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Abstract: In this work, we perform univariate approximation with rates, basic and fractional, of
continuous functions that take values into an arbitrary Banach space with domain on a closed interval
or all reals, by quasi-interpolation neural network operators. These approximations are achieved by
deriving Jackson-type inequalities via the first modulus of continuity of the on hand function or its
abstract integer derivative or Caputo fractional derivatives. Our operators are expressed via a density
function based on a g-deformed and A-parameterized hyperbolic tangent activation sigmoid function.
The convergences are pointwise and uniform. The associated feed-forward neural networks are with

one hidden layer.

Keywords: g-deformed ; A-parameterized hyperbolic tangent activation function; abstract neural
network approximation; abstract quasi-interpolation operator; modulus of continuity; abstract Caputo

fractional derivative; fractional approximation
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1. Introduction

The author of [1,2], see Chapters 2-5, was the pioneer to start neural network quantita-
tive approximation to continuous functions by precisely defined neural network operators
of Cardaliaguet-Euvrard and “Squashing” types, by using the modulus of continuity of
the given function or its high order derivative, and deriving almost sharp Jackson-type
inequalities. He dealt with both the univariate and multivariate cases. The defining these
operators “bell-shaped” and “squashing” functions were taken with a compact support.
Furthermore in [2], he provides the Nth order asymptotic expansion for the error of weak
approximation of these two operators to a particular natural class of smooth functions, for
more visit Chapters 4-5 therein.

Coming back the author motivated by [3], who continued his research on neural
networks approximation by employing and using the appropriate quasi-interpolation
operators of sigmoidal and hyperbolic tangent type, which resulted in [4-8], by treating
both the univariate and multivariate cases. He also completed the corresponding fractional
cases [9-11].

Let h be a general sigmoid function with #(0) = 0, and y = =£1 the horizontal
asymptotes. Of course h is strictly increasing over R. Let the parameter 0 < r < 1
and x > 0. Then clearly —x < x and —x < —rx < rx < x, furthermore it holds
h(—x) < h(—rx) < h(rx) < h(x). Consequently the sigmoid y = h(rx) has a graph in-
side the graph of y = h(x), of course with the same asymptotes y = +1. Therefore h(rx)
has derivatives (gradients) at more points x than /1(x) has different than zero or not as close
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to zero, thus killing a smaller number of neurons! Furthermore, of course h(rx) is more
distant from y = +1, than h(x) itis. A highly desired fact in neural networks theory.

The brain non-symmetry has been clearly discovered in animals and humans in terms
of structure, function and behaviors. This observation reflects evolutionary, hereditary,
developmental, experiential and pathological factors. Therefore it is natural to consider for
our study deformed neural network activation functions and operators. So this paper is a
specific study under this philosophy of approaching reality as close as possible.

Consequently the author here performs g-deformed and A-parameterized hyperbolic
tangent function activated neural network approximations to continuous functions over
closed intervals of reals or over the whole R with values to an arbitrary Banach space
(X, ||-||)- Finally he deals with the related X-valued fractional approximation. All conver-
gences here are quantitative expressed via the first modulus of continuity of the on hand
function or its X-valued high order derivative, or X-valued fractional derivatives and given
by almost attained Jackson-type inequalities.

Our closed intervals are not necessarily symmetric to the origin. Some of our upper
bounds to error quantity are very flexible and general. In preparation to derive our results
we describe important properties of the basic density function defining our operators which
is induced by a g-deformed and A-parameterized hyperbolic tangent sigmoid function.

Feed-forward X-valued neural networks (FNNs) with one hidden layer, the only type
of networks we use in this work, are mathematically expressed by

Su(x) = Zd]«k(<c]« LX) +f]'), x€eR’, seN,
j=0

where for0 <j <n, f] € R are the thresholds, ¢j € R® are the connection weights, 4 i€ X
are the coefficients, <cj . x> is the inner product of ¢jand x, and k is the activation function
of the network. For more in neural networks read [12-14].

2. About g-Deformed and A-Parameterized Hyperbolic Tangent Function g, 1

Here all this background comes from [15], [16].

We use 8q,As S€€ (1), and exhibit that it is a sigmoid function and we will present several
of its properties related to the approximation by neural network operators. It will act as
activation function.

So, let us consider the function

e)\x _ qe—)\x
gan(x) := PR Ag>0 x€eR. )
We have that
0 =11
gq,/\ - 1 +q-
We notice also that
_ 1,—Ax _ LA Ax 1 ,—Ax
(_x):e /\x_qe/\x: qe X eX:_(e q(i‘ ) _ (x) (2)
84,1 oM 4 gerx %eﬁx + e oM %e*f\x g%,)\ .
That is
8ga(—x) = =81, (x), Vx €R, 3)
and

814(x) = ~gga(~),
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hence
8100 = gy (-2). )
Itis g
eZ/\x _ q 1 - (32T
xX) = = —- 1,
84 (%) Nt 14 Sk (3t
ie.,
gq,A(+°°> = 1/ (5)
Furthermore,
2Ax
e —1q —q
- =,
gq,A( ) o2Ax 14 (x5 00) 4
ie.,
gq,z\(“’o) =-L (6)
We find that o
4gre
ga(x) = —1 >0, @)
(82)\3( + q)
therefore g, , is strictly increasing.
Next we obtain (x € R)
" 2o q— M
gaa(x) = 8gA%e 3 € C(R). 8)
(e +4)

We observe that

q—ey‘x20<:>q262/\x<:)1nq22)\x<:>x§1;—}?.

So, in case of x < l;—/\q, we have that g ) is strictly concave up, with g;’ A (l;‘—)?) =0.
Furthermore, in case of x > 1;—)?, we have that LIP) is strictly concave down.

Clearly, g, is a shifted sigmoid function with g¢,,(0) = %, and

8a(—X) = —8,-1 (%), (a semi-odd function), see also [17].
By1l> —1,x+1> x —1, we consider the function

Mya(x) = 4 (804 (x +1) ~ gpa(x—1)) >0, ©)

Vx € R; g,A > 0. Notice that My, A(Fo0) = 0, so the x-axis is horizontal asymptote.
We have that

Mya(—2) = § (892 (—x 1) ~gga(—x — 1)) =

1o (~(r = 1)~ gga(~(x +1))) =
(A= g 1)) = (10

1
4(81,\(x+1) — 81 )\(x—l)> =M A(X), VxeR
q” q’ q”

Thus,
Mya(—x) = M%,A(x), VxeR; qA>0, (11)
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a deformed symmetry.

Next, we have that
M (x)—l(’ (x+1)—¢ (x—l)) VxeR (12)
q.A T4 gq,)\ gq,/\ ’ .
lnq

Let x <

-1, thenx —1<x+1< % and g/, (x +1) > g7, (x — 1) (by gg,1 being

strictly concave up for x < 2 A 1), that is M’ A(x) > 0. Hence, M, , is strictly increasing over

In
(—°°f -

1).

Letnow x —1 > 1;—A'i,‘chenx—i—l>x—1>1;7'7,‘a1ndg’q)\(x—|—1) <g;A(x

—1), that is

M"M(x) <0.

Therefore M, 5 is strictly decreasing over (%‘7 +1, —I—oo).

Let us next con51der, ﬁ —-1<x< lnq + 1. We have that

By Ing

Byx<

Clearly

More precisely Mq A is concave down over {

down over (

1
M (x) = 5 (8ha(x+1) —gia(x 1)) =

2q)\2 2 [ 1T ALl 7N C O I
(e2A(x+1) +q)3 (e2Mx—1) +q)3

2A(x—1) 13)

)|

1<x<:>1nq <x+1<:>lnq§2)»(x+1)<:)qgeZ)\(x-H)@q
lnq+1©x—1§%@2/\(x—1)§lnq@e2/\(x4) <geq-

M x+1) <

<0
2AB(x— 1) >

Ing

: " Ing
by(]3)weobta1nthath/ (x) <0, forx € [ —1,ﬁ—9—1}.

i + 1} , and strictly concave

2A

Ing
7 2h
Ing

2 -1 2 +1)

Consequently M, » has a bell-type shape over R.
Of course it holds M, (lnq> <0.

Atx =

Thus,

1;17'7, we have

Mj(x) = 3 (8ha e +1) —gha(x 1) =

N P2 (1) P2 (x—1) "
q (eZA(x+1)+q)2 (62/\(x—1)+q)2 '
/ <lnq> 62/\(1;7’7+1> 622\(1;‘7%1)
Moy ) =94 N 7~ . 2| =
A\ 24 (ez)\(lzfﬂ) +q> <62/\<‘2;’1) +q>
/\( qu)‘ - qe—z/\ ) B
(9 +9)° (e 2 +q)°
o2 o2
A( 20 L 1\2 (o204 2) - (15)
(2 +1)" (724 +1)
-2 +1)2 76—2/\(62A+1>

A(eM(e 2) —0.

@+ ) )
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That is, 1%7 is the only critical number of Mq, 1 over R. Hence at x = 1%7, Mq, ) achieves its
global maximum, which is

(e
Vaer +qq e
il
4\ et 4o
2(e — e_A)] 1 (e)‘ — e/\) _ tanh(A)

Aot | 2\er4er)

()\ B
P
_< e g e )] _ 16)

~ ~— S~~—
|

1
4

Conclusion: The maximum value of M, , is

Ing\  tanh(A)
Mgz (2)\> == A >0. (17)

We mention

Theorem 1 ([16]). We have that

) Mga(x—i) =1, VxeR,VA,q>0. (18)
i=—00
Thus,
Y Mg(nx—i)=1¥neN, VxeR. (19)
i=—o00
Similarly, it holds
Y Mi,(x—i)=1VxeR (20)
j=—o0 7’

However, M1 , (x — i) = Mya(i—x),VxeR.
i

Hence,
Y. Moa(i—x)=1VYxeR, (21)
i=—00
and -
Y. Ma(i+x)=1VxeR (22)
j=—00
It follows
Theorem 2 ([16]). It holds
/ Mga(x)dx =1, A,q>0. (23)

So that M, ) is a density function on R; A,q > 0.
We need the following result
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Theorem 3 ([16]). Let 0 < a < 1, and n € N with n'=% > 2; g,A > 0. Then,
g 1 - -
Y My p(nx —k) < max{q,q}e“e2)‘”(1 ) = 2 ), (24)
k= —o0
:nx — k| > nl=®

where T := max{q, % }64’\.

Let [-] the ceiling of the number, and |- | the integral part of the number.

Theorem 4 ([16]). Let x € [a,b] C Rand n € Nso that [na] < [nb]. Forq >0, A > 0, we
consider the number Aq > zo > 0 with My ) (z0) = My (0) and Ay > 1. Then,

1 1 1
=:A(qg). 2
< max{ — (4) 25)

b 7
b My (nx = k) i) g, (M)
k=[na] ’ I I

We also mention

Remark 1 ([16]). (i) We have that

[nb]
lim M, \(nx —k 1, for at least some x € [a,b], 26
Marei k:%ﬂ q,/\( ) 7é f [ ] ( )

where A, q > 0.
(ii) Let [a,b] C R. For large n we always have [na)] < |nb|. Furthermore,a < £ < b, iff
[na] <k < |nb]|. In general it holds

[nb]
Y. Mga(nx—k) <1 (27)
k=[na

Let (X, ||-||) be a Banach space.

Definition 1. Let f € C([a,b],X) and n € N : [na] < |nb|. We introduce and define the
X-valued linear neural network operators

nb)
X F(5) My (nx — )
Hy(f,x) := 7[71'(11” , x€[abl;g>0,q#1. (28)

r Mg(nx — k)
k=[na]

For large enough n we always obtain [na| < |nb|. Furthermore, a < % <Ub,iff [na] <k < |nb].
The same H,, is used for real valued functions. We study here the pointwise and uniform convergence
of Hu(f,x) to f(x) with rates.

For convenience, also we call

Hi(fx) = Y F(5) Myt =), (29)
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(the same H;; can be defined for real valued functions) that is
H:(f, x
Hn (f, x) = Lan ﬂ(f ) . (30)
Y Mq,A(nx —k)
k=[na]
So that HA(f, x)
* X
H(f,3) = £x) = I g @
Y Mq,A(nx —k)
k=[na]
[nb)
Hy(fox) = f(x)| L Mya(nx —k)
k=[na]
[nb) '
Y My(nx —k)
k=[na]
Consequently, we derive that
[nb]
1Hu(f, 2) = f() || < Aa) | Ha(f, %) = f(x) | )2 Mga(nx—k) || =
k=[na|
1’l
> ((5) - )Maato = @)
k:f
where A(g) as in (25).
We will estimate the right hand side of the last quantity.
For that we need, for f € C([a, b], X) the first modulus of continuity
wi(f,0) = sup |[f(x) = fW)l, 6>0. (33)
x,y € [a,b]
x—yl=9

Similarly, it is defined w; for f € C,p(R, X) (uniformly continuous and bounded functions
from R into X), for f € Cp(R, X) (continuous and bounded X-valued), and for f € C, (R, X)
(uniformly continuous).

The fact f € C([a, b], X) or f € Cy(R, X), is equivalent to tlsig(l)w1 (f,0) =0, see [18].

We make

Definition 2. When f € C,5(R, X), or f € Cp(R, X), we define

-y f( ) My (nx k), (34)

k=—o00

n € N, x € R, the X-valued quasi-interpolation neural network operator.
We give

Remark 2. We have that

17(5)] = Wl < e

and

7(5 ) Mo =10 < 1M = 35)
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and
A k A
2 [ (5) [Maatn -0 < ||f||m,R< 3 Mq,mx—k)),
k=—A k=—A\A
and, finally,
> k
3 [l (%) [ Maa — 0 < 1510 6)
k=—o00

a convergent series in R.

So, the series § Hf(%)

k=—o0
in X and Hy(f,x) € X. Wedenote by ||f||, := sup ||f(x)|, for f € C([a,b], X), similarly it is

x€E[a,b]

’Mq, A(nx — k) is absolutely convergent in X, hence it is convergent

defined for f € Cp(R, X).

3. Main Results

We present a set of X-valued neural network approximations to a function given
with rates.

Theorem 5. Let f € C([a,b],X),0<a<1,neN:n'"%*>243>0,q9#1,x¢€ [ab]. Then,

(i)
(%) = 0l < ) [ (£ ) #2017 2 =, @)
where T as in (24),
and
(ii)
IHa() ~ fllo < T 69

We obtain that 1i_1}1 Hu(f) = f, pointwise and uniformly.
n—oo

Proof. We see that

klné; (f(fz) _f(x)>Mq,A(nx —k)| <
k%ﬂ d (fz) = f(x)|| My (mx — ) =
k:t:; Hf (fz) = f(3) | Mg (nx = k) +
{ o
k_t;f} Hf(i) — f(x)||Mgr(nx — k) < )
{5—\>$
b wy (f/ _x)Mq,/\(HX—k)+
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Lnb)
2[|fllo )3 My (nx —k) <
k = [na]
|k —nx| > nl=*
1 00
w1 (f’n“> ) M\ (nx —k)+
k=—c0
E-x|< &
2 M, y(nx —k <
£ lleo . _E aA( ) oy Thosrem )
{ k —nx| > nl=®
1 g (1—a)
W (fn) + 2| flloo Te (40)
That is
b ] k
Y ((5) 00 Myt )| <
k=[na]
1 _ (1—a
an(f e ) 20T 2 @)
Using the last equality we derive (37). O
Next we give
Theorem 6. Let f € Cp(R,X),0<a<1,4>0,g#1,neN:n'"%>2 x € R. Then
(i)
— 1 _oap(l-a
|Hu(f, x) = f(x)]| < an (f’n‘") +2|If |l Te 20 (42)
and
(ii)
1Hn(F) = flloo < - (43)

For f € Cyp(R, X) we obtain lgn H,(f) = f, pointwise and uniformly.
n—oo

Proof. We observe that

i f(fl)Mq,/\(”x—k) — f(x) i Mq//\(nx—k)H =

k=—0c0 k=—o0

[F(f, %) — £(x)| 2

<

¥ (#(5) -5 Myatur -1

k=—o00

> [r(%) - s

k=—o0

M,M(nx — k) =

Mq/,\(nx — k)+
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d k
)y F{ ) = F) | Maa(nx — k) < (44)
k= —o0
k 1
" —x‘ .
ad k
Z wr | f, E—x Mq//\(nx—k)—i—
k=—c
k 1
n "X Sar
2[| flleo Y Mg (nx —k) <
k=—o0
k 1
" —x‘ >
1 o0 oy (1-a)
a(fm) L M2 e 2 <
k= —o
k 1
w X S
1 Coxg(1-a)
an(f 5 ) 2T 2, 45)

proving the claim. O

We need the X-valued Taylor’s formula in an appropriate form:

Theorem 7 ([19,20]). Let N € N, and f € CN([a, b], X), where [a,b] C R and X is a Banach
space. Let any x,y € [a,b]. Then,

N o(x ) x
709 = 2 500 + ey [ e 0" (FV0 -V w)ae ae

il

The derivatives f (), i € N, are defined like the numerical ones, see [21], p. 83. The
integral [ yx in (46) is of Bochner type, see [22].

By [20,23] we have that: if f € C([a, b], X), then f € Lo ([a,b], X) and f € Ly([a, ], X).

In the next we discuss high order neural network X-valued approximation by using
the smoothness of f.

Theorem 8. Let f € CN([a,b],X),n,N€N,0>0,g#1,0<a <1,x € [a,b]andn'~* > 2.
Then,
(i)

(
1Ha(f,x) — ()] < Mg {,-_1 Hf] H [W 2 Te 21 A)F )

[ (f(N ) 1 +2Hf(N)HOO(b—ﬂ)NT€2)\”(1“)]}
n*NN! N! !

(ii) assume further f(f) (x0) =0,j=1,.., N, for some xo € [a,b], it holds

1Hn(f, x0) = f(x0) ]| < A(q)-
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{m<ﬂmwi)W;N{+4VWW§?_@NﬂTMNa}v

and

(iii)

|Hu(f) = flloo < Alg {i ’ ‘ H [ 1] + (b—a)jTeM"(]w}-ﬁ-

[wl (f<N>, ni ) . l\llN! . 2H f(N)HE!(b - a)NTEZAn<1"‘>] }

Again we obtain 1211 H,(f) = f, pointwise and uniformly.
n—oo

Proof. It is lengthy, and as similar to [24] is omitted. [

All integrals from now on are of Bochner type [22].
We need

(48)

(49)

Definition 3 ([20]). Let [a,b] C R, X be a Banach space, « > 0; m = [a] € N, ([-] is the ceiling
of the number), f : [a,b] — X. We assume that f") € L1 ([a,b], X). We call the Caputo—Bochner

left fractional derivative of order a:

1

(Diaf)(x) = T(m—a) /ﬂx(x — )" M (Bt V x € [a,b).

(50)

Ifa € N, we set DY, f := f") the ordinary X-valued derivative (defined similar to numerical one,

see [21], p. 83), and also set DY, f := f.

By [19], (D%,f)(x) exists almost everywhere in x € [a,b] and D%,f € Li([a,b],

X).

If Hf H < oo, then by [23], D%, f € C([a, 1], X), hence | D%,f|| € C([a,b]).

Leo([a,],X)

We mention

Definition 4 ([19]). Let [a,b] C R, X be a Banach space, x > 0, m := [a|. We assume that
fm) e Ly([a,b], X), where f : [a,b] — X. We call the Caputo-Bochner right fractional derivative

of order :

(Dp_f)(x) _a)/ (z—x)" M) (2)dz, ¥ x € [a,b).

We observe that (DZ”_f) (x) = (=1)" " (x), for m € N, and (Dgff) (x) = f(x).

(51)

By [19], ( D¥ f) (x) exists almost everywhere on [a, b] and (Dz‘_f) € Li([a, 1], X).

it 7|

C([a, b]).
We make

Loo([a,b],X)

< o,and a ¢ N, by [19], D¥_f € C([a,b], X), hence HD;;QfH €
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Remark 3 ([18]). Let f € C”’l([a, b]),f(”) € Leo([a,b]),n=[v],v>0,v¢N. Then,

£
< We(@blX) (0 pyn-v
D5 F@N < “pg s (e —a)" ™, i € ot 52)
Thus, we observe
w1(Diaf,0) = sup [[Dif(x) — Dif(y)]l < (53)
x,y€(a,b]
[x—y[<é
(n)
sup HfLw[ubH(x_ yiv HfL""([”’b]’X)(y—a)”_v
wyelap) | T(m—v+1) I'n—v+1)
|x—y[<é
g
Leo([a,],X) o \n—v
I(n—v+1) (b=a).
Consequently,
2| st
v Loo([a,b],X) n—v
wl(D*ﬂffé) F(n—v+l) (b a) : (54)

Similarly, let f € C"=1([a,b]), f") € Leo([a,b]), m = [a], @ > 0, a ¢ N, then

BN A R
(D5 f10) < T —a 1) H(b—a)" (55)

So for f € C""1([a,b]), f') € Leo([a,b]), m = [a&], & >0, a ¢ N, we find

Loo( Hb] ) m—u
sup wi(Ds5y, f,0 < b—a , 56
on[Eb] 1( Of )[x bl r( —a+ 1) ( ) ( )
and
N ZHf(m)HLoo([u b],X) m—a
sup wi(D%,_f,9d) o] S T —a+1) (b—a)" " (57)

xo€|a,b]

By [20] we obtain that D%, f € C([xo,b], X), and by [19] we obtain that DY _f €
C([a, x0], X).
We present the following X-valued fractional approximation result by neural networks.

Theorem 9. Let« > 0,9 > 0,9 # 1, N = [a], « ¢ N, f € CN([a,b],X),0 < B < 1,
x € [ab],neN: nl=PB > 2. Then,

(i)
N-1 (]) X .
”H(ﬁx) o B (=) (0 - £
A(g) <w1 (Df‘*f’ #) [a,x] Tt (Di"f’ nl*ﬁ) [x,b])
F'(a+1) n*p +

T2 (108 fl g (6= 0 + IDE Al 07) ) 69
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(i) if fU)(x) =0, for j =1,..., N — 1, we have

1Hu(f,x) — F(x)]] < =20

T(a+1)
( (D fnﬁ)[ ]+“’1(D$"f’"lﬁ)[x,b]>
np "
Tp—2An(F) (HD“ Flloo, g (¥ = )" 4 1D fll o 2,0 (b x)a)}’ )
(iii)
1H(f, %) — F(0)] < Alg)
G -
B
1 ( (P, ”ﬁ)[,]+w1(Dﬁxf'”lﬁ)["'h])+
T(a+1) ntb
o2 (D8 fl g 0+ 1D gy 6 - )} (60)
Vx € [ab],
and
(iv)

[Huf = fllo = A(q)
{7;1 i 5 . {nﬁ] +(b—a) Te- 2 }+

1 (:él[ﬁ]wl N ”ﬁ)[a,x]+ sup wi (D f, nﬁ> ]>

x€[a,b] n
F(a + 1) neB

_2An(1-p) x
T2 () (sup 105l + 5P DS, xb]>}} (61)

x€|a,b] x€a,b]

Above, when N = 1 the sum Zl.\i*ll -=0.
As we see here we obtain X-valued fractionally type pointwise and uniform convergence with
rates of H,, — I the unit operator, as n — oo.

Proof. The proof is very lengthy and similar to [24]; therefore, it is omitted. [

Next we apply Theorem 9 for N = 1.

Theorem 10. Let0 < o, < 1,4 > 0,9 # 1, f € C'([a,b],X), x € [a,b],n € N: n!=F > 2.
Then
(i)
1Hu(f,x) = f(0)] <
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A(q) ( (P f?ﬂ')[ 1+°"1(D$"f’”1‘5)[x,b1)

T(a+1) neP +

T (D fl (= 0 + 1Dy 0 -0)) ) (@)

and
(ii) A
I = e <

( sup wq (D _f nﬁ>[a,x] + sup w; (Di‘xf nﬁ) xb])

x€&la,b] x€Ea,b]

n*B +

<b—a>“Te“"“"5>(sup IDS flay g + SUP D% F xb]>} (63)

x€|a,b] x€[a,b]
When a = % we derive

Corollary 1. Let0 < B < 1,4 > 0,9 #1, f € C([a,b],X), x € [a,b], n € N:n'"F > 2.

Then
(i)
[Hn(f,x) = f(x)]| <
1
D: ) +w (D,f ,1)
2A(q) ( ( i ol i L2V
VT nk
Te= 2P (HDZ fH (x—a)+‘Déxf‘ (b—x)) } (64)
la,x] 00,[x,b]
and
(ii) "
2A(q
- < ==
I~ fllo < =2
( sup wi <D2 £, nﬁ) + sup wy <Déxf,nlﬁ> )
x€E[a,b] [ax]  x€[ab] [x,b]
5 +
nz
(b—a)Te*M”( (sup D2 fH + sup Déxf )} < 0. (65)
x€[a,b] oo,[a,x]  xE[ab] 00,[x,b]
We make

Remark 4. Some convergence analysis follows based on Corollary 1.
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Let0 < B<1,A>0,fcClab],X),x¢[ab],necN:n=P > 2 Weelaborate on (65).
Assume that

11 Ry
o (Dz f, ) <R (66)
g nb [a,x] nb
and ) ) R
o (p,z f, ) <R (67)
* nb [x,b] np
Vx € [a,b],VneN,where R1,Ry > 0.
Then it holds
1 1 1oy
sup wq <D§f, n/3> + sup w; <Dfxf, nﬁ)
x€|(a,b] [a,x]  x€[ab] [x,b] <
é =
nz
Btk (R 4Ry R
1
= B B’ (68)
nz n?2 n?2

where R := Ry + Ry > 0.

The other summand of the right hand side of (65), for large enough n,, converges to zero at the
—_2An(1-A) —2An(1-#)

speed e , so it is about Ae , where A > 0 is a constant.
Then, for large enough n € N, by (65), (68) and the above comment, we obtain that
B
1Hnf = fllo < =5 (69)
nz

where B > 0, converging to zero at the high speed of %ﬂ.
nz

In Theorem 5, for f € C([a, b], X) and for large enough n € N, the speed is niﬁ' So by (69),
|Huf — fll o converges much faster to zero. The last comes because we assumed differentiability of
f. Notice that in Corollary 1 no initial condition is assumed.
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