](cj)

aj
|aj |

S̃1, for all 0 ≤ t ≤ T, where S̃1 =

min
{(

(ς?,−+ς?,+)T
αBj

) 1
α ,

bj
|aj |

d
1
α
j

}
.

• When 1 ≤ α < 2, then iY(t) = ∑∞
j=1

(
1(0,t](cj)

aj
|aj |

S̃2 − z0
t
T

(
ς?,−+ς?,+

αj/T

) 1
α

)
+ tΦT , for all

0 ≤ t ≤ T where S̃2 = min
{(

ς?,−+ς?,+
αBj/T

) 1
α ,

bj
|aj |

d
1
α
j

}
, z0 = (ς?,− − ς?,+)/(ς?,− + ς?,+),

z1 = ς?,+κ−1−α
?,+ − ς?,−κ−1−α

?,− and

ΦT =


z0
T ζR

(
1
α

)(
T(ς?,−+ς?,+)

α

) 1
α − z1ΓG(α− 1), 1 < α < 2,

(2γe + ln(ς?,− + ς?,+))z1 −
∫

χ
x ln(|x|)Zα(dx) α = 1,

where ζR(·) denotes the Riemann zeta function, ΓG(·) is the Gamma function, and γe
is the Euler constant.

Since the main motive of the tempered α-stable Lévy process is to obtain systems that
simulate heavier tails more appropriately compare with the standard Lévy fluctuation,
therefore, it is very much important to study the behavior of these tails. First of all, we need
to simulate the process iY(t) ≡ Y(t) and then we will illustrate the effect of parameter α on
the shape of its fluctuations and discontinuities. In Figure 2, we considered four cases for α
for understanding the behavior of tails. It was concluded that by choosing a smaller value of
α, the jumps become more radical and brutal, while by increasing the value, the trajectories
behave like Brownian motion with jumps. In a large time scale, the most recent behavior
is clearly visible. Now, we choose θiL(u) = eiLu and θkQ(u) = ekLu, where eiL, ekQ > 0,
(i, k = 1, 2, 3, 4); then, we consider the stochastic system (2) with Beddington-DeAngelis
functions as follows:

dG1(t) =
{
rG1(t)

(
1− G1(t)

K

)
− β1G1G3(t)

1 + q1G1 + q2G3
− (u+ v)G1(t)

}
dt + dS1(t),

dG2(t) =
{

vG1(t)−
β2G2G3(t)

1 + q?1G2 + q?2G3
− (u+ ς)G2(t)

}
dt + dS2(t),

dG3(t) =
{

β1G1G3(t)
1 + q1G1 + q2G3

+
β2G2G3(t)

1 + q?1G2 + q?2G3
− (u+ a+ c)G3(t)

}
dt + dS3(t),

dG4(t) =
{

ςG2(t) + cG3(t)− uG4(t)
}

dt + dS4(t),

G1(0) = 0.8, G2(0) = 0.1, G3(0) = 0.1, G4(0) = 0.01,

(8)
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where

dS1(t) =
{

ζ1LG1(t) + ζ1QG2
1(t)

}
dB1(t) +

{
e1LG1(t−) + e1QG2

1(t
−)
}

d1Y(t),

dS2(t) =
{

ζ2LG2(t) + ζ2QG2
2(t)

}
dB2(t) +

{
e2LG2(t−) + e2QG2

2(t
−)
}

d2Y(t),

dS3(t) =
{

ζ3LG3(t) + ζ3QG2
3(t)

}
dB3(t) +

{
e3LG3(t−) + e3QG2

3(t
−)
}

d3Y(t),

dS4(t) =
{

ζ4LG4(t) + ζ4QG2
4(t)

}
dB4(t) +

{
e4LG4(t−) + e4QG2

4(t
−)
}

d4Y(t).

For simplicity, we will present advanced simulation results for system (8) in the case of the
single-sided tempered stable processes iY(t) with ς?,− = 0. The deterministic parameters
of (8) are as follows: r = 0.04, K = 1, β1 = 0.1, q1 = 0.15, q2 = 0.12, u = 0.01, v = 0.01,
β2 = 0.00045, q?1 = 0.17, q?2 = 0.11, a = 0.02, c = 0.0001, ς = 0.004. To study the influence
of jumps noises on the dynamics of system (8), we fix the values of the deterministic
parameters and will vary the stochastic intensities.

4.1. First Case: α = 0.7
4.1.1. Scenario 1: Stationarity and Permanence

Since the proposed algorithm is very sensitive to its inputs, thus we select the intensi-
ties of noises from Table 4.

Table 4. Selected values of the noise intensities in system (8) (stationarity case).

Stochastic Parameters Values

(ζ1L, ζ1L, ζ2L, ζ3L, ζ4L) (0.051, 0.042, 0.07, 0.0315)
(ζ1Q, ζ1Q, ζ2Q, ζ3Q, ζ4Q) (0.001, 0.002, 0.004, 0.001)
(e1L, e1L, e2L, e3L, e4L) (0.01, 0.011, 0.0101, 0.01025)
(e1Q, e1Q, e2Q, e3Q, e4Q) (0.0014, 0.0012, 0.0071, 0.0011)

By choosing a sufficiently large number T > 0, the threshold R?
0 is calculated as

follows:

R?
0 =

∫ ∞

0

β1x
1 + q1x

πS1(dx) +
∫ ∞

0

β2x
1 + q?1 x

πS2(dx)− (u+ a+ c)

− 0.5ζ2
3L −

∫
χ

(
e3Lu− ln

(
1 + e3Lu

))
Z0.7

3 (du).

The probability density functions πS1 and πS2 obey a Fokker–Planck equation, which can
be easily approximated through Monte Carlo simulations. Via ergodic property (Lemma 3),
we can also estimate these quantities:

lim
T→∞

T−1
∫ T

0

β1S1(s)
1 + q1S1(s)

ds, lim
T→∞

T−1
∫ T

0

β2S2(s)
1 + q?1S2(s)

ds,

for a large time T. This last technique is the one we used in our simulations. Since the
equations for S1 and S2 are disturbed by quadratic α-stable fluctuations, therefore, the said
limit will be modified according to the magnitude of the intensities. Consequently, the
threshold will also be changed. In this regard, our threshold can expressed as follows:

R?
0 = lim

T→∞

1
T

∫ T

0

β1S1(s)
1 + q1S1(s)

ds + lim
T→∞

1
T

∫ T

0

β2S2(s)
1 + q?1S2(s)

ds− (u+ a+ c)

− 0.5ζ2
3L −

∫
χ

(
e3Lu− ln

(
1 + e3Lu

))
)Z0.7

3 (du)

= 0.0012 > 0.
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From Theorem 1, we infer that there is a single steady distribution to system (8). To
numerically illustrate this statistical property, we need to present Figure 3, the associated
joint two-dimensional densities for all groups. For a good visibility, we offer the upper
view of the said joint densities in Figure 4. From numerical approximation and Remark 4,
we obtain

lim
t→∞

t−1
∫ t

0
G1(τ)dτ =

∫
R4,?
+

c1π?(dc1, dc2, dc3, dc4) = 0.3001 > 0,

lim
t→∞

t−1
∫ t

0
G2(τ)dτ =

∫
R4,?
+

c2π?(dc1, dc2, dc3, dc4) = 0.2060 > 0,

lim
t→∞

t−1
∫ t

0
G3(τ)dτ =

∫
R4,?
+

c3π?(dc1, dc2, dc3, dc4) = 0.0673 > 0,

lim
t→∞

t−1
∫ t

0
G4(τ)dτ =

∫
R4,?
+

c4π?(dc1, dc2, dc3, dc4) = 0.0030 > 0.

This indicates that the infection is still present in the population over time. We talk here
about persistence in the mean of the epidemic. In Figure 5, we illustrate the continuation of
all groups of the studied population. One can notice that the stochastic trajectories fluctuate
around the deterministic solution with reasonable distances according to magnitude of
the noises.
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Figure 3. The 3D representation of the joint densities at time t = 5000 of system (8) with stochastic
parameters appearing in Scenario 1, different colored stages indicate various sizes of the density.
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Figure 4. The 2D upper view of the joint densities at time t = 5000 of the classes G1, G2, G3 and G4.
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Figure 5. Computer simulations based on the probabilistic model (8) with tempered α-stable jumps.
The deterministic parameters are selected as follows: r = 0.04, K = 1, β1 = 0.1, q1 = 0.15, q2 = 0.12,
u = 0.01, v = 0.01, β2 = 0.00045, q?1 = 0.17, q?2 = 0.11, a = 0.02, c = 0.0001, ς = 0.004. The
deterministic parameters are chosen from Table 4.

4.1.2. Scenario 2: Extinction

Now, we seek to verify that the long-term dynamics of the model can change its
behavior at certain noise intensities. To this end, we increase the amplitude of the noises as
stated in Table 5.
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Table 5. Selected values of the noise intensities in system (8) (extinction case).

Stochastic Parameters Values

(ζ1L, ζ1L, ζ2L, ζ3L, ζ4L) (0.11, 0.104, 0.12, 0.08)
(ζ1Q, ζ1Q, ζ2Q, ζ3Q, ζ4Q) (0.01, 0.01, 0.01, 0.01)
(e1L, e1L, e2L, e3L, e4L) (0.1, 0.1, 0.201, 0.125)
(e1Q, e1Q, e2Q, e3Q, e4Q) (0.01, 0.01, 0.01, 0.01)

A numerical calculation gives

R?
0 = lim

T→∞

1
T

∫ T

0

β1S1(s)
1 + q1S1(s)

ds + lim
T→∞

1
T

∫ T

0

β2S2(s)
1 + q?1S2(s)

ds− (u+ a+ c)

− 0.5ζ2
3L −

∫
χ

(
e3Lu− ln

(
1 + e3Lu

))
)Z0.7

3 (du)

= −0.0047 < 0.

In accordancewith Theorem 2, the sign of the threshold indicates that we have passed from
the case of permanence to the phenomenon of extinction. From Figure 6, we notice that the
stochastic trajectory of group 3 is extinguished after a given time while the deterministic
solution still continues. It’s so logical because we didn’t change the deterministic param-
eters and we just made some modifications on the intensity of the noises. Therefore, we
deduce that stochastic fluctuations have a passive influence on the long-term behavior of
the infection and can modify the bifurcation of the proposed system.
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Figure 6. Computer simulations based on the probabilistic model (8) with tempered α-stable jumps.
The deterministic parameters are selected as follows: r = 0.04, K = 1, β1 = 0.1, q1 = 0.15, q2 = 0.12,
u = 0.01, v = 0.01, β2 = 0.00045, q?1 = 0.17, q?2 = 0.11, a = 0.02, c = 0.0001, ς = 0.004. The fixed
deterministic coefficients are chosen from Table 5.

4.2. Second Case: α = 1.7
4.2.1. Scenario 1: Stationarity and Permanence

To exhibit this behavior of the model, we leave the deterministic parameters unchanged
and will choose the stochastic parameters from Table 4. The main purpose is to ensure that
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Theorem 1 is valid in the case of α ∈ [1, 2) and also to investigate the impact of a high value
of α on the shape of fluctuations and tails. From Figure 7, we show that unlike the case
of α ∈ (0, 1), the stochastic trajectories do not fluctuate around a deterministic solution.
In fact, they move away from the steady state with long tails, which indicates that the
increase in the value of α leads to the worsening of the endemic situation. For clarity of
visualization, we present Figures 8 and 9 having various plots of joint density functions
associated with all groups. Therefore, we numerically verified the continuation of infection
in the population. Regarding the effect of the parameter α on the mean averages of the
processes Gi (i = 1, 2, 3, 4), we have

lim
t→∞

t−1
∫ t

0
G1(τ)dτ =

∫
R4,?
+

c1π?(dc1, dc2, dc3, dc4) = 0.5236 ↑,

lim
t→∞

t−1
∫ t

0
G2(τ)dτ =

∫
R4,?
+

c2π?(dc1, dc2, dc3, dc4) = 0.3879 ↑,

lim
t→∞

t−1
∫ t

0
G3(τ)dτ =

∫
R4,?
+

c3π?(dc1, dc2, dc3, dc4) = 0.1145 ↑,

lim
t→∞

t−1
∫ t

0
G4(τ)dτ =

∫
R4,?
+

c4π?(dc1, dc2, dc3, dc4) = 0.0048 ↑ .

This shows that by increasing the value of α implies the rise in the average value of all
groups.
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Figure 7. Computer simulations obtained by simulating the probabilistic model (8) with tempered
α-stable jumps. The deterministic parameters are selected as follows: r = 0.04, K = 1, β1 = 0.1,
q1 = 0.15, q2 = 0.12, u = 0.01, v = 0.01, β2 = 0.00045, q?1 = 0.17, q?2 = 0.11, a = 0.02, c = 0.0001,
ς = 0.004. The fixed deterministic coefficients are chosen from Table 4.
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Figure 8. The 3D representation of the joint densities at time t = 5000 of system (8) with stochastic
parameters appearing in Scenario 1, different colors indicates various sizes of the density.

4.2.2. Scenario 2: Extinction

Again, we keep the deterministic parameters as that was in previous cases and we
choose the stochastic parameters from Table 5. Here, the main goal is to validate the
conclusion of Theorem 2 in the case of α ∈ [1, 2). Figure 10 illustrates the case of high
values of α and noises. One can notice that the jumps are long and the stochastic trajectories
of group 1, 2, 4 fluctuate outside the deterministic solution, while the trajectory of group 3
disappears.
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Figure 9. Numerical illustration of the 2D upper view of the joint densities at time t = 5000 of the
groups G1, G2, G3 and G4. We remark that the stationary processes follow the footsteps of limit
distributions, and the ergodic property is satisfied.
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Figure 10. Computer simulation based on the probabilistic model (8) with tempered α-stable jumps.
The deterministic parameters are selected as follows: r = 0.04, K = 1, β1 = 0.1, q1 = 0.15, q2 = 0.12,
u = 0.01, v = 0.01, β2 = 0.00045, q?1 = 0.17, q?2 = 0.11, a = 0.02, c = 0.0001, ς = 0.004. The
deterministic parameters are chosen from Table 5.

4.3. The Influence of Parameter α on the Form of the Probability Density Function

In the previous two parts of this section, we numerically investigated the long-run
bifurcation (LR-bifurcation). In this part, we show the long-rung modal bifurcation (LRM-
bifurcation), which mainly depicts the geometric variations in the form of the steady
probability density function associated with the dynamical system. Specifically, we numeri-
cally analyze the influence of parameter α on the form of the probability density function.
Figure 11 suggest that the parameter α have a significant role in changing the shape of the
stationary distribution associated with model (8). For example, in the case of G1, we show
that the density function changes its support from α = 1.98 to α = 0.25. We can justify
that when α takes a high value, the stochastic trajectories characterizes by the huge fluctua-
tions and jumps. However, if α is small, the stochastic trajectories concentrate around the
endemic equilibrium.
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Figure 11. The associated frequency histograms at time t = 5000 and the approximated density
functions of groups G1, G2, G3, G4. The fixed deterministic coefficients are selected as follows:
r = 0.04, K = 1, β1 = 0.1, q1 = 0.15, q2 = 0.12, u = 0.01, v = 0.01, β2 = 0.00045, q?1 = 0.17, q?2 = 0.11,
a = 0.02, c = c = 0.0001, ς = 0.004. The fixed deterministic coefficients are selected from Table 4.

5. Conclusions

This research proposed a new approach to dealing with an epidemic model under
real and interesting hypotheses. We have proposed and investigated a new form of the
SVIR system that accounts for two major improvements: the general response functions
and the independent quadratic tempered α-stable Lévy noises. This integration gives a
global perspective of the interaction between various parts of the population in a highly
disrupted environment. The findings of this paper can be summarized as follows:

• We determined the novel model’s global threshold using some dynamical properties
of a two-block boundary system (5) perturbed by quadratic tempered α-stable Lévy
noises.
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• In Theorem 1, we proved a few results related to the stationarity and ergodicity of the
system. It is worthy to mention that the analysis of these long-term properties is very
significant for the underlying perturbed systems, especially in case of epidemiological
models where the ergodicity offers a general idea of the infection permanence.

• In Theorem 2, we studied the extinction case and the weak convergence of susceptible
and vaccinated distributions to that of the two-block boundary system (5).

• In the numerical simulation part, we have ensured the accuracy of our threshold.
Further, we explored the impact of noise and α on the infection’s dynamics. In
particular, we showed that jumps have a negative influence on the long-term behavior
of the disease in the sense that they lead to complete extinction. Furthermore, it was
discovered that parameter α had a significant impact on the shape of the stationary
distribution.

In general, we pointed out that this study generalises many previous works to the case
of quadratic Lévy jumps. Furthermore, it offers new insights into understanding disease
spread with complex real-world assumptions. In other words, the technique outlined in
this article opens up several prospects for further investigation.
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Appendix A. Proof of Lemma 4
By employing Itô’s lemma for Itô-Lévy processes [49], we get

d ln S1(t) =

{( =η??︷ ︸︸ ︷
r− (u+ v)

)
− rS1(t)

K − 0.5
(
ζ1L + ζ1QS1(t)

)2

+
∫

χ

(
ln
(
1 + θ1L(u) + θ1Q(u)S1(t)

)
−
(
θ1L(u) + θ1Q(u)S1(t)

))
Zα

1(du)

}
dt

+
(
ζ1L + ζ1QS1(t)

)
dB1(t) +

∫
χ

ln
(
1 + θ1L(u) + θ1Q(u)S1(t−)

)
C̃α

1 (dt, du).

We integrate the above relation from 0 to t and dividing both sides by t gives

ln S1(t)− ln S1(0)
t

≤ η?? − r

K

∫ t

0
S1(s)ds− 0.5ζ2

1L −
∫

χ

(
θ1L(u)− ln

(
1 + θ1L(u)

))
Zα

1(du)−
ζ1Lζ1Q

t

∫ t

0
S1(s)ds

−
0.5ζ2

1Q

t

∫ t

0
S2

1(s)ds +
1
t

∫ t

0
ζ1LdB1(s)

+
1
t

∫ t

0

∫
χ

[
ln
(

1 +
θ1Q(u)S1(s)
1 + θ1L(u)

)
− θ1Q(u)S1(s)

]
Zα

1(du)ds

+
1
t

∫ t

0
ζ1QS1(s)dB1(s) +

1
t

∫ t

0

∫
χ

ln
(
1 + θ1L(u)

)
C̃α

1 (ds, du)

+
1
t

∫ t

0

∫
χ

ln
(

1 +
θ1Q(u)S1(s−)

1 + θ1L(u)

)
C̃α

1 (ds, du).
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We let Q1(t) =
∫ t

0
ζ1LdB1(s) and Q2(t) =

∫ t

0

∫
χ

ln
(
1 + θ1L(u)

)
C̃α

1 (ds, du). It is easy to

show that their quadratic variations are given by

〈Q1(t),Q1(t)〉 = ζ2
1Lt and 〈Q2(t),Q2(t)〉 = t

∫
χ

(
ln
(
1 + θ1L(u)

))2
Zα

1(du).

By employing the theorem of strong large numbers [50], we obtain t−1 Q1(t) and t−1 Q2(t)
converge almost surely to zero as t goes to ∞. Now, we apply the exponential inequality
introduced in [50], then

PΩ

{
sup

0≤t≤n

[ ∫ t

0
ζ1QS1(s)dB1(s)− 0.5

∫ t

0
ζ2

1QS2
1(s)ds

−
∫ t

0

∫
χ

((
θ1Q(u)S1(s)
1 + θ1L(u)

)
+ ln

(
1 +

θ1Q(u)S1(s)
1 + θ1L(u)

))
Zα

1(du)ds

+
∫ t

0

∫
χ

ln
(

1 +
θ1Q(u)S1(s−)

1 + θ1L(u)

)
C̃α

1 (ds, du)
]
≥ 2 ln n

}
≤ 1

n2 .

On the other hand, Borel-Cantelli Lemma [50] states that for almost ω ∈ Ω, we have the
existence of an integer nω > 0 such that for all n ≥ nω, t ∈ [−1 + n, n) a.s.,

2 ln n+ 0.5
∫ t

0
ζ2

1QS2
1(s)ds +

∫ t

0

∫
χ

((
θ1Q(u)S1(s)
1 + θ1L(u)

)
− ln

(
1 +

θ1Q(u)S1(s)
1 + θ1L(u)

))
Zα

1(du)ds

≥
∫ t

0
ζ1QS1(s)dB1(s) +

∫ t

0

∫
χ

ln
(

1 +
θ1Q(u)S1(s−)

1 + θ1L(u)

)
C̃α

1 (ds, du).

Consequently, for all n ≥ nω, t ∈ [n− 1, n) ⊆ R+ a.s., we established that

ln S1(t)− ln S1(0)
t

≤
{

η?? − r

Kt

∫ t

0
S1(s)ds−

ζ1Lζ1Q

t

∫ t

0
S1(s)ds− 0.5ζ2

1L −
∫

χ

(
θ1L(u)− ln

(
1 + θ1L(u)

))
Zα

1(du)
}

+
1
t

∫ t

0

∫
χ

((
θ1Q(u)S1(s)
1 + θ1L(u)

)
− θ1Q(u)S1(s)

)
Zα

1(du)ds +
Q1(t)

t
+
Q2(t)

t
+

2 ln n

n− 1
.

1
t

∫ t

0
S1(s)ds ≤ K

(r+Kζ1Lζ1Q)

{
η?? − 0.5ζ2

1L −
∫

χ

(
θ1L(u)− ln

(
1 + θ1L(u)

))
Zα

1(du)
}

+
K

(r+Kζ1Lζ1Q)

{
1
t

∫ t

0

∫
χ

((
θ1Q(u)S1(s)
1 + θ1L(u)

)
− θ1Q(u)S1(s)

)
Zα

1(du)ds

+
Q1(t)

t
+
Q2(t)

t
+

2 ln n

n− 1

}
+

K
(r+Kζ1Lζ1Q)

{
ln S1(t)− ln S1(0)

t

}
.

By taking the limit on both sides of the last result, we have

lim
t→∞

1
t

∫ t

0
S1(s)ds ≤ K

(r+Kζ1Lζ1Q)

{
η?? − 0.5ζ2

1L −
∫

χ

(
θ1L(u)− ln

(
1 + θ1L(u)

))
Zα

1(du)
}

= ϕS
1 > 0.
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To establish the second estimation, we simply take the expectation on both sides of the
second block of (5), thus we have

0 = lim
t→∞

E{Ω,P}S2(t)
t

= v lim
t→∞

1
t

∫ t

0
E{Ω,P}S1(s)ds− (u+ ς) lim

t→∞

1
t

∫ t

0
E{Ω,P}S2(s)ds

= vE{Ω,P} lim
t→∞

1
t

∫ t

0
S1(s)ds− (u+ ς)E{Ω,P} lim

t→∞

1
t

∫ t

0
S2(s)ds

≤ vϕS
1 − (u+ ς)E{Ω,P}

∫
R+

xπS2 (dx)

= vϕS
1 − (u+ ς)

∫
R+

xπS2 (dx). (A1)

Consequently, we get

lim
t→∞

1
t

∫ t

0
S2(s)ds =

∫
R+

xπS2(dx) ≤
vϕS

1
(u+ ς)

.

Appendix B. Proof of Theorem 1

From (Lemma 3.2, [51]), we can easily verify that the solution of system (6) has the
Feller property. Via employing Itô’s formula, we get

L
(
− ln G3(t)

)
= −β1H1

(
G1(t), G3(t)

)
− β2H2

(
G2(t), G3(t)

)
+ (u+ a+ c) + 0.5

(
ζ3L + ζ3QG3(t)

)2

−
∫

χ

{
ln
(

1 + θ3L(u) + θ3Q(u)G3(t)
)
−
(

θ3L(u) + θ2Q(u)G3(t)
)}

Zα
3(du)

= −β1H1
(
S1(t), 0

)
− β2H2

(
S2(t), 0

)
+ (u+ a+ c) + 0.5ζ2

3L

+
∫

χ

(
θ3L(u)− ln

(
1 + θ3L(u)

))
Zα

3(du)

+ β1H1
(
S1(t), 0

)
− β1H1

(
G1(t), G3(t)

)
− β1H1

(
G1(t), 0

)
+ β1H1

(
G1(t), 0

)
+ β2H2

(
S2(t), 0

)
− β2H2

(
G2(t), G3(t)

)
− β2H2

(
G2(t), 0

)
+ β2H2

(
G2(t), 0

)
+ ζ3Lζ3QG3(t) + 0.5ζ2

3QG2
3(t)

+
∫

χ

{
θ3Q(u)G3(t)− ln

(
1 +

θ3Q(u)G3(t)
1 + θ3L(u)

)}
Zα

3(du).

Then, we obtain

L
(
− ln G3(t)

)
≤ −β1H1

(
S1(t), 0

)
− β2H2

(
S2(t), 0

)
+ (u+ a+ c) + 0.5ζ2

3L (A2)

+
∫

χ

(
θ3L(u)− ln

(
1 + θ3L(u)

))
Zα

3(du)

+ β1∆1
(
S1(t)−G1(t)

)
+ β2∆2

(
S2(t)−G2(t)

)
+

(
ζ3Lζ3Q +

∫
χ

θ3Q(u)Zα
3(du)

)
G3(t)

+ 0.5ζ2
3QG2

3(t) + β1H1
(
G1(t), 0

)
− β1H1

(
G1(t), G3(t)

)
(A3)

+ β2H2
(
G2(t), 0

)
− β2H2

(
G2(t), G3(t)

)
. (A4)

From systems (2) and (5), we can write
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L
(

ln S1(t)− ln G1(t)
)
≤ − r

K
(
S1(t)−G1(t)

)
+ β1H1

(
G1(t), G3(t)

)G3(t)
G1(t)

− 0.5
((

ζ1L + ζ1QS1(t)
)2 −

(
ζ1L + ζ1QG1(t)

)2
)

+
∫

χ

{
ln
(

1 + θ1L(u) + θ1Q(u)S1(t)
1 + θ1L(u) + θ1Q(u)G1(t)

)
− θ1Q(u)

(
S1(t)−G1(t)

)}
Zα

1(du)

≤ β1∆1G3(t)−
r

K
(
S1(t)−G1(t)

)
−
(
S1(t)−G1(t)

) ∫
χ

{
θ1Q(u)

(
θ1L(u) + θ1Q(u)G1(t)

)
1 + θ1L(u) + θ1Q(u)G1(t)

}
Zα

1(du)

≤ β1∆1G3(t)−
r

K
(
S1(t)−G1(t)

)
, (A5)

and

L
(

ln S2(t)− ln G2(t)
)
≤
(

vS1(t)
S2(t)

− vG1(t)
G2(t)

)
+ β2

H2
(
G2(t), G3(t)

)
G3(t)

G2(t)

− 0.5
((

ζ2L + ζ2QS2(t)
)2 −

(
ζ2L + ζ2QG2(t)

)2
)

+
∫

χ

{
ln
(

1 + θ2L(u) + θ2Q(u)S2(t)
1 + θ2L(u) + θ2Q(u)G2(t)

)
− θ2Q(u)

(
S2(t)−G2(t)

)}
Zα

2(du)

≤ β2∆2G3(t)− ζ2Lζ2Q
(
S2(t)−G2(t)

)
−
(
S2(t)−G2(t)

) ∫
χ

{
θ2Q(u)

(
θ2L(u) + θ2Q(u)G2(t)

)
1 + θ2L(u) + θ2Q(u)G2(t)

}
Zα

2(du)

≤ β2∆2G3(t)− ζ2Lζ2Q
(
S2(t)−G2(t)

)
. (A6)

Upon merging relations (A4)–(A6),we have

L
(
− ln G3(t) +

∆1β1K
r

(
ln S1(t)− ln G1(t)

)
+

∆2β2

ζ2Lζ2Q

(
ln S2(t)− ln G2(t)

))
≤ −β1H1

(
S1(t), 0

)
− β2H2

(
S2(t), 0

)
+ (u+ a+ c) + 0.5ζ2

3L

+
∫

χ

(
θ3L(u)− ln

(
1 + θ3L(u)

))
Zα

3(du)

+

(
ζ3Lζ3Q +

∫
χ

θ3Q(u)Zα
3(du)

)
G3(t) + 0.5ζ2

3QG2
3(t) +

∆2
1β2

1K
r

G3(t)

+ β1H1
(
G1(t), 0

)
− β1H1

(
G1(t), G3(t)

)
+

∆2
2β2

2
ζ2Lζ2Q

G3(t) + β2H2
(
G2(t), 0

)
− β2H2

(
G2(t), G3(t)

)
= −β1

∫
R+

H1
(

x, 0
)
πS1(dx)− β2

∫
R+

H2
(

x, 0
)
πS2(dx) + (u+ a+ c) + 0.5ζ2

3L

+
∫

χ

(
θ3L(u)− ln

(
1 + θ3L(u)

))
Zα

3(du)

+ β1

( ∫
R+

H1
(

x, 0
)
πS1(dx)−H1

(
S1(t), 0

))
+ β2

( ∫
R+

H2
(
x, 0
)
πS2(dx)−H2

(
S2(t), 0

))
+

(
∆2

1β2
1K
r

+
∆2

2β2
2

ζ2Lζ2Q
+ ζ3Lζ3Q +

∫
χ

θ3Q(u)Zα
3(du)

)
G3(t) + 0.5ζ2

3QG2
3(t)

+ β1H1
(
G1(t), 0

)
− β1H1

(
G1(t), G3(t)

)
+ β2H2

(
G2(t), 0

)
− β2H2

(
G2(t), G3(t)

)
.
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We select a positive quantity φ? that verifies φ? ≥
1

(u+ a+ c)

(
∆2

1β2
1K
r

+
∆2

2β2
2

ζ2Lζ2Q
+ζ3Lζ3Q +

∫
χ

θ3Q(u)Zα
3(du)

)
,

and we define

V?(t) = − ln G3(t) +
∆1β1K

r

(
ln S1(t)− ln G1(t)

)
+

∆2β2
ζ2Lζ2Q

(
ln S2(t)− ln G2(t)

)
+ φ?G3(t).

Then, we have

LV?(t) ≤ −β1

∫
R+

H1
(

x, 0
)
πS1 (dx)− β2

∫
R+

H2
(

x, 0
)
πS2 (dx) + (u+ a+ c) + 0.5ζ2

3L

+
∫

χ

(
θ3L(u)− ln

(
1 + θ3L(u)

))
Zα

3(du) + β1

( ∫
R+

H1
(

x, 0
)
πS1 (dx)−H1

(
S1(t), 0

))
+ β2

( ∫
R+

H2
(

x, 0
)
πS2 (dx)−H2

(
S2(t), 0

))
+ φ?β1H1

(
G1(t), G3(t)

)
G3(t) + φ?β2H2

(
G2(t), G3(t)

)
G3(t) + 0.5ζ2

3QG2
3(t)

+ β1H1
(
G1(t), 0

)
− β1H1

(
G1(t), G3(t)

)
+ β2H2

(
G2(t), 0

)
− β2H2

(
G2(t), G3(t)

)
≤ −R?

0 + β1

( ∫
R+

H1
(

x, 0
)
πS1 (dx)−H1

(
S1(t), 0

))
+ β2

( ∫
R+

H2
(

x, 0
)
πS2 (dx)−H2

(
S2(t), 0

))
+ φ?β1H1

(
G1(t), G3(t)

)
G3(t) + φ?β2H1

(
G2(t), G3(t)

)
G3(t) + 0.5ζ2

3QG2
3(t)

+ β1H1
(
G1(t), 0

)
− β1H1

(
G1(t), G3(t)

)
+ β2H2

(
G2(t), 0

)
− β2H2

(
G2(t), G3(t)

)
.

Now, we apply Itô’s rule to (1 + G1)
p/p, (1 + G2)

p/p and Gp
3 /p, ∀0 < p < 1, then

L
(

Gp
1 (t)
p

)
= Gp−1

1 (t)
(
rG1(t)

(
1− G1(t)

K

)
− β1H1

(
G1(t), G3(t)

)
G3(t)− (u+ v)G1(t)

)
+ (p− 1)0.5Gp−2

1 (t)
(
ζ1LG1(t) + ζ1QG2

1(t)
)2

+
∫

χ

{(
G1(t) + θ1L(u)G1(t) + θ1Q(u)G2

1(t)
)p

p

−
Gp

1 (t)
p
−Gp−1

1 (t)
(
θ1L(u)G1(t) + θ1Q(u)G2

1(t)
)}

Zα
1(du)

≤ rGp
1 (t)− 0.5(1− p)ζ2

1QGp+2
1 (t),

L
(
(1 + G2(t))p

p

)
= (1 + G2(t))p−1

(
vG1(t)− β2H2

(
G2(t), G3(t)

)
G3(t)− (u+ ς)G2(t)

)
+ 0.5(p− 1)(1 + G2(t))p−2(ζ2LG2(t) + ζ2QG2

2(t)
)2

+
∫

χ

{(
(1 + G2(t)) + θ2L(u)G2(t) + θ2Q(u)G2

2(t)
)p

p

− (1 + G2(t))p

p
− (1 + G2(t))p−1(θ2L(u)G2(t) + θ2Q(u)G2

2(t)
)}

Zα
2(du)

≤ vG1(t)− 0.5(1− p)ζ2
1QGp+2

2 (t),
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and

L
(

Gp
3 (t)
p

)
= Gp−1

3 (t)
(

β1H1
(
G1(t), G3(t)

)
G3(t) + β2H2

(
G2(t), G3(t)

)
G3(t)− (u+ a+ c)G3(t)

)
+ 0.5(p− 1)Gp−2

3 (t)
(
ζ3LG3(t) + ζ3QG2

3(t)
)2

+
∫

χ

{(
G3(t) + θ1L(u)G3(t) + θ1Q(u)G2

3(t)
)p

p

−
Gp

3 (t)
p
−Gp

3 (t)
(
θ3L(u) + θ3Q(u)G3(t)

)}
Zα

3(du)

≤ β1∆1G1(t)G
p
3 (t) + β2∆2G2(t)G

p
3 (t)−

(
(u+ a+ c) + 0.5(1− p)ζ2

21
)
Gp

3 (t)

− (1− p)ζ3Lζ3QGp+1
3 (t)− 0.5(1− p)ζ2

3QGp+2
3 (t)

≤ β1∆1
p + 1

Gp+1
1 (t) +

pβ1∆1
p + 1

Gp+1
3 (t) +

β2∆2
p + 1

Gp+1
2 (t) +

pβ2∆2
p + 1

Gp+1
3 (t)− 0.5(1− p)ζ2

3QGp+2
3 (t).

Now, we consider the following function

Ṽ?
(
G1(t), G2(t), G3(t)

)
= O?V?(t) +

1
p

{
Gp

1 (t) +
(
1 + G2(t)

)p
+ Gp

3 (t)
}

,

where O? > 0 is a sufficiently large quantity verifying −O?R
?
0 +G+ 2 ≤ 0, and

G = max
{

sup
(G1,G2,G3)∈R3,?

+

{
rGp

1 − 0.25(1− p)ζ2
1QGp+2

1 + vG1 − 0.25(1− p)ζ2
1QGp+2

2 +
β1∆1

p + 1
Gp+1

1

+
pβ1∆1

p + 1
Gp+1

3 +
β2∆2

p + 1
Gp+1

2 +
pβ2∆2

p + 1
Gp+1

3 − 0.25(1− p)ζ2
3QGp+2

3

}
, 1
}

.

Since the function Ṽ?(G1, G2, G3) can attains its lower critical bound at a quantity (G1, G2, G3)

in R3
+, we can define the following non-negative Lyapunov function

Ṽ?
(
G1(t), G2(t), G3(t)

)
= O?V?(t) +

1
p

{
Gp

1 (t) +
(
1 + G2(t)

)p
+ Gp

3 (t)
}
− Ṽ?(G1, G2, G3).

So, we get

LṼ?
(
G1(t), G2(t), G3(t)

)
≤ −O?R

?
0 +O?β1

( ∫
R+

H1
(

x, 0
)
πS1 (dx)−H1

(
S1(t), 0

))
+O?β2

( ∫
R+

H2
(

x, 0
)
πS2 (dx)−H2

(
S2(t), 0

))
+O?φ?β1H1

(
G1(t), G3(t)

)
G3(t) +O?φ?β2H2

(
G2(t), G3(t)

)
G3(t) + 0.5O?ζ2

3QG2
3(t)

+O?β1H1
(
G1(t), 0

)
−O?β1H1

(
G1(t), G3(t)

)
+O?β2H2

(
G2(t), 0

)
−O?β2H2

(
G2(t), G3(t)

)
+ rGp

1 (t)− 0.5(1− p)ζ2
1QGp+2

1 (t) + vG1(t)− 0.5(1− p)ζ2
1QGp+2

2 (t) +
β1∆1
p + 1

Gp+1
1 (t)

+
pβ1∆1
p + 1

Gp+1
3 (t) +

β2∆2
p + 1

Gp+1
2 (t) +

pβ2∆2
p + 1

Gp+1
3 (t)− 0.5(1− p)ζ2

3QGp+2
3 (t)

= f (G1, G2, G3) +O?β1

( ∫
R+

H1
(

x, 0
)
πS1 (dx)−H1

(
S1(t), 0

))
+O?β2

( ∫
R+

H2
(

x, 0
)
πS2 (dx)−H2

(
S2(t), 0

))
.
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By using the same techniques presented in the demonstration of [Theorem 3.2, [11]], and
by the virtue of uniform continuity of the functions H1 and H2 (hypothesis Cb), we can
easily verify that

f (G1, G2, G3) ≤ −1, ∀(G1, G2, G3) ∈ R3,?
+ \Dε,

for a given sufficiently small constant ε > 0, where

Dε =
{
(G1, G2, G3) ∈ R3,?

+ | ε ≤ G1 ≤ ε−1, ε ≤ G2 ≤ ε−1, ε ≤ G3 ≤ ε−1
}

.

On the other hand, one can easily show that ∃ $? > 0 such that f (G1, G2, G3) ≤ $?, for all
(G1, G2, G3) ∈ R3,?

+ . So, we obtain

−E{Ω,P}
(
Ṽ?(G1(0), G2(0), G3(0))

)
≤ E{Ω,P}

(
Ṽ?(G1(t), G2(t), G3(t))

)
−E{Ω,P}

(
Ṽ?(G1(0), G2(0), G3(0))

)
=
∫ t

0
E{Ω,P}

(
LṼ?

(
G1(s), G2(s), G3(s)

))
ds

≤
∫ t

0
E{Ω,P}

(
f (G1(t), G2(t), G3(t))

)
ds

+O?β1E{Ω,P}

( ∫ t

0

∫
R+

H1
(

x, 0
)
πS1(dx)ds−

∫ t

0
H1
(
S1(s), 0

)
ds
)

+O?β2E{Ω,P}

( ∫ t

0

∫
R+

H2
(

x, 0
)
πS2(dx)ds−

∫ t

0
H2
(
S2(s), 0

)
ds
)

.

By employing the ergodic characteristic of S1(t) and S2(t), we obtain

0 ≤ lim inf
t→∞

1
t

∫ t

0

(
E{Ω,P} f (G1(t), G2(t), G3(t))1{(G1(s),G2(s),G3(s))∈Dc

ε}

+E{Ω,P} f (G1(s), G2(s), G3(s))1{(G1(s),G2(s),G3(s))∈Dε}
)

ds

≤ lim inf
t→∞

1
t

∫ t

0

(
− PΩ

(
(G1(s), G2(s), G3(s)) ∈ Dc

ε

)
+ $?PΩ

(
(G1(s), G2(s), G3(s)) ∈ Dε

))
ds

= −1 + (1 + $?)lim inf
t→∞

1
t

∫ t

0
PΩ
(
(G1(s), G2(s), G3(s)) ∈ Dε

)
ds.

Then

lim inf
t→∞

1
t

∫ t

0
PΩ
(
(G1(s), G2(s), G3(s)) ∈ Dε

)
ds ≥ 1

1 + $?
> 0.

That is to say that

lim inf
t→∞

1
t

∫ t

0
PΩ
(
(G1(0), G2(0), G3(0)); s,Dε

)
ds ≥ 1

1 + $?
> 0, ∀

(
G1(0), G2(0), G3(0)

)
∈ R3,?

+ .

In accordance with Lemma 5, the demonstration of Theorem 1 is finished.

Appendix C. Proof of Theorem 2
This proof is divided into two parts.

Part I. By using the Itô’s formula, we get

d ln G3(t) =
(

β1H1
(
G1(t), G3(t)

)
+ β2H2

(
G2(t), G3(t)

)
− (u+ a+ c)− 0.5

(
ζ3L + ζ3QG3(t)

)2

+
∫

χ

(
ln
(
1 + θ3L(u) + θ3Q(u)G3(t)

)
−
(
θ3L(u) + θ3Q(u)G3(t)

))
Zα

3(du)
)

dt

+
(
ζ3L + ζ3QG3(t)

)
dB3(t) +

∫
χ

ln
(
1 + θ3L(u) + θ3Q(u)G3(t−)

)
C̃α

3 (dt, du).
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From Lemma 3, we obtain

d ln G3(t) ≤
(

β1H1
(
S1(t), 0

)
+ β2H2

(
S2(t), 0

)
− (u+ a+ c)− 0.5

(
ζ3L + ζ3QG3(t)

)2

+
∫

χ

(
ln
(
1 + θ3L(u) + θ3Q(u)G3(t)

)
−
(
θ3L(u) + θ3Q(u)G3(t)

))
Zα

3(du)
)

dt

+
(
ζ3L + ζ3QG3(t)

)
dB3(t) +

∫
χ

ln
(
1 + θ3L(u) + θ3Q(u)G3(t−)

)
C̃α

3 (dt, du).

Upon integrating the preceding inequality and dividing both sides by t, yields

ln G3(t)− ln G3(0)
t

≤ β1
t

∫ t

0
H1
(
S1(s), 0

)
ds +

β2
t

∫ t

0
H2
(
S2(s), 0

)
ds− (u+ a+ c)− 0.5ζ2

3L

−
∫

χ

(
θ3L(u)− ln

(
1 + θ3L(u)

))
Zα

3(du)−
ζ3Lζ3Q

t

∫ t

0
G3(s)ds

−
0.5ζ2

3Q

t

∫ t

0
G2

3(s)ds +
1
t

∫ t

0
ζ3LdB3(s)

+
1
t

∫ t

0

∫
χ

[
ln
(

1 +
θ3Q(u)G3(s)
1 + θ3L(u)

)
− θ3Q(u)G3(s)

]
Zα

3(du)ds

+
1
t

∫ t

0
ζ3QG3(s)dB3(s) +

1
t

∫ t

0

∫
χ

ln
(
1 + θ3L(u)

)
C̃α

3 (ds, du)

+
1
t

∫ t

0

∫
χ

ln
(

1 +
θ3Q(u)G3(s−)

1 + θ3L(u)

)
C̃α

3 (ds, du).

We let 
Z1(t) =

∫ t

0
ζ3LdB3(s),

Z2(t) =
∫ t

0

∫
χ

ln
(
1 + θ3L(u)

)
C̃α

3 (ds, du).

It is so simple to check that their quadratic variants are determined by〈Z1(t),Z1(t)〉 = ζ2
3Lt,

〈Z2(t),Z2(t)〉 = t
∫

χ

(
ln
(
1 + θ3L(u)

))2
Zα

3(du).

Consequently, we obtain as t→ ∞,{
t−1 Z1(t)→ 0 a.s.
t−1 Z2(t)→ 0 a.s.

In line with the exponential inequality for martingales, we get

PΩ

{
sup

0≤t≤n?

[ ∫ t

0
ζ3QG3(s)dB3(s)− 0.5

∫ t

0
ζ2

3QG2
3(s)ds

−
∫ t

0

∫
χ

((
θ3Q(u)G3(s)
1 + θ3L(u)

)
+ ln

(
1 +

θ3Q(u)G3(s)
1 + θ3L(u)

))
Zα

3(du)ds

+
∫ t

0

∫
χ

ln
(

1 +
θ3Q(u)G3(s−)

1 + θ3L(u)

)
C̃α

3 (ds, du)
]
≥ 2 ln n?

}
≤ 1

n2
?

.
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Borel-Cantelli Lemma stated that for almost ω ∈ Ω, we have the existence of an integer
n?,ω > 0 such that for all n ≥ n?,ω, t ∈ [n? − 1, n?) ⊆ R+ a.s.,

2 ln n? + 0.5
∫ t

0
ζ2

3QG2
3(s)ds +

∫ t

0

∫
χ

((
θ3Q(u)G3(s)
1 + θ3L(u)

)
− ln

(
1 +

θ3Q(u)G3(s)
1 + θ3L(u)

))
Zα

3(du)ds

≥
∫ t

0
ζ3QG3(s)dB3(s) +

∫ t

0

∫
χ

ln
(

1 +
θ3Q(u)G3(s−)

1 + θ3L(u)

)
C̃α

3 (ds, du).

So, for every n? ≥ n?,ω and t in [−1 + n?, n?) a.s., we have

ln G3(t)− ln G3(0)
t

≤
[

β1
t

∫ t

0
H1
(
S1(s), 0

)
ds +

β2
t

∫ t

0
H2
(
S2(s), 0

)
ds− (u+ a+ c)− 0.5ζ2

3L

−
∫

χ

(
θ3L(u)− ln

(
1 + θ3L(u)

))
Zα

3(du)
]
−

ζ3Lζ3Q

t

∫ t

0
G3(s)ds

+
1
t

∫ t

0

∫
χ

((
θ3Q(u)G3(s)
1 + θ3L(u)

)
− θ3Q(u)G3(s)

)
Zα

3(du)ds

+
Z1(t)

t
+
Z2(t)

t
+

2 ln n?
n? − 1

.

We take the superior limit on both sides of the last result and obtained the following

lim sup
t→∞

ln G3(t)
t

≤ β1

∫
R+

H1
(
x, 0
)
πS1(dx) + β2

∫
R+

H2
(
x, 0
)
πS2(dx)− (u+ a+ c)

− 0.5ζ2
3L −

∫
χ

(
θ3L(u)− ln

(
1 + θ3L(u)

))
Zα

3(du)

= R?
0 < 0.

Since the exponential extinction implies the stochastic extinction [50], so lim
t→∞

G3(t) = 0 a.s.

and the infection of (2) will go to extinction with probability one.
Part II. Based on the result of Part I, we can conclude that for a small r? > 0, we have the
existence of t0 and Ωr? ⊂ Ω such that PΩ(Ωr?) > 1− r? and{

H1
(
G1, G3

)
G3 ≤ H1

(
G1, 0

)
G3 ≤ ∆1r?G1,

H2
(
G2, G3

)
G3 ≤ H2

(
G2, 0

)
G3 ≤ ∆2r?G2.

Thus (
rG1(t)

(
1− G1(t)

K

)
− β1∆1r?G1 − (u+ v)G1(t)

)
dt + dS1(t)

≤ dG1(t)

≤
(
rG1(t)

(
1− G1(t)

K

)
− (u+ v)G1(t)

)
dt + dS1(t),

and(
vG1(t)− β2∆2r?G2 − (u+ ς)G2(t)

)
dt + dS2(t) ≤ dG2(t) ≤

(
vG1(t)− uG2(t)

)
dt + dS2(t),

indicating that the distributions of S1(t) and S2(t) converge weakly to πS1(·) and πS2(·),
respectively. The demonstration is finished.
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