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Abstract: This paper is concerned with the existence result of a sequence of infinitely many small en-
ergy solutions to the fractional r(·)-Laplacian equations of Kirchhoff–Schrödinger type with concave–
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1. Introduction

The investigation into problems of differential equations and variational problems
with nonstandard growth conditions has gained a great deal of attention in recent decades
because they can be developed in light of a pure or applied mathematical perspective to
illustrate some concrete phenomena arising from elastic mechanics, electro-rheological
fluid (“smart fluids”), plasticity theory, plasma physics, and image processing, etc. We refer
the readers to [1–5] and references therein for more details.

On the other hand, recently, a great number of works have been devoted to the
fractional nonlocal problem, because the appearance of non-local terms in equations is
important for many physical applications as well as causing some difficulties and challenges
from a mathematical perspective; see [6–10].

Very recently, many authors in [11–24] have studied non-local elliptic problems involv-
ing the fractional r(·)-Laplacian. Kaufmann et al. [22] has provided some properties on
a class of fractional variable exponent Sobolev spaces that is associated with a fractional
variable exponent operator. The authors in [14] gave further elementary properties, both on
the functional corresponding to a nonlocal operator with variable exponent and its solution
space. As applications, they presented that equations involving the fractional r(·)-Laplacian
admits at least one nontrivial solution. Based on these recent works, Ho–Kim [20] provided
further fundamental embedding results for the fractional variable exponent Sobolev space.
Using these consequences, they obtained the L∞-bound of weak solutions to problems
driven by the fractional r(·)-Laplacian and, in particular, derived the existence of a sequence
of infinitely many weak solutions whose L∞-norms converge to zero. Additionally, they
obtained the existence of many solutions for a class of critical non-local problems with vari-
able exponents; see [21]. We refer the interested reader to [25,26] for the existence results of
critical nonlocal equations with variable exponents. A remarkable recent work on fractional
equations with variable exponents can be found in [15]. More precisely, for subcritical
nonlinearity as well as the critical exponent, the existence and multiplicity of solutions
and existence of ground-state solutions to the fractional double-phase Robin problem with
logarithm-type nonlinearity have been obtained.
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The present paper is devoted to a problem of Schrödinger-Kirchhoff type driven by
the fractional r(·)-Laplacian

K
(
[ω]s,r(·,·)

)
Lω(x) + b(x)|ω|r(x)−2ω = λκ(x)|ω|q(x)−2ω + g(x, ω) in RN , (1)

where

[ω]s,r(·,·) :=
∫
RN

∫
RN

|ω(x)−ω(y)|r(x,y)

r(x, y)|x− y|N+sr(x,y)
dx dy,

r ∈ C(RN × RN) satisfying 1 < inf(x,y)∈RN×RN r(x, y) ≤ sup(x,y)∈RN×RN r(x, y) < N
s ,

r(x, y) = r(y, x) for all x, y ∈ RN , r(x) = r(x, x) for all x ∈ RN , q : RN → (1, ∞) is
a continuous function with 1 < infx∈RN q(x) ≤ supx∈RN r(x), b : RN → (0, ∞) is a
continuous potential function, and g : RN ×R→ R is a Carathéodory function with the
subcritical and r(·)-superlinear nonlinearity, and K ∈ C((0, ∞)) is a function of Kirchhoff
type which will be specified. Additionally, the operator L is defined by

Lω(x) = 2 lim
ε↘0

∫
RN\Bε(x)

|ω(x)−ω(y)|r(x,y)−2 (ω(x)−ω(y))
|x− y|N+sr(x,y)

dy, x ∈ RN ,

where s ∈ (0, 1) and Bε(x) := {y ∈ RN : |y− x| ≤ ε}. Let us set

C+(RN) =

{
f ∈ C(RN) : inf

x∈RN
f (x) > 1

}
.

For any f ∈ C+(RN), we define

f+ = sup
x∈RN

f (x) and f− = inf
x∈RN

f (x).

Then, we suppose that the Kirchhoff function K : [0, ∞)→ (0, ∞) satisfies the follow-
ing conditions:

(K1) K ∈ C([0, ∞), (0, ∞)) satisfies inft∈R+
0

K(t) ≥ τ0 > 0, where τ0 is a constant.

(K2) There exists ϑ ∈ [1, N
N−sr+ ) such that ϑK(t) = ϑ

∫ t
0 K(q)dq ≥ K(t)t for any t ≥ 0.

The Kirchhoff-type problem was initially introduced in [27] as a generalization of the
classical D’Alembert’s wave equation for free vibrations of elastic strings. Elliptic problems
of Kirchhoff type have a strong background in several applications in Physics and have
been widely studied by many researchers in recent years; see [28–32].

The purpose of this paper is devoted to the existence result of a sequence of in-
finitely many small energy solutions to the fractional r(·)-Laplacian equations of Kirchhoff–
Schrödinger type with concave–convex nonlinearities when the convex term g does not
require the Ambrosetti–Rabinowitz condition as follows; namely, there exists a constant
θ > 0 such that θ > ϑr+ and

0 < θG(x, t) ≤ g(x, t)t for all (x, t) ∈ RN ×R \ {0}, where G(x, t) =
∫ t

0
g(x, s) ds.

As we know, this condition is crucial in guaranteeing the boundedness of Palais–Smale
sequences of the Euler–Lagrange functional corresponding to the problem (1). The key
tool to obtain this multiplicity result is the dual fountain theorem. This result of multi-
ple solutions to nonlinear elliptic problems is motivated by the contributions in recent
works [23,30,33–39], and the references therein. In particular, Alves–Liu [33] obtained the
existence and multiplicity results to the superlinear r(x)-Laplacian problems:

−div(|∇ω|r(x)−2∇ω) + b(x)|ω|r(x)−2ω = g(x, ω) in RN .



Fractal Fract. 2023, 7, 207 3 of 16

Here, the potential function b ∈ C(RN) satisfies suitable conditions and the Carathéo-
dory function g : RN ×R→ R fulfills the following assumptions:

( f 1) G(x, s) = o(|s|r(x)) as s→ 0 uniformly for all x ∈ RN .

( f 2) lim|s|→∞
G(x,s)

|s|r+
= ∞ uniformly for almost all x ∈ RN .

( f 3) There exists a constant θ ≥ 1 such that

θG(x, s) ≥ G(x, ts)

for (x, s) ∈ RN ×R and t ∈ [0, 1], where G(x, s) = g(x, s)s− r+G(x, s).

The condition ( f 3) was originally provided by the works of Jeanjean [40]. In the last
few decades, there were extensive studies dealing with the r-Laplacian problem by assum-
ing ( f 2); see [34,35], and see also [3,36] for the case of variable exponents r(·). Recently,
Lin–Tang [37] established the various theorems on the existence of solutions of r-Laplacian
equations with mild conditions for the superlinear term g, which is deeply different from
those investigated in [34,35,37,40]. Additionally, the authors in [38] established the exis-
tence results of infinitely many weak solutions to the r(·)-Laplacian-like equations under
the following condition:

( f 4) There is a positive function C ∈ L1(RN) such that

sg(x, s)− r+G(x, s) ≤ ςg(x, ς)− r+G(x, ς) + C(x)

for any x ∈ Ω and 0 < s < ς or ς < s < 0,

which was first provided by Miyagaki and Souto [41]. Let us consider the function

g(x, s) = σ(x)

(
|s|r(x)−2s ln (1 + |s|) + |s|

r(x)−1s
1 + |s|

)

with its primitive function

G(x, s) =
σ(x)
r(x)
|s|r(x) ln (1 + |s|)

for all s ∈ R and r ∈ C+(RN), where σ ∈ C(RN ,R) with 0 < infx∈RN σ(x) ≤ supx∈RN σ(x)
< ∞. Thus, this example fulfils the conditions ( f 1)–( f 4). However, for instance, if we
consider function

g(x, s) = σ(x)
(

ν(x)|s|m(x)−2s + |s|r
−−2s +

2
r−

sin s
)

with its primitive function

G(x, s) = σ(x)
(

ν(x)
m(x)

|s|m(x) +
1

r−
|s|r

−
− 2

r−
cos s +

2
r−

)
,

where r, τ, m ∈ C+(RN), 1 < m− ≤ m+ < r− ≤ r+, τ(x) > 1 with r(x) ≤ τ′(x)m(x) ≤
r∗(x) for all x ∈ RN and 0 < ν ∈ Lτ(·)(RN) ∩ L∞(RN), then it is clear that this does not
satisfy the conditions ( f 1)–( f 4). However, this example holds a condition (B2), which will
be introduced in Section 3.

From this perspective, on a new class of superlinear term g, we give the existence result
of a sequence of infinitely many small energy solutions by employing a variational method.
However, our proof for obtaining this result is slightly different from those of previous
related works [17,23,30,38,42–47]. Roughly speaking, in view of [23,38,44,48], the conditions
( f 1) and ( f 2) play an important role in ensuring assumptions in the dual fountain theorem;
however, we verify them when ( f 1) and ( f 2) are not assumed. To the best of our belief,
although this work is inspired by the papers [17,23,39,42–45,48], and many authors have an
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interest in the investigation of elliptic problems with variable exponents, the present paper
is the first attempt to obtain the multiplicity result for the Schrödinger–Kirchhoff-type
problem driven by the non-local fractional r(·)-Laplacian because we deduce our result on
a new class of the convex term g.

This paper is organized as follows. In Section 2, we shortly introduce the definition of
the Lebesgue spaces with variable exponents and the fractional variable exponent Lebesgue–
Sobolev space, and collect some elementary properties. Section 3 provides the existence
result of infinitely many small energy solutions to the problem (1) by applying as the
primary tool the variational principle.

2. Preliminaries

In this section, we briefly recall the definition and some basic properties of the variable
exponent Lebesgue–Sobolev space of fractional type, which were systematically studied
in [20].

For any r ∈ C+(RN), we introduce the variable exponent Lebesgue space

Lr(·)(RN) :=
{

ω : ω is a measurable real-valued function,
∫
RN
|ω(x)|r(x) dx < ∞

}
,

endowed with the Luxemburg norm

||ω||Lr(·)(RN) = inf
{

λ > 0 :
∫
RN

∣∣∣ω(x)
λ

∣∣∣r(x)
dx ≤ 1

}
.

The dual space of Lr(·)(RN) is Lr′(·)(RN), where 1/r(x) + 1/r′(x) = 1.
Let 0 < s < 1 and let r ∈ C(RN × RN , (1, ∞)) be such that r is symmetric, i.e.,

r(x, y) = r(y, x) for all x, y ∈ RN and

1 < r− := inf
(x,y)∈RN×RN

r(x, y) ≤ r+ := sup
(x,y)∈RN×RN

r(x, y) < +∞.

For r ∈ C+(RN), define

Ws,r(·),r(·,·)(RN) :=
{

ω ∈ Lr(·)(RN) :
∫
RN

∫
RN

|ω(x)−ω(y)|r(x,y)

|x− y|N+sr(x,y)
dxdy < +∞

}
,

and we set

|ω|s,r(·,·) := inf

{
λ > 0 :

∫
RN

∫
RN

|ω(x)−ω(y)|r(x,y)

λr(x,y)|x− y|N+sr(x,y)
dxdy < 1

}
.

Then, Ws,r(·),r(·,·)(RN) endowed with the norm

||ω||s,r,RN := ||ω||Lr(·)(RN) + |ω|s,r(·,·)

is a reflexive and separable Banach space (see [13,14,22]). It is immediate that

|ω|s,r,RN := inf

{
λ > 0 :

∫
RN

∣∣∣ω
λ

∣∣∣r(x)
dx +

∫
RN

∫
RN

|ω(x)−ω(y)|r(x,y)

λr(x,y)|x− y|N+sr(x,y)
dx dy < 1

}

is an equivalent norm of || · ||s,r,RN with the relation

1
2
||ω||s,r,RN ≤ |ω|s,r,RN ≤ 2||ω||s,r,RN .

Throughout the present paper, in some cases, we write r(x) instead of r(x, x) for
brevity, and thus, r ∈ C+(RN). Further, we write Ws,r(·,·)(RN) instead of Ws,r(·),r(·,·)(RN).
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Lemma 1 ([49,50]). The space Lr(·)(RN) is a uniformly convex and separable Banach space,
and its conjugate space is Lr′(·)(RN) where 1/r(·) + 1/r′(·) = 1. For any u ∈ Lr(·)(RN) and
v ∈ Lr′(·)(RN), one has∣∣∣ ∫

RN
uv dx

∣∣∣ ≤ ( 1
r−

+
1

(r′)−

)
||u||Lr(·)(RN)||v||Lr′(·)(RN)

≤ 2||u||Lr(·)(RN)||v||Lr′(·)(RN)
.

Lemma 2 ([49]). If 1/r(·) + 1/`(·) + 1/q(·) = 1, then for any v ∈ Lr(·)(RN), z ∈ L`(·)(RN)
and w ∈ Lτ(·)(RN),∣∣∣∣∫RN

vzw dx
∣∣∣∣ ≤ ( 1

r−
+

1
`−

+
1

q−

)
||v||Lr(·)(RN)||z||

L`(·)(RN)||w||Lq(·)(RN)

≤ 3||v||Lr(·)(RN)||z||L`(·)(RN)||w||Lq(·)(RN).

Lemma 3 ([49]). Denote

κ(ω) =
∫
RN
|ω|r(x) dx, for all ω ∈ Lr(·)(RN).

Then

(1) κ(ω) > 1 (= 1; < 1) if and only if ||ω||Lr(·)(RN) > 1 (= 1; < 1), respectively;

(2) if ||ω||Lr(·)(RN) > 1, then ||ω||r−
Lr(·)(RN)

≤ κ(ω) ≤ ||ω||r+
Lr(·)(RN)

;

(3) if ||ω||Lr(·)(RN) < 1, then ||ω||r+
Lr(·)(RN)

≤ κ(ω) ≤ ||ω||r−
Lr(·)(RN)

.

Lemma 4 ([51]). Let ` ∈ L∞(RN) be such that 1 ≤ r(·)`(·) ≤ ∞ in RN . If ω ∈ Lr(·)`(·)(RN)
with ω 6= 0, then

(1) If ||ω||Lr(·)`(·)(RN) > 1, then ||ω||`−
Lr(·)`(·)(RN)

≤ |||ω|`(x)||Lr(·)(RN) ≤ ||ω||
`+

Lr(·)`(·)(RN)
;

(2) If ||ω||Lr(·)`(·)(RN) < 1, then ||ω||`+
Lr(·)`(·)(RN)

≤ |||ω|`(x)||Lr(·)(RN) ≤ ||ω||
`−

Lr(·)`(·)(RN)
.

Lemma 5 ([49]). Suppose that r : RN → R is Lipschitz-continuous with 1 < r− ≤ r+ < N.
Let ` ∈ L∞(RN) and r(·) ≤ `(·) ≤ r∗s (·) := Nr(·)

N−sr(·) almost everywhere in RN . Then, there is a

continuous embedding W1,r(·)(RN) ↪→ L`(·)(RN).

We present the embedding theorem for the fractional variable exponent Sobolev
space below:

Lemma 6 (Subcrtitical imbeddings, [20]). It holds that

(1) Ws,r(·,·)(Ω) ↪→↪→ Lq(·)(Ω), if Ω is a bounded Lipschitz domain and q ∈ C+(Ω) such that
q(·) < r∗s (·) in Ω;

(2) Ws,r(·,·)(RN) ↪→ Lq(·)(RN) for any uniformly continuous function q ∈ C+(RN) with
r(·) ≤ q(·) in x ∈ RN and infRN (r∗s (·)− q(·)) > 0;

(3) Ws,r(·,·)(RN) ↪→↪→ Lq(·)
loc (R

N) for any r ∈ C+(RN) satisfying q(·) < r∗s (·) in RN .

Next, we assume that the potential function b satisfies

(P) b ∈ L1
loc(R

N), x∈RN b(x) > 0, and lim|x|→∞ b(x) = +∞.

On the linear subspace

X :=
{

ω ∈Ws,r(·,·)(RN) :
∫
RN

∫
RN

|ω(x)−ω(y)|r(x,y)

|x− y|N+sr(x,y)
dxdy +

∫
RN

b(x)|ω(x)|r(x) dx < +∞
}

,
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we equip the norm

||ω||X := inf

{
λ > 0 :

∫
RN

b(x)
∣∣∣ω

λ

∣∣∣r(x)
dx +

∫
RN

∫
RN

|ω(x)−ω(y)|r(x,y)

λr(x,y)|x− y|N+sr(x,y)
dx dy < 1

}
.

Then, (X, || · ||X) is continuously embedded into Ws,r(·,·) as a closed subspace. There-
fore, (X, || · ||X) is also a reflexive and separable Banach space. Let X∗ be a dual space of X.
Furthermore, 〈·, ·〉 denotes the pairing of X and its dual X∗.

Remark 1 ([33]). Denote

κ(ω) =
∫
RN

(
|∇ω|r(x) + b(x)|ω|r(x)

)
dx, for all ω ∈ X.

Then,

(1) κ(ω) > 1 (= 1; < 1) if and only if ||ω||X > 1 (= 1; < 1), respectively;
(2) if ||ω||X > 1, then ||ω||r−X ≤ κ(ω) ≤ ||ω||r+X ;
(3) if ||ω||X < 1, then ||ω||r+X ≤ κ(ω) ≤ ||ω||r−X .

With the help of Lemma 6, the proof of the following consequence is absolutely the
same as in those of Lemma 2.6 in [33].

Lemma 7. If the potential function b satisfies the assumption (P), then

(1) there is a compact embedding X ↪→ Lr(·)(RN);
(2) for any measurable function ` : RN → R with r(·) < `(·) in RN , there is a compact

embedding X ↪→ L`(·)(RN) if inf
x∈RN

(r∗(x)− `(x)) > 0.

3. Existence of Solutions

In this section, the existence of nontrivial weak solutions for (1) is provided by applying
the dual fountain theorem under suitable assumptions.

Definition 1. We say that ω ∈ X is a weak solution of (1) if

K
(
[ω]s,r(·,·)

) ∫
RN

∫
RN

|ω(x)−ω(y)|r(x,y)−2(ω(x)−ω(y))(u(x)− u(y))
|x− y|N+sr(x,y)

dx dy

+
∫
RN

b(x)|ω|r(x)−2ωu dx = λ
∫
RN

κ(x)|ω|q(x)−2ωu dx +
∫
RN

h(x, ω)u dx

for all u ∈ X, where

[ω]s,r(·,·) :=
∫
RN

∫
RN

|ω(x)−ω(y)|r(x,y)

r(x, y)|x− y|N+sr(x,y)
dx dy.

Let us define the functional A : X → R by

A(ω) = K
(
[ω]s,r(·,·)

)
+
∫
RN

b(x)
r(x)
|ω|r(x) dx.

Then, the following assertion can be found in [3].

Lemma 8. Suppose that (K1)–(K2) are fulfilled. Then, A : X → R is slightly less semicon-
tinuous and convex on X. In addition, A′ is a mapping of type (S+), i.e., if yn ⇀ y in X and
lim supn→∞〈A′(yn)− A′(y), yn − y〉 ≤ 0, then yn → y in X as n→ ∞.
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Let G(x, t) =
∫ t

0 g(x, s) ds. Suppose that

(A1) q, r, ` ∈ C+(RN) and 1 < q− ≤ q+ < r− ≤ r+ < `− ≤ `+ < r∗s (x) for all x ∈ RN .

(A2) 0 ≤ κ ∈ L
r(·)

r(·)−q(·) (RN) ∩ L∞(RN) satisfying that meas
{

x ∈ RN : κ(x) 6= 0
}
> 0.

(B1) g : RN × R → R satisfies the Carathéodory condition and there exist a positive
constant ρ2 and a nonnegative function ρ1 ∈ L`′(·)(RN) ∩ L∞(RN) such that

|g(x, t)| ≤ ρ1(x) + ρ2|t|`(x)−1

for all (x, t) ∈ RN ×R.
(B2) There are µ > ϑr+, T > 0 such that

µG(x, t) ≤ tg(x, t)

for all x ∈ RN and |t| ≥ T, where G(x, t) =
∫ t

0 g(x, s) ds, where ϑ is given in (K2).
(B3) There exist C > 0, 1 < m− ≤ m+ < r− ≤ r+, τ(x) > 1 with r(x) ≤ τ′(x)m(x) ≤ r∗(x)

for all x ∈ RN and a positive function ν ∈ Lτ(·)(RN) ∩ L∞(RN) such that

lim inf
|t|→0

g(x, t)

ν(x)|t|m(x)−2t
≥ C

uniformly for almost all x ∈ RN .

Let the functional Bλ : X → R be defined by

Bλ(ω) = λ
∫
RN

κ(x)
q(x)
|ω|q(x) dx +

∫
RN

G(x, ω) dx.

Then, it is immediate that Bλ ∈ C1(X,R), and its Fréchet derivative is〈
B′λ(ω), u

〉
= λ

∫
RN

κ(x)|ω|q(x)−2ωu dx +
∫
RN

g(x, ω)u dx

for any u, ω ∈ X. Subsequently, the functional Jλ : X → R is defined by

Jλ(ω) = A(ω)− Bλ(ω). (2)

Then, by virtue of Lemma 3.2 in [3], one has that the functional Jλ ∈ C1(X,R), and its
Fréchet derivative is〈

J′λ(ω), u
〉
=K
(
[ω]s,r(·,·)

) ∫
RN

∫
RN

|ω(x)−ω(y)|r(x,y)−2(ω(x)−ω(y))(u(x)− u(y))
|x− y|N+sr(x,y)

dx dy

+
∫
RN

b(x)|ω|r(x)−2ωu dx− λ
∫
RN

κ(x)|ω|q(x)−2ωu dx−
∫
RN

g(x, ω)u dx

for any ω, u ∈ X.

Lemma 9. Suppose that (P), (A1)–(A2) and (B1)–(B2) hold. Then, Bλ and B′λ are weakly strongly
continuous on E for any λ > 0.

Definition 2. Let E be a Banach space, I ∈ C1(X,R). We say that I ensures the Cerami condition
((C)-condition for short) in E if any (C)-sequence {zn}n ⊂ E, i.e., {I(zn)} is bounded and
||I′(zn)||E∗(1 + ||zn||E)→ 0 as n→ ∞ has a convergent subsequence in E.

The basic idea of proofs of this assertion follows similar arguments to those in [39];
see also [52].
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Lemma 10. Assume that (P), (A1)–(A2), (K1)–(K2) and (B1)–(B2) hold. Then, the functional Jλ

satisfies the (C)-condition for any λ > 0.

Proof. Let {ωn} be a (C)-sequence in X, i.e.,

sup
n∈N
|Jλ(ωn)| ≤ K1 and

〈
J′λ(ωn), ωn

〉
= o(1)→ 0, as n→ ∞, (3)

where K1 is a positive constant. Firstly, we will prove that the sequence {ωn} is bounded
in X. Denote {a ≤ |ωn| ≤ c}| := {x ∈ RN : a ≤ |ωn(x)| ≤ c} for any real number a and c.
Since b(x)→ +∞ as |x| → ∞, we have(

1
ϑr+
− 1

µ

) ∫
RN

b(x)|ωn|r(x)dx− C1

∫
{|ωn |≤T}

(
|ωn|r(x) + ρ1(x)|ωn|+ ρ2|ωn|q(x)

)
dx

≥ 1
2

(
1

ϑr+
− 1

µ

) ∫
RN

b(x)|ωn|r(x)dx− K0

for any positive constant C1 and for some positive constant K0. In fact, by Young’s inequality,
we know that(

1
ϑr+
− 1

µ

) ∫
RN

b(x)|ωn|r(x)dx− C1

∫
{|ωn |≤T}

(
|ωn|r(x) + ρ1(x)|ωn|+ ρ2|ωn|`(x)

)
dx

≥
(

1
ϑr+
− 1

µ

) ∫
RN

b(x)|ωn|r(x)dx− C1

∫
{|ωn |≤T}

(
|ωn|r(x) + (ρ1(x))`

′(x) + |ωn|`(x) + ρ2|ωn|`(x)
)

dx

≥ 1
2

(
1

ϑr+
− 1

µ

)[∫
RN

b(x)|ωn|r(x) dx +
∫
{|ωn |≤T}

b(x)|ωn|r(x) dx
]

− C1

∫
{|ωn |≤1}

(
|ωn|r(x) + |ωn|`(x) + ρ2|ωn|`(x)

)
dx

− C1

∫
{1<|ωn |≤T}

(
|ωn|r(x) + |ωn|`(x) + ρ2|ωn|`(x)

)
dx− C1(1 + ||ρ1||

(`′)+

L`′(·)(RN)
)

≥ 1
2

(
1

ϑr+
− 1

µ

)[∫
RN

b(x)|ωn|r(x) dx +
∫
{|ωn |≤T}

b(x)|ωn|r(x) dx
]

− C1(2 + ρ2)
∫
{|ωn |≤1}

|ωn|r(x) dx− C1T`+−r−(2 + ρ2)
∫
{1<|ωn |≤T}

|ωn|r(x) dx− C̃1

≥ 1
2

(
1

ϑr+
− 1

µ

)[∫
RN

b(x)|ωn|r(x) dx +
∫
{|ωn |≤T}

b(x)|ωn|r(x) dx
]

− C1T`+−r−(2 + ρ2)
∫
{|ωn |≤T}

|ωn|r(x) dx− C̃1, (4)

where C̃1 is a positive constant. Since b(x) → +∞ as |x| → ∞, there is γ0 > 0 such that

|x| ≥ γ0 implies b(x) ≥ 2ϑr+µC1T`+−r− (2+ρ2)
µ−ϑr+ . Then, we know that

b(x)|ωn|r(x) ≥ 2ϑr+µC1T`+−r−(2 + ρ2)

µ− ϑr+
|ωn|r(x) (5)

for |x| ≥ γ0. Set Bγ := {x ∈ RN : |x| < γ}. Then, since b ∈ L1
loc(R

N), we infer∫
{|ωn |≤T}∩Bγ0

b(x)|ωn|r(x) dx ≤ C̃2 and
∫
{|ωn |≤T}∩Bγ0

|ωn|r(x) dx ≤ C̃3

for some positive constants C̃2 and C̃3. This, together with (4) and (5), yields
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(
1

ϑr+
− 1

µ

) ∫
RN

b(x)|ωn|r(x) dx− C1

∫
{|ωn |≤T}

(
|ωn|r(x) + ρ1(x)|ωn|+ ρ2|ωn|`(x)

)
dx

≥ µ− ϑr+

2ϑr+µ

[∫
RN

b(x)|ωn|r(x) dx +
∫
{|ωn |≤T}∩Bc

γ0

b(x)|ωn|r(x) dx +
∫
{|ωn |≤T}∩Bγ0

b(x)|ωn|r(x) dx

]

− C̃0

[∫
{|ωn |≤T}∩Bc

γ0

|ωn|r(x) dx +
∫
{|ωn |≤T}∩Bγ0

|ωn|r(x) dx

]
− C̃1

≥ µ− ϑr+

2ϑr+µ

∫
RN

b(x)|ωn|r(x) dx +
µ− ϑr+

2ϑr+µ

∫
{|ωn |≤T}∩Bc

γ0

b(x)|ωn|r(x) dx

− C̃0

∫
{|ωn |≤T}∩Bc

γ0

|ωn|r(x) dx− K0

≥ 1
2

( 1
ϑr+
− 1

µ

) ∫
RN

b(x)|ωn|r(x) dx− K0,

as required. Combining this with (K1)–(K2) and (B3), one has

K1 + 1 ≥ Jλ(ωn)−
1
µ

〈
J′λ(ωn), ωn

〉
= K

(
[ωn]s,r(·,·)

)
+
∫
RN

b(x)
r(x)
|ωn|r(x) dx− λ

∫
RN

κ(x)
q(x)
|ωn|q(x)dx−

∫
RN

G(x, ωn) dx

− 1
µ

K
(
[ωn]s,r(·,·)

)
[ωn]s,r(·,·) −

1
µ

∫
RN

b(x)|ωn|r(x) dx

+
λ

µ

∫
RN

κ(x)|ωn|q(x) dx +
1
µ

∫
RN

g(x, ωn)ωn dx

=
1
ϑ

K
(
[ωn]s,r(·,·)

)
[ωn]s,r(·,·) +

∫
RN

b(x)
r(x)
|ωn|r(x) dx− λ

∫
RN

κ(x)
q(x)
|ωn|q(x)dx

−
∫
RN

G(x, ωn) dx− 1
µ

K
(
[ωn]s,r(·,·)

)
[ωn]s,r(·,·)

− 1
µ

∫
RN

b(x)|ωn|r(x) dx +
λ

µ

∫
RN

κ(x)|ωn|q(x) dx +
1
µ

∫
RN

g(x, ωn)ωn dx

≥ τ0

(
1

ϑr+
− 1

µ

) ∫
RN

∫
RN

|ωn(x)−ωn(y)|r(x,y)

|x− y|N+sr(x,y)
dx dy +

(
1

ϑr+
− 1

µ

) ∫
RN

b(x)|ωn|r(x) dx

+
1
µ

∫
RN

(g(x, ωn)ωn − µG(x, ωn)) dx + λ

(
1
µ
− 1

q−

) ∫
RN

κ(x)|ωn|q(x) dx

≥ τ0

(
1

ϑr+
− 1

µ

) ∫
RN

∫
RN

|ωn(x)−ωn(y)|r(x,y)

|x− y|N+sr(x,y)
dx dy +

(
1

ϑr+
− 1

µ

) ∫
RN

b(x)|ωn|r(x) dx

+
1
µ

∫
|ωn |≤T

(g(x, ωn)ωn − µG(x, ωn)) dx +
1
µ

∫
|ωn |≥T

(g(x, ωn)ωn − µG(x, ωn)) dx

+ λ

(
1
µ
− 1

q−

) ∫
RN

κ(x)|ωn|q(x) dx

≥ τ0

(
1

ϑr+
− 1

µ

) ∫
RN

∫
RN

|ωn(x)−ωn(y)|r(x,y)

|x− y|N+sr(x,y)
dx dy +

(
1

ϑr+
− 1

µ

) ∫
RN

b(x)|ωn|r(x) dx

− C2

µ

∫
|ωn |≤T

(
|ωn|r(x) + ρ1(x)|ωn|+ ρ2(x)|ωn|`(x)

)
dx

+ λ

(
1
µ
− 1

q−

) ∫
RN

κ(x)|ωn|q(x) dx
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≥ τ0

(
1

ϑr+
− 1

µ

) ∫
RN

∫
RN

|ωn(x)−ωn(y)|r(x,y)

|x− y|N+sr(x,y)
dx dy +

1
2

(
1

ϑr+
− 1

µ

) ∫
RN

b(x)|ωn|r(x) dx

+ λ

(
1
µ
− 1

q−

) ∫
RN

κ(x)|ωn|q(x)dx− K0

≥ min{τ0, 1}
2

(
1

ϑr+
− 1

µ

)(∫
RN

∫
RN

|ωn(x)−ωn(y)|r(x,y)

|x− y|N+sr(x,y)
dx dy +

∫
RN

b(x)|ωn|r(x) dx

)

+ 2λ

(
1
µ
− 1

q−

)
||κ||

L
r(·)

r(·)−q(·) (RN)
max

{
||ωn||q

−

Lr(·)(RN)
, ||ωn||q

+

Lr(·)(RN)

}
− K0

≥ min{τ0, 1}
2

(
1

ϑr+
− 1

µ

)
||ωn||r

−
X

+ 2λ

(
1
µ
− 1

q−

)
||κ||

L
r(·)

r(·)−q(·) (RN)
max

{
||ωn||q

−

Lr(·)(RN)
, ||ωn||q

+

Lr(·)(RN)

}
− K0

≥ min{τ0, 1}
2

(
1

ϑr+
− 1

µ

)
||ωn||r

−
X

+ 2λC3

(
1
µ
− 1

q−

)
||κ||

L
r(·)

r(·)−q(·) (RN)
||ωn||q

+

X − K0

for some positive constants C2 and C3. From this, we infer

K1 + 1 + K0+2λC3

(
1
µ
− 1

q−

)
||κ||

L
r(·)

r(·)−q(·) (RN)
||ωn||q

+

X

≥ min{τ0, 1}
2

(
1

ϑr+
− 1

µ

)
||ωn||r

−
X .

Since r− > q+, we determine that {ωn} is a bounded sequence in X, and thus {ωn}
has a weakly convergent subsequence in X. Without loss of generality, we suppose that

ωn ⇀ ω0 in X as n→ ∞.

By Lemma 9, we infer that B′λ is compact, and so B′λ(ωn) → B′λ(ω0) in X as n → ∞.
Since J′λ(ωn)→ 0 as n→ ∞, we know that

〈J′λ(ωn), ωn −ω0〉 → 0 and 〈J′λ(ω0), ωn −ω0〉 → 0,

and thus
〈J′λ(ωn)− J′λ(ω0), ωn −ω0〉 → 0

as n→ ∞. From this, we have

〈A′(ωn)− A′(ω0), ωn −ω0〉
= 〈B′λ(ωn)− B′λ(ω0), ωn −ω0〉+ 〈J′λ(ωn)− J′λ(ω0), ωn −ω0〉 → 0,

namely, 〈A′(ωn) − A′(ω0), ωn − ω0〉 → 0 as n → ∞. Since X is reflexive and A′ is a
mapping of type (S+) by Lemma 8, we assert that

ωn → ω0 in X as n→ ∞.

The proof is completed
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Let W be a reflexive and separable Banach space. Then, it is known (see [53,54]) that
there are {en} ⊆W and {h∗n} ⊆W∗, such that

W = span{en : n = 1, 2, · · · }, W∗ = span{h∗n : n = 1, 2, · · · },

and

〈
h∗i , ej

〉
=

{
1 if i = j

0 if i 6= j.

Let us denote Wn = span{en}, Yk =
⊕k

n=1 Wn, and Zk =
⊕∞

n=k Wn.

Definition 3. Suppose that (W, || · ||) is a real reflexive and separable Banach space, F ∈
C1(W,R), c ∈ R. We say that F fulfills the (C)∗c -condition (with respect to Yn) if any
sequence {vn}n∈N ⊂W for which vn ∈ Yn, for any n ∈ N,

F (vn)→ c and ||(F|Yn)
′(vn)||W∗(1 + ||vn||)→ 0 as n→ ∞,

has a subsequence converging to a critical point of F .

Proposition 1 ([38]). Supposing that (W, || · ||) is a Banach space, F ∈ C1(W,R) is an even
functional. If there is k0 > 0 so that, for each k ≥ k0, there exist βk > αk > 0, such that

(D1) inf{F (v) : ||v||W = βk, v ∈ Zk} ≥ 0;
(D2) bk := max{F (v) : ||v||W = αk, v ∈ Yk} < 0;
(D3) ck := inf{F (v) : ||v||W ≤ βk, v ∈ Zk} → 0 as k→ ∞;
(D4) F fulfills the (C)∗c -condition for every c ∈ [ck0 , 0),

then F admits a sequence of negative critical values cn < 0 satisfying cn → 0 as n→ ∞.

Lemma 11. Assuming that (P), (A1)–(A2), (K1)–(K2) and (B1)–(B2) hold, Jλ satisfies the
(C)∗c condition.

Proof. Since X is a reflexive Banach space, and Φ′, Ψ′ are of type (S+), the idea of the
proof is absolutely the same as that in ([38], Lemma 3.12).

Theorem 1. Suppose that (P), (A1)–(A2), (K1)–(K2) and (B1)–(B3) hold. If g(x,−s) = −g(x, s)
holds for all (x, s) ∈ RN ×R, then the problem (1) has a sequence of nontrivial solutions {ωn} in
X such that Jλ(ωn)→ 0 as n→ ∞ for all λ > 0.

Proof. In accordance with the oddness of g and Lemma 11, one has that the functional Jλ

is even, and that it satisfies the (C)∗c condition for every c ∈ R. Hence, we will prove that
conditions (D1), (D2) and (D3) of Proposition 1 hold.

(D1): For convenience, we denote

ν1,k = sup
||ω||X=1,ω∈Zk

||ω||Lr(·)(RN), ν2,k = sup
||ω||X=1,ω∈Zk

||ω||L`(·)(RN).

Then, it is easy to verify that ν1,k → 0 and ν2,k → 0 as k → ∞(see [38]). Denote
νk = max{ν1,k, ν2,k}. Let νk < 1 for k large enough. It follows from Lemmas 1, 5, and Re-
mark 1 that
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Jλ(ω) = K
(
[ω]s,r(·,·)

)
+
∫
RN

b(x)
r(x)
|ω|r(x) dx− λ

∫
RN

κ(x)
q(x)
|ω|q(x) −

∫
RN

G(x, ω) dx

≥ min{τ0, ϑ}
ϑr+

||ω||r−X − λ
∫
RN

κ(x)
q(x)
|ω|q(x)dx−

∫
RN

G(x, ω) dx

≥ min{τ0, ϑ}
ϑr+

||ω||r+X −
2λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

max
{
||ω||q

−

Lr(·)(RN)
, ||ω||q

+

Lr(·)(RN)

}
− 2||ρ1||Lr′(·)(RN)

||ω||Lr′(·)(RN)
− ρ2

`−
max{||ω||`−L`(·)(RN)

, ||ω||`+L`(·)(RN)
}

≥ min{τ0, ϑ}
ϑr+

||ω||r+X −
2λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

ν
q−

k ||ω||
q+
X − ||ρ1||Lr′(·)(RN)

νk||ω||X −
ρ2

`−
ν`
−

k ||ω||
`+
X

≥ min{τ0, ϑ}
ϑr+

||ω||r+X −
(

2λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

+
ρ2

`−

)
ν

q−

k ||ω||
`+
X − ||ρ1||Lr′(·)(RN)

νk||ω||X

for sufficiently large k and ||ω||X ≥ 1. Choose

βk =

[(
4λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

+
2ρ2

`−

)
ν

q−

k

] 1
r−−2`+

. (6)

Let ω ∈ Zk with ||ω||X = βk > 1 for sufficiently large k. Then, there exists k0 ∈ N
such that

Jλ(ω) ≥ min{τ0, ϑ}
ϑr+

||ω||r−X −
(

2λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

+
ρ2

`−

)
ν

q−

k ||ω||
2`+
X − ||ρ1||Lr′(·)(RN)

νk||ω||X

≥ min{τ0, ϑ}
ϑr+

βr−
k − ν

q−+r−−2`+

r−−2`+

k ||ρ1||Lr′(·)(RN)

[
4λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

+
2ρ2

`−

] 1
r−−2`+

≥ 0

for all k ∈ N with k ≥ k0, because limk→∞ βk = ∞. Therefore,

inf{Jλ(ω) : ω ∈ Zk, ||ω||X = βk} ≥ 0.

(D2): Since Yk is dimensionally finite, all the norms are equivalent. Then, there are
positive constants ς1,k and ς2,k such that

ς1,k||ω||X ≤ ||ω||Lm(·)(ν,RN) and ||ω||L`(·)(RN) ≤ ς2,k||ω||X

for any ω ∈ Yk. Let ω ∈ Yk with ||ω||X ≤ 1. From (B1) and (B3), there are C1, C2 > 0
such that

G(x, t) ≥ C1ν(x)|t|m(x) − C2|t|`(x)

for almost all (x, t) ∈ RN ×R. Observe that

∫
RN

∫
RN

|ω(x)−ω(y)|r(x,y)

r(x, y)|x− y|N+sr(x,y)
dx dy ≤ C3

for some positive constant C3. Then, we have
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Jλ(ω) = K
(
[ω]s,r(·,·)

)
+
∫
RN

b(x)
r(x)
|ω|r(x)dx− λ

∫
RN

κ(x)
q(x)
|ω|q(x)dx−

∫
RN

G(x, ω) dx

≤
(

sup
0≤ξ≤C3

K(ξ)

) ∫
RN

∫
RN

|ω(x)−ω(y)|r(x,y)

r(x, y)|x− y|N+sr(x,y)
dx dy +

∫
RN

b(x)
r(x)
|ω|r(x)dx

− C1

∫
RN

ν(x)|ω|m(x)dx + C2

∫
RN
|ω|`(x) dx

≤ C4||ω||r
−

X − C1 min{||ω||m+

Lm(·)(ν,RN)
, ||ω||m−Lm(·)(ν,RN)

}+ C2 max{||ω||`−L`(·)(RN)
, ||ω||`+L`(·)(RN)

}

≤ C4||ω||r
−

X − C1 min{ςm−
1,k , ςm+

1,k }||ω||
m+

X + C2 max{ς`−2,k, ς
`+
2,k}||ω||

`−
X .

Let h(s) = C4sr− −C1 min{ςm−
1,k , ςm+

1,k }s
m+

+ C2 max{ς`−2,k, ς
`+
2,k}s

`− . Since m+ < r− < `−,
we infer h(s) < 0 for all s ∈ (0, s0) for sufficiently small s0 ∈ (0, 1). Hence, Jλ(ω) < 0 for
all ω ∈ Yk with ||ω||X = s0. Choosing αk = s0 for all k ∈ N, one has

bk := max{Jλ(ω) : ω ∈ Yk, ||ω||X = αk} < 0.

If necessary, we can change k0 to a large value, so that βk > αk > 0 for all k ≥ k0.
(D3): Because Yk ∩ Zk 6= φ and 0 < αk < βk, we have dk ≤ bk < 0 for all k ≥ k0.

For any ω ∈ Zk with ||ω||X = 1 and 0 < s < βk, one has

Jλ(sω) = K
(
[sω]s,r(·,·)

)
+
∫
RN

b(x)
r(x)
|sω|r(x)dx− λ

∫
RN

κ(x)
q(x)
|sω|q(x)dx−

∫
RN

G(x, sω) dx

≥ min{τ0, ϑ}
ϑr+

||sω||r+X −
2λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

max
{
||sω||q

−

Lr(·)(RN)
, ||sω||q

+

Lr(·)(RN)

}
− 2||ρ1||Lr′(·)(RN)

||sω||Lr(·)(RN) −
ρ2

`−
max{||sω||`−L`(·)(RN)

, ||sω||`+L`(·)(RN)
}

≥ − 2λ

q−
||κ||

L
`(·)

`(·)−q(·) (RN)

β
q+

k ν
q−

k − 2||ρ1||Lr′(·)(RN)
βkνk −

ρ2

`−
β`+

k ν`
−

k

for sufficiently large k. Hence, it follows from the definition of βk that

ck ≥ −
2λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

β
q+

k ν
q−

k −
ρ2

`−
β`+

k ν`
−

k

= − 2λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

[
4λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

+
2ρ2

`−

] q+

r−−2`+

ν
q−q++q−(r−−2`+)

r−−2`+

k

− 2||ρ1||Lr′(·)

[
4λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

+
2ρ2

`−

] 1
r−−2`+

ν
q−+r−−2`+

r−−2`+

k

− ρ2

`−

[
4λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

+
2ρ2

`−

] `+

r−−2`+

ν
q−`++`−(r−−2`+)

r−−2`+

k . (7)

Because r− < `+, q+ + r− < 2`+, q−`+ + `−r− < 2`−`+ and νk → 0 as k → ∞, we
conclude that limk→∞ ck = 0.

Consequently, all conditions of Proposition 1 are verified, and we assert that problem
(1) admits a sequence of nontrivial solutions {ωn} in X such that Jλ(ωn)→ 0 as n→ ∞ for
all λ > 0.

Remark 2. From the viewpoint of [23,38,44,48], the conditions ( f 1) and ( f 2) are essential in
obtaining Theorem 1. Under these two assumptions, the existence of two sufficiently large sequences
0 < αk < βk is established in papers [23,38,44]. Regrettably, by utilizing the analogous argument
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as in [38], we cannot show the property (D3) in Theorem 1. More precisely, if we change βk in
(6) into

β̃k =

[(
4λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

+
2ρ2

`−

)
ν

q−

k

] 1
r−−`+

and t+ + r− > `+, then in relation (7),

β̃t+
k νt−

k =

[
4λ

q−
||κ||

L
r(·)

r(·)−q(·) (RN)

+
2ρ2

`−

] t+
r−−`+

ν
t−(t++r−−`+)

r−−`+
k → ∞ as k→ ∞,

and thus we cannot obtain the property (D3) in β̃k. However, the authors in [23,44,52] overcome this
difficulty with a new setting for βk. In contrast, the existence of two sequences 0 < αk < βk → 0
as k→ ∞ is obtained in [30,46,47] when ( f 1) is satisfied. On the other hand, we obtain Theorem 1
when ( f 1) and ( f 2) are not assumed. From this perspective, the proof of Theorem 1 is different from
that of recent works [23,30,38,44,46–48].

4. Conclusions

In this paper, on a new class of nonlinear term g, we give the existence results of a
sequence of infinitely many energy solutions by employing the dual fountain theorem.
When we verify assumptions in the dual fountain theorem, the conditions on the nonlinear
term g near zero and at infinity are essential, however, we obtain our main result without
assuming them. This is a novelty of the present paper. Additionally, we address to the
readers several comments and perspectives.

I. We point out that with a similar analysis, our main consequences continue to hold
when Lω in (1) is changed into any non-local integro-differential operator LL, defined
pointwise as

LLω(x) = 2
∫
RN
|ω(x)−ω(y)|r(x,y)−2(ω(x)−ω(y))L(x, y)dy for all x ∈ RN ,

where L : RN ×RN → (0,+∞) is a kernel function satisfying the properties

(L1) mL ∈ L1(RN ×RN), where m(x, y) = min{|x− y|r(x,y), 1};
(L2) there exists a positive constant θ0 such that L(x, y)|x− y|N+sr(x,y) ≥ θ0 for almost all

(x, y) ∈ RN ×RN and x 6= y, where 0 < s < 1;
(L3) L(x, y) = L(y, x) for all (x, y) ∈ RN ×RN .

II. A new research direction that has a strong relationship with several related applica-
tions is the study of critical double-phase-type equations

(−∆)s
r(·)ω + (−∆)s

p(·)ω + b(x)(|ω|r(x)−2ω + |ω|p(x)−2ω)

= λκ(x)|ω|q(x)−2ω + g(x, ω) in RN ,

where r(x) < p(x) for all x ∈ RN and {x ∈ RN : q(x) = r∗s (x)} 6= ∅.
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