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Abstract: Chemical graph theory (CGT) is a field of mathematical science that applies classical graph
theory to chemical structures and processes. Chemical graphs are the principal data format used in
cheminformatics to illustrate chemical interactions. Several researchers have addressed boundary-
value problems using star graphs. Star graphs were used since their method requires a central point
linked to other vertices but not to itself. Our objective is to expand the mechanism by introducing
the idea of an isobutane graph that has the chemical formula C4H10 and CAS number 75-28-5. By
using the appropriate fixed point theory findings, this paper investigates the existence of solutions to
fractional boundary value problems of Caputo type on such graphs. Additionally, two examples are
provided to strengthen our important conclusions.
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1. Introduction and Preliminaries

The link between graph theory and chemistry has evolved significantly over time.
Numerous investigations relating to both subjects have shown robust linkages between
them, resulting in the formation of the research field known as chemical graph theory
(shortly CGT) (for detail, see [1]). Chemical graphs were initially mentioned in the late
eighteenth century, when Isaac Newton’s concepts influenced the way chemistry was seen
(see [1]). Although research on the relationships of atoms accelerated over that century,
the chemical bonds remained unknown. Thus, chemical graphs were first used to describe
hypothetical forces between molecules and atoms.

CGT uses graph theory to describe molecules in order to explore their many phys-
ical characteristics. A graph G = (V,E) is composed of a set V of vertices (or nodes)
and a set E of unordered pairs of different components of V that constitute the edges.
The vertices denote the atoms in a molecule in chemistry, whereas the edges represent the
chemical bonds.

John Dalton devised the initial atomic model in 1805 by associating various atom kinds
with distinct rings that can only represent the chemical positions and quantities of atoms in
a compound (for detail, see [2,3]). August Kékule, on the other hand, demonstrated both
the physical and orientational locations of atoms inside a molecule. He categorized many
organic compounds and showed the bonding arrangements between particles in his model
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related to the “Tetrahedral Carbon Atom (see Figure 1)”, which featured the benzene ring
(see [4]).

Figure 1. A sketch of a tetrahedral carbon atom model.

Alexander Butlerov coined the phrase “molecular structure” in 1861, implying that any
compound should have a rigid molecular composition. This phrase referred to a number of
the compounds’ chemical features (for detail, see [5]). The line depiction of atomic bonds
was originally used in [6] as a different interpretation paradigm. However, since these lines
represented merely interatomic forces and not individual bonds, Couper’s work is credited
with being the first graphical depiction of a chemical bond (see [7]). The molecular formula
for acetic acid was established and represented chemically as a framework with geometric
shapes linking the atoms in a molecule to symbolize chemical bonds (Figure 2). To learn
more, the reader can refer to [8–10] and the references therein.

Figure 2. A chemical and structural representation of acetic acid.

On the other hand, there has been considerable conceptual and practical progress lately
in the subject of differential equations (see [11–14]). Many fields, including engineering,
physics, and ecology, make use of differential equations on graphs. A graph G is a pair
(A(G), B(G)) consisting of nodes A(G) := {υ` : ` = 0, 1, 2, . . . } and the edges B(G) :=
{eı : ı = 1, 2, 3, . . . } that link them (see Figure 3), which may be either finite or countably
infinite in dimension. Local coordinates are defined on each edge (of a certain length),
with the origin located at a specific node.
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Figure 3. A sketch of a graph with three edges and four vertices.

The majority of studies on fractional calculus in the context of specific functions focus
on the solution of differential equations (for detail, see [15–19]). A number of new papers
have recently been published focusing on nonlinear fractional differential equations and
their solutions, utilizing techniques including Leray–Schauder theorem, stability analysis,
and fixed-point analysis (see [20–23]).

Lumer [24] pioneered the use of differential equation theory in graphs. He explored
extended evolution equations by modifying specified operators on ramification spaces.
In 1989, Zavgorodnij investigated the solution to the boundary value problem using a
geometric structure defined at its inner nodes (see [25]). When finding computational
solutions for the given differential equations, Gordeziani et al. used the double-sweep
approach to obtain results (see [26]). In the literature, only a tiny amount of research has
been carried out on star graphs (see Figure 4) linked with boundary value problems using
specific fixed point methodologies (see [27,28]). We refer to [29–36] and the references
therein for the current study in this area.

Figure 4. A sketch of a star graph with a junction node υ0 and k edges.

The techniques described in [27,28] for detecting the origin at vertices other than the
junction node are unsuitable, as graphs typically have many junction points (for examples,
see Figures 5 and 6).
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Figure 5. Example of a non-star graph with many junction nodes.

Figure 6. Chemical bond of an isobutane compound C4H10.

In [27,28], the authors framed the length of each edge as a parameter, but the size of
all sides may be assumed constant from the initial stages of the computation. To solve this
problem, we used a specific strategy in which we gave numerical values (0 or 1) to the
vertices of the suggested graph G with edge length | p̃τ | = 1 (see Figure 7).

Figure 7. Isobutane compound graph with edge length | p̃τ | = 1 and vertices 0 or 1.
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Thus, the label for each vertex is determined by the direction of each associated edge.
Consequently, some vertices can also be labeled by 0 or 1, while the length of every edge is
not fixed. It changes based on the rotational path along the boundary. Standardizing the
length of each edge with the given alteration is not required, as we can use comparable
methods to choose one of the two vertices of the linked edge as the origin.

Contrarily, various sophisticated fractional modeling strategies are covered in the
research, including (but not confined to) the well-known Riemann–Liouville and Caputo
operators (for detail, see [37–44]). The Caputo–Hadamard, Hadamard, and Hilfer operators
have undergone a number of notable changes this decade, and many modeling projects
have used these new operators (for more detail, see [45–49]). Six years ago, Caputo and
Fabrizio, in [50], proposed an updated version of a fractional paradigm without a singularity.
Nieto and Losada focused on important mathematical facets in the immediate aftermath
of this work. Numerous studies on fractional modeling were published after nonsingular
operators were included (see [51–54] and references therein).

Using the study described above, we explored the existence of solutions to the system,
for each τ = 1, 2, . . . , 13, stated below:

Dmvτ(s) = Rτ(s, vτ(s),Dnvτ(s), v′τ(s)) (s ∈ [0, 1]),

vτ(0) = Dm−1vτ(1), η1D
nvτ(1) + η2D2nvτ(1) = η3

∫ u

0
Dm−1vτ(θ)dθ,

(1)

where vτ : [0, 1] → R is an unknown function, Dm and Dn are the Caputo fractional
derivatives of m ∈ (1, 2], m− 1 ∈ (0, 1] and n ∈ (0, 1) orders, respectively, and D2n is the
sequential fractional derivative. Furthermore, ηκ ∈ R (κ = 1, 2, 3) with ηκ 6= 0, u ∈ (0, 1),
and Rτ : [0, 1]×R×R×R → R is a given function that is continuously differentiable,
where τ = 13 represents the total number of edges of the isobutane compound with length
| p̃τ | = 1.

This paper analyzes the link between the framework of fractional boundary value
problems (1) and the isobutane graph (see Figure 6), as mentioned above. The rising popu-
larity of CGT is the critical impetus for this study. This branch of mathematics examines
how bond lines and inter-atomic interactions affect the results of chemical processes. These
new applications can be seen in chemical kinetics and biomacromolecules.

The next sections will need the notable results stated below.

Definition 1 ([55]). The Caputo fractional derivative of order ℘ > 0 for a function H ∈
Cχ([a, b],R) is given by

D℘H(s) =
1

Γ(χ− ℘)

∫ s

0
(s− θ)χ−℘−1H(χ)(θ)dθ (χ− 1 < ℘ < χ, χ = [℘] + 1),

where [℘] represents the integer part of ℘.

For ℘ > 0, the general solution of D℘v(s) = 0 is defined by

v(s) = d0 + d1s + d2s2 + · · ·+ dn−1sn−1,

where dk ∈ R, k = 0, 1, ..., n− 1.

Definition 2 ([14]). The sequential fractional derivative for a sufficiently smooth functionH(s) is
defined as

D$H(s) = D$1D$2 · · · D$`H(s), (2)

where $ = ($1, . . . , $`) is a multi-index.
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Generally, D$ as specified in (2) may typically be either a Caputo operator, a Riemann–
Liouville operator, or another kind of integro–differential operator. For instance,

CD℘H(s) = D−(n−℘)
(

d
ds

)n
H(s), n− 1 < ℘ < n,

whereas D−(n−℘) represents a fractional integral operator of order n− ℘.

Lemma 1. Suppose that Υ ∈ C([0, 1],R). Then, v? : [0, 1] → R is a solution of the subsequent
problem:

Dmv(s) = Υ(t) (s ∈ [0, 1]),

v(0) = Dm−1v(1), η1D
nv(1) + η2D2nv(1) = η3

∫ u

0
Dm−1v(θ)dθ,

(3)

if v? is a solution of the integral equation given below:

v(s) =
∫ s

0

(s− θ)m−1

Γ(m)
Υ(θ)dθ +

∫ 1

0
Υ(θ)dθ

+
1

A0

(
1

Γ(3−m)
+ s
)[

η3

∫ u

0

∫ θ

0
Υ(ζ)dζdθ − η2

∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
Υ(θ)dθ

−η1

∫ 1

0

(1− θ)m−n−1

Γ(m− n)
Υ(θ)dθ

]
, (4)

where A0 =
[

η1
Γ(2−n) +

η2
Γ(2−2n) −

η3u3−m

Γ(4−m)

]
.

Proof. Assume that v? : [0, 1]→ R is a solution of (3). Thus, there exist constants d0, d1 ∈ R
such that

v?(s) =
∫ s

0

(s− θ)m−1

Γ(m)
Υ(θ)dθ + d0 + d1s. (5)

From the above, we obtain

Dm−1v(s) =
∫ s

0
Υ(θ)dθ +

s2−m

Γ(3−m)
d1,

and ∫ u

0
Dm−1v(θ)dθ =

∫ u

0

∫ θ

0
Υ(ζ)dζdθ +

u3−m

Γ(4−m)
d1.

Using the first boundary condition, we have

d0 =
∫ 1

0
Υ(θ)dθ +

1
Γ(3−m)

d1. (6)

From the second boundary condition, we obtain

d1 =
1

A0

[
η3

∫ u

0

∫ θ

0
Υ(ζ)dζdθ − η2

∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
Υ(θ)dθ

−η1

∫ 1

0

(1− θ)m−n−1

Γ(m− n)
Υ(θ)dθ

]
.
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Now, by substituting the value of d1 into (6), we obtain

d0 =
∫ 1

0
Υ(θ)dθ +

(
1

A0Γ(3−m)

)[
η3

∫ u

0

∫ θ

0
Υ(ζ)dζdθ

−η2

∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
Υ(θ)dθ − η1

∫ 1

0

(1− θ)m−n−1

Γ(m− n)
Υ(θ)dθ

]
.

Hence, substituting the values of d0, d1 into (5), we attain the solution (4). Conversely,
it is obvious that v? satisfies (3) whenever it is a solution of (4).

Our goal is to show that (1) has a solution using the following fixed point theory
concepts.

Theorem 1 ([56]). LetM be a Banach space. If T :M→M is a completely continuous operator,
then either {v ∈ M : v = bT v for some 0 < b < 1} is unbounded or T has at least one fixed point
inM.

Theorem 2 ([56]). Let V be a closed, bounded, convex, and nonempty subset of Banach spaceM
and T1, T2 : V →M be two operators such that T1k + T2k′ ∈ V whenever k, k′ ∈ V , where T1 is
compact and continuous and T2 is a contraction mapping; that is, there is a γ? ∈ [0, 1) such that

‖T2k− T2k̃‖ ≤ γ?‖k− k̃‖,

for all k, k̃ ∈ V . Then, T1 + T2 has a fixed point.

2. Main Results

Define M̃ = {v : [0, 1] → R : v,Dnv, v′ ∈ C([0, 1],R)} as a Banach space with the
norm

‖v‖M̃ = sup
s∈[0,1]

|v(s)|+ sup
s∈[0,1]

|Dnv(s)|+ sup
s∈[0,1]

∣∣v′(s)∣∣.
It is obvious thatM = M̃13 is a Banach space equipped with the norm

‖v = (v1, v2, . . . , v13)‖M =
13

∑
τ=1
‖vτ‖M̃τ

.

From Lemma 1, we can introduce an operator T :M→M for each (v1, v2, . . . , v13) ∈
M defined by

T (v1, v2, . . . , v13) := (T1(v1, v2, . . . , v13), T2(v1, v2, . . . , v13), . . . , T13(v1, v2, . . . , v13)), (7)

for each τ = 1, 2, . . . , 13, where Tτ :M→ M̃ is defined for each (v1, v2, . . . , v13) ∈ M by

Tτ(v1, v2, . . . , v13)(s) =
∫ s

0

(s− θ)m−1

Γ(m)
Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))dθ

+
∫ 1

0
Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))dθ

+
1

A0

(
1

Γ(3−m)
+ s
)[

η3

∫ u

0

∫ θ

0
Rτ(ζ, vτ(ζ),Dnvτ(ζ), v′τ(ζ))dζdθ

−η2

∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))dθ

−η1

∫ 1

0

(1− θ)m−n−1

Γ(m− n)
Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))dθ

]
, (8)

for all s ∈ [0, 1].
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We shall use the following notation to make computations easier:

∆∗ =
η1

Γ(2− n)
+

η2

Γ(2− 2n)
(9)

∆̃∗ =
|η3|

2
+

|η2|
Γ(m− 2n + 1)

+
|η1|

Γ(m− n + 1)
(10)

A0 =

[
∆∗ − η3u3−m

Γ(4−m)

]
6= 0 (11)

A1 =

[
∆∗ +

η3

Γ(4−m)

]
6= 0 (12)

V∗0 = 1 +
∆̃∗

|A1|

(
1

Γ(3−m)
+ 1
)

(13)

V∗1 =
1

|A1|Γ(2− n)
∆̃∗ (14)

V∗2 =
1
|A1|

∆̃∗. (15)

M∗
0 =

1
Γ(m + 1)

+ V∗0 (16)

M∗
1 =

1
Γ(m− n + 1)

+ V∗1 (17)

M∗
2 =

1
Γ(m)

+ V∗2 (18)

Theorem 3. Consider the problem (1). Assume thatR1,R2, . . . ,R13 : [0, 1]×R×R×R→ R
are continuous functions and there are Ξτ > 0 (∀τ = 1, 2, . . . , 13) such that |Rτ(s, v, ṽ, ˜̃v)| ≤ Ξτ ,
for all s ∈ [0, 1] and v, ṽ, ˜̃v ∈ R. Then, problem (1) has a solution.

Proof. The integral Equation (8) implies that the fixed points of T described by (7) exist
if and only if (1) has a solution. To establish this, we must first demonstrate that T is
completely continuous.

SinceR1,R2, . . . ,R13 are continuous, T :M→M is continuous too. Let O ∈ M be
a bounded set and v = (v1, v2, . . . , v13) ∈ M. For each s ∈ [0, 1], we have

|(Tτv)(s)|

≤
∫ s

0

(s− θ)m−1

Γ(m)

∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))
∣∣dθ +

∫ 1

0

∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))
∣∣dθ

+
1
|A0|

(
1

Γ(3−m)
+ s
)
×
[
|η3|

∫ u

0

∫ θ

0

∣∣Rτ(ζ, vτ(ζ),Dnvτ(ζ), v′τ(ζ))
∣∣dζdθ

+|η2|
∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

+|η1|
∫ 1

0

(1− θ)m−n−1

Γ(m− n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

]
≤ ΞτM∗

0 ,

whereM∗
0 is given in (16). In addition,

|(DnTτv)(s)|

≤
∫ s

0

(s− θ)m−n−1

Γ(m− n)
|Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))|dθ

+

(
s1−n

|A0|Γ(2− n)

)
×
[
|η3|

∫ u

0

∫ θ

0

∣∣Rτ(ζ, vτ(ζ),Dnvτ(ζ), v′τ(ζ))
∣∣dζdθ
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+|η2|
∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

+|η1|
∫ 1

0

(1− θ)m−n−1

Γ(m− n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

]
≤ ΞτM∗

1

and ∣∣(T ′τ v)(s)
∣∣ ≤ ∫ s

0

(s− θ)m−2

Γ(m− 1)
|Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))|dθ

+

(
1
|A0|

)
×
[
|η3|

∫ u

0

∫ θ

0

∣∣Rτ(ζ, vτ(ζ),Dnvτ(ζ), v′τ(ζ))
∣∣dζdθ

+|η2|
∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

+|η1|
∫ 1

0

(1− θ)m−n−1

Γ(m− n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

]
= ΞτM∗

2 ,

whereM∗
1 ,M∗

2 are given in (17) and (18), respectively, and for all s ∈ [0, 1]. Therefore,

‖(Tτv)(s)‖Mτ
≤ Ξτ(M∗

0 +M∗
1 +M∗

2).

Hence,

‖(T v)(s)‖M =
13

∑
τ=1
‖(Tτv)(s)‖M̃

≤
13

∑
τ=1

Ξτ(M∗
0 +M∗

1 +M∗
2)

< ∞,

which demonstrates the uniform boundedness of the operator T .
Now, we shall show that T is equicontinuous. For this, let v = (v1, v2, . . . , v13) ∈ O

and s1, s2 ∈ [0, 1] with s1 < s2. Then, we have

|(Tτv)(s2)− (Tτv)(s1)|

≤
∫ s1

0

(s2 − θ)m−1 − (s1 − θ)m−1

Γ(m)
|Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))|dθ

+
∫ s2

s1

(s2 − θ)m−1

Γ(m)
|Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))|dθ

+

(
s2 − s1

|A1|

)
×
[
|η3|

∫ u

0

∫ θ

0

∣∣Rτ(ζ, vτ(ζ),Dnvτ(ζ), v′τ(ζ))
∣∣dζdθ

+|η2|
∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

+|η1|
∫ 1

0

(1− θ)m−n−1

Γ(m− n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

]
.

It is clear that, if s1 → s2 then the R.H.S of the above expression converges to zero
independently. Thus,

lim
s1→s2

|(DnTτv)(s2)− (DnTτv)(s1)| = 0, lim
s1→s2

∣∣(T ′τ w)(s2)− (T ′τ w)(s1)
∣∣ = 0.
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This reveals that ‖(T v)(s2)− (T v)(s1)‖M → 0 as s1 → s2. This proves that T is
equicontinuous onM =M1 ×M2 × · · · ×M13. The Arzela–Ascoli theorem now entails
the operator’s complete continuity.

Further, we have

Θ := {(v1, v2, . . . , v13) ∈ M : (v1, v2, . . . , v13) = bT (v1, v2, . . . , v13), b ∈ (0, 1)}

ofM. We shall prove that Θ is bounded in this section. For this, let (v1, v2, . . . , v13) ∈ Θ.
Then, we can write

(v1, v2, . . . , v13) = bT (v1, v2, . . . , v13),

and so
vτ(s) = b(Tτ(v1, v2, . . . , v13)),

for all s ∈ [0, 1] and τ = 1, 2, . . . , 13. Thus,

|vτ(s)| ≤ b
[∫ s

0

(s− θ)m−1

Γ(m)

∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))
∣∣dθ +

∫ 1

0

∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))
∣∣dθ

+
1
|A0|

(
1

Γ(3−m)
+ s
)
×
[
|η3|

∫ u

0

∫ θ

0

∣∣Rτ(ζ, vτ(ζ),Dnvτ(ζ), v′τ(ζ))
∣∣dζdθ

+|η2|
∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

+|η1|
∫ 1

0

(1− θ)m−n−1

Γ(m− n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

]]
≤ bΞτM∗

0 ,

and by similar computations, we have

|Dnvτ(s)| ≤ bΞτM∗
1 ,∣∣v′τ(s)∣∣ ≤ bΞτM∗
2 ,

whereM∗
0 −M∗

2 are given in (16)–(18). Hence,

‖v‖M =
13

∑
τ=1
‖vτ‖M̃

≤ b
13

∑
τ=1

Ξτ(M∗
0 +M∗

1 +M∗
2)

< ∞,

which shows that Θ is bounded. We can now verify that T has a fixed point inM and that
(1) has a solution by using Lemma 1 and Theorem 1.

We shall now look at the solution to problem (1) by putting different conditions.

Theorem 4. Consider the problem (1). Supposing thatR1,R2, . . . ,R13 : [0, 1]×R×R×R→
R are continuous functions and that there are bounded continuous functions Z1,Z2, . . . ,Z13 :
[0, 1] → R, Q1,Q2, . . . ,Q13 : [0, 1] → [0, ∞) and nondecreasing continuous functions
U1,U2, . . . ,U13 : [0, 1] → [0, ∞) such that |Rτ(s, v, ṽ, ˜̃v)| ≤ Qτ(s)Uτ(|v| + |ṽ| + | ˜̃v|) and
∀s ∈ [0, 1], v1, v2, v3, ṽ1, ṽ2, ṽ3 ∈ R with τ = 1, 2, . . . , 13, we have

|Rτ(s, v1, v2, v3)−Rτ(s, ṽ1, ṽ2, ṽ3)| ≤ Zτ(s)(|v1 − ṽ1|+ |v2 − ṽ2|+ |v3 − ṽ3|).

If Λ :=
(
V∗0 + V∗1 + V∗2

) 13
∑

τ=1
‖Zτ‖ < 1, then (1) has a solution, where ‖Zτ‖ = sups∈[0,1]

|Zτ(s)| and the constants V∗0 –V∗2 are given in (13)–(15), respectively.
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Proof. We let ‖Qτ‖ = sups∈[0,1]|Qτ(s)|. As for κτ , we have

κτ ≥
13

∑
τ=1
Uτ

(
‖vτ‖Mτ

)
‖Qτ‖{M∗

0 +M∗
1 +M∗

2}, (19)

whereM∗
0 −M∗

2 are given in (16)–(18). We define a set

Oκτ := {v = (v1, v2, . . . , v13) ∈ M : ‖v‖M ≤ κτ},

where κτ is defined in (19). It is clear that Oκτ is a nonempty, closed, bounded, and convex
subset ofM =M1 ×M2 × · · · ×M13. Now, we define T1 and T2 on Oκτ by

T1(v1, v2, . . . , v13)(s) :=
(
T (1)

1 (v1, v2, . . . , v13)(s), . . . , T (13)
1 (v1, v2, . . . , v13)(s)

)
,

T2(v1, v2, . . . , v13)(s) :=
(
T (1)

2 (v1, v2, . . . , v13)(s), . . . , T (13)
2 (v1, v2, . . . , v13)(s)

)
,

where (
T (τ)

1 v
)
(s) =

∫ s

0

(s− θ)m−1

Γ(m)
Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))dθ (20)

and(
T (τ)

2 v
)
(s) =

∫ 1

0
Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))dθ

+
1

A0

(
1

Γ(3−m)
+ s
)[

η3

∫ u

0

∫ θ

0
Rτ(ζ, vτ(ζ),Dnvτ(ζ), v′τ(ζ))dζdθ

−η2

∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))dθ

−η1

∫ 1

0

(1− θ)m−n−1

Γ(m− n)
Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))dθ

]
(21)

for all s ∈ [0, 1] and v = (v1, v2, . . . , v13) ∈ Oκτ .
Let Ũτ = supvτ∈Mτ

Uτ

(
‖vτ‖Mτ

)
. For every ṽ = (ṽ1, ṽ2, . . . , ṽ13), v = (v1, v2, . . . , v13)

∈ Oκτ , we have∣∣∣(T (τ)
1 ṽ + T (τ)

2 v
)
(s)
∣∣∣

≤
∫ s

0

(s− θ)m−1

Γ(m)
|Rτ(θ, ṽτ(θ),Dnṽτ(θ), ṽ′τ(θ))|dθ +

∫ 1

0

∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))
∣∣dθ

+
1
|A0|

(
1

Γ(3−m)
+ s
)
×
[
|η3|

∫ u

0

∫ θ

0

∣∣Rτ(ζ, vτ(ζ),Dnvτ(ζ), v′τ(ζ))
∣∣dζdθ

+|η2|
∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

+|η1|
∫ 1

0

(1− θ)m−n−1

Γ(m− n)
∣∣Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))

∣∣dθ

]
≤

∫ s

0

(s− θ)m−1

Γ(m)
Qτ(θ)Uτ

(
|ṽτ(θ)|+ |Dnṽτ(θ)|+

∣∣ṽ′τ(θ)∣∣)dθ

+
∫ 1

0
Qτ(θ)Uτ

(
|vτ(θ)|+ |Dnvτ(θ)|+

∣∣v′τ(θ)∣∣)dθ

+
1
|A0|

(
1

Γ(3−m)
+ s
)
×
[
|η3|

∫ u

0

∫ θ

0
Qτ(ζ)Uτ

(
|vτ(ζ)|+ |Dnvτ(ζ)|+

∣∣v′τ(ζ)∣∣)dζdθ

+|η2|
∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
Qτ(θ)Uτ

(
|vτ(θ)|+ |Dnvτ(θ)|+

∣∣v′τ(θ)∣∣)dθ
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+|η1|
∫ 1

0

(1− θ)m−n−1

Γ(m− n)
Qτ(θ)Uτ

(
|vτ(θ)|+ |Dnvτ(θ)|+

∣∣v′τ(θ)∣∣)dθ

]
≤ ‖Qτ‖ŨτM∗

0 .

By similar computations, we have∣∣∣DnT (τ)
1 ṽ(s) +DnT (τ)

2 v(s)
∣∣∣ ≤ ‖Qτ‖ŨτM∗

1 ,

and ∣∣∣∣(T (τ)
1 ṽ

)′
(s) +

(
T (τ)

2 v
)′
(s)
∣∣∣∣ ≤ ‖Qτ‖ŨτM∗

2 .

This yields that

‖T1ṽ + T2v‖M =
13

∑
τ=1

∥∥∥T (τ)
1 ṽ + T (k)

2 v
∥∥∥
M̃
≤ ‖Qτ‖Ũτ(M∗

0 +M∗
1 +M∗

2) ≤ κτ ,

and so T1ṽ + T2v ∈ Oκτ . Furthermore, the continuity ofRτ follows from the continuity of
T1.

Now, we shall show that T1 is uniformly bounded. As for this purpose, we have∣∣∣(T (τ)
1 v

)
(s)
∣∣∣ ≤ ∫ s

0

(s− θ)m−1

Γ(m)
|Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))|dθ

≤ 1
Γ(m + 1)

‖Qτ‖Uτ

(
|vτ(θ)|+ |Dnvτ(θ)|+

∣∣v′τ(θ)∣∣).
for all v ∈ Oκτ . In addition,∣∣∣(DnT (τ)

1 v
)
(s)
∣∣∣ ≤ ∫ s

0

(s− θ)m−n−1

Γ(m− n)
|Rτ(θ, vτ(θ),Dnvτ(θ), v′τ(θ))|dθ

≤ 1
Γ(m− n + 1)

‖Qτ‖Uτ

(
|vτ(θ)|+ |Dnvτ(θ)|+

∣∣v′τ(θ)∣∣),
and ∣∣∣∣(T (τ)

1 v
)′
(s)
∣∣∣∣ ≤ 1

Γ(m)
‖Qτ‖Uτ

(
|vτ(θ)|+ |Dnvτ(θ)|+

∣∣v′τ(θ)∣∣),
for all w ∈ Oκτ . Thus,

‖T1v‖M =
13

∑
τ=1

∥∥∥T (τ)
1 w

∥∥∥
M̃

≤
{

m + 1
Γ(m + 1)

+
1

Γ(m− n + 1)

} 13

∑
τ=1
‖Qτ‖Uτ(‖vτ‖M̃),

which shows that T1 is uniformly bounded on Oκτ .
Now, we shall demonstrate that T1 is compact on Oκτ . For this, let s1, s2 ∈ [0, 1] with

s1 < s2. Then, we have∣∣∣(T (τ)
1 v

)
(s2)−

(
T (k)

1 v
)
(s1)

∣∣∣ ≤ ∣∣∣∣∫ s2

0

(s2 − θ)m−1

Γ(m)
Rτ

(
θ, vτ(θ),Dnvτ(θ), v′τ(θ)

)
dθ

−
∫ s1

0

(s1 − θ)m−1

Γ(m)
Rτ

(
θ, vτ(θ),Dnvτ(θ), v′τ(θ)

)
dθ

∣∣∣∣
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≤
∣∣∣∣∫ s1

0

(s2 − θ)m−1 − (s1 − θ)m−1

Γ(m)
Rτ

(
θ, vτ(θ),Dnvτ(θ), v′τ(θ)

)
dθ

∣∣∣∣
+

∣∣∣∣∫ s2

s1

(s2 − θ)m−1

Γ(m)
Rτ

(
θ, vτ(θ),Dnvτ(θ), v′τ(θ)

)
dθ

∣∣∣∣
≤

∫ s1

0

(s2 − θ)m−1 − (s1 − θ)m−1

Γ(m)

∣∣Rτ

(
θ, vτ(θ),Dnvτ(θ), v′τ(θ)

)∣∣dθ

+
∫ s2

s1

(s2 − θ)m−1

Γ(m)

∣∣Rτ

(
θ, vτ(θ),Dnvτ(θ), v′τ(θ)

)∣∣dθ

≤
{

sm
2 − sm

1 − (s2 − s1)
m

Γ(m + 1)
+

(s2 − s1)
m

Γ(m + 1)

}
‖Qτ‖Uτ

(
‖vτ‖Mτ

)
.

Hence,
∣∣∣(T (τ)

1 v
)
(s2)−

(
T (τ)

1 v
)
(s1)

∣∣∣→ 0 as s1 → s2. In addition, we have

lim
s1→s2

∣∣∣(DnT (τ)
1 v

)
(s2)−

(
DnT (τ)

1 v
)
(s1)

∣∣∣ = 0, lim
s1→s2

∣∣∣∣(T (τ)
1 v

)′
(s2)−

(
T (τ)

1 v
)′
(s1)

∣∣∣∣ = 0.

Hence, ‖(T1v)(s2)− (T1v)(s1)‖M tends to zero as s1 → s2. Thus, T1 is equicontinuous
and therefore T1 is a relatively compact operator on Oκτ . Hence, T is compact on Oκτ

according to the Arzela–Ascoli theorem.
Lastly, it remains to prove that T2 is a contraction. To show this, let ṽ, v ∈ Oκτ ; then,∣∣∣(T (τ)

2 ṽ
)
(s)−

(
T (τ)

2 v
)
(s)
∣∣∣

≤
∫ 1

0
Zτ(θ)

(
|ṽτ(θ)− vτ(θ)|+ |Dnṽτ(θ)−Dnvτ(θ)|+

∣∣ṽ′τ(θ)− v′τ(θ)
∣∣)dθ

+
1

A0

(
1

Γ(3−m)
+ s
)[

η3

∫ u

0

∫ θ

0
Zτ(ζ)(|ṽτ(ζ)− vτ(ζ)|

+|Dnṽτ(ζ)−Dnvτ(ζ)|+
∣∣ṽ′τ(ζ)− v′τ(ζ)

∣∣)dζdθ

+η2

∫ 1

0

(1− θ)m−2n−1

Γ(m− 2n)
Zτ(θ)(|ṽτ(θ)− vτ(θ)|+ |Dnṽτ(θ)−Dnvτ(θ)|

+
∣∣ṽ′τ(θ)− v′τ(θ)

∣∣)dθ + η1

∫ 1

0

(1− θ)m−n−1

Γ(m− n)
Zτ(θ)(|ṽτ(θ)− vτ(θ)|

+|Dnṽτ(θ)−Dnvτ(θ)|+
∣∣ṽ′τ(θ)− v′τ(θ)

∣∣)dθ

]
≤ ‖Zτ‖V∗0 ‖ṽτ − vτ‖M̃

for each τ = 1, 2, . . . , 13,, where V∗0 is given in (13). In addition, by similar computations,
we have

sup
s∈[0,1]

∣∣∣(DnT (τ)
2 ṽ

)
(s)−

(
DnT (τ)

2 v
)
(s)
∣∣∣ ≤ ‖Zτ‖V∗1 ‖ṽτ − vτ‖M̃,

and

sup
s∈[0,1]

∣∣∣∣(T (τ)
2 ṽ

)′
(s)−

(
T (τ)

2 v
)′
(s)
∣∣∣∣ ≤ ‖Zτ‖V∗2 ‖ṽτ − vτ‖M̃,

where V∗1 and V∗2 are given in (14) and (15), respectively. Thus, we have

‖T2ṽ− T2v‖M =
13

∑
τ=1

∥∥∥T (τ)
2 ṽ− T (τ)

2 v
∥∥∥
M̃
≤ (V∗0 + V∗1 + V∗2 )

13

∑
τ=1
‖Zτ‖‖ṽτ − vτ‖M̃,

and so
‖T2ṽ− T2v‖M ≤ Λ‖ṽ− v‖M̃.
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Since Λ < 1, T2 is a contraction on Oκτ , we deduce that T has a fixed point that is a
solution to problem (1) as a consequence of Theorem 2.

3. Some Illustrative Examples

The conclusions of the proposed model (1) regarding the existence of solutions can be
interpreted in several ways in relation to organic chemistry, which is the study’s underlying
assumption. Any solution, say vτ , at any edge (p̃τ) may thus represent the bond polarity,
strength, energy, etc. Additionally, several chemical concepts can be interpreted in this
way by the integer and fractional-order derivatives of the unknown functions, while
Dn’s nonlocal character allows it to analyze the velocity of chemical interactions during a
particular time interval [0, 1]. Moreover,Rτ is defined as functions of such quantities with
respect to the time t ∈ [0, 1] on each edge p̃τ , τ ∈ {1, 2, 3, . . . , 13}.

Here, we provide two examples to demonstrate the relevance of our findings.

Example 1. Consider the boundary value problem

D1.8v1(s) =
18es[v1(s)]2

60000(1 + [v1(s)]2)
+ 0.0003es sin

(
D0.05v1(s)

)
+

3es sinh−1 v′1(s)
10000

,

D1.8v2(s) =
s[arctan v2(s)]

10000
+ 0.0001s

[
sin
(
D0.05v2(s)

)]
+

8s[v′2(s)]
2

10000
(
1 + [v′2(s)]

2
) ,

D1.8v3(s) =
es[v3(s)]2

25000(1 + [v3(s)]2)
+

4es sinh−1(D0.05v3(s)
)

100000
+

12es arctan v′3(s)
300000

,

D1.8v4(s) = 0.0009s(sin v4(s)) +
180s[D0.05v4(s)]2

200000 + 200000[D0.05v4(s)]2
+

36s(arctan v′4(s))
40000

,

D1.8z5(s) = 0.0001s
(

sinh−1 z5(s)
)
+

60s
[
D0.05z5(s)

]2
600000 + 600000[D0.05z5(s)]

2 +
3s(arctan z′5(s))

30000
,

D1.8z6(s) =
s(arctan z6(s))

25000
+ 0.00004s

(
sin
(
D0.05z6(s)

))
+

4s[z′6(s)]
2

100000
(

1 +
[
z′6(s)

]2) ,

(22)

with boundary conditions

v1(0) =
∫ 0.95

0
D0.8v1(θ)dθ

7
2
D0.05v1(1) +

9
4
D0.1v1(1) =

23
6

∫ 0.95

0
D0.8v1(θ)dθ

v2(0) =
∫ 0.95

0
D0.8v2(θ)dθ

7
2
D0.05v2(1) +

9
4
D0.1v2(1) =

23
6

∫ 0.95

0
D0.8v2(θ)dθ

v3(0) =
∫ 0.95

0
D0.8v3(θ)dθ

7
2
D0.05v3(1) +

9
4
D0.1v3(1) =

23
6

∫ 0.95

0
D0.8v3(θ)dθ

v4(0) =
∫ 0.95

0
D0.8v4(θ)dθ

7
2
D0.05v4(1) +

9
4
D0.1v4(1) =

23
6

∫ 0.95

0
D0.8v4(θ)dθ

v5(0) =
∫ 0.95

0
D0.8v5(θ)dθ
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

7
2
D0.05v5(1) +

9
4
D0.1v5(1) =

23
6

∫ 0.95

0
D0.8v5(θ)dθ

v6(0) =
∫ 0.95

0
D0.8v6(θ)dθ

7
2
D0.05v6(1) +

9
4
D0.1v6(1) =

23
6

∫ 0.95

0
D0.8v6(θ)dθ

(23)

where m = 1.8, n = 0.05, η1 = 7
2 , η2 = 9

4 , η3 = 23
6 and Dm, Dn are the Caputo derivatives of

order m and n, respectively.
Here, we establish coordinate systems with ν0, ν1, ν2, ν3, ν4, and ν5 on the graphs with more

than one junction nodes (see Figures 8 and 9 below), where p̃1 is the solution of the system (22) with
(23) on −−→ν0ν1, t ∈ [0, 1]. Similarly, p̃2, p̃3, p̃4, and p̃5 are the solutions of the system (22) with (23)
on −−→ν0ν2,−−→ν0ν3,−−→ν0ν4, and −−→ν4ν5, respectively, where t ∈ [0, 1].

Figure 8. A sketch of a graph.

Figure 9. A sketch of a directed graph.
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Now, we shall prove that system (22) with (23) has a unique solution on each edge. For this,
letR1,R2,R3,R4,R5,R6 : [0, 1]×R×R×R→ R be continuous functions defined by

R1(s, v, ṽ, ˜̃v) =
18es[v]2

60000(1 + [v]2)
+ 0.0003es sin

(
D0.04ṽ

)
+

3es sinh−1 ˜̃v
10000

,

R2(s, v, ṽ, ˜̃v) =
s(arctan v)

10000
+ 0.0001s sin

(
D0.04ṽ

)
+

8s[ ˜̃v]2

10000(1 + [ ˜̃v]2)
,

R3(s, v, ṽ, ˜̃v) =
es[v]2

25000(1 + [v]2)
+

4es sinh−1(D0.04ṽ
)

100000
+

12es arctan ˜̃v
300000

,

R4(s, v, ṽ, ˜̃v) = 0.0009s(sin v) +
180s[D0.04ṽ]2

200000 + 200000[D0.04ṽ]2
+

36s(arctan ˜̃v)
40000

,

R5(s, v, ṽ, ˜̃v) = 0.0001s
(

sinh−1 v
)
+

60s
[
D0.05ṽ

]2
600000 + 600000[D0.05ṽ]2

+
3s(arctan ˜̃v)

30000
,

R6(s, v, ṽ, ˜̃v) =
s(arctan v)

25000
+ 0.00004s

(
sin
(
D0.05ṽ

))
+

4s[ ˜̃v]2

100000
(

1 + [ ˜̃v]2
) .

Let v1, v2, ṽ1, ṽ2, ˜̃v1, ˜̃v2 ∈ R. Then, we have

|R1(s, v1, ṽ1, ˜̃v1)−R1(s, v2, ṽ2, ˜̃v2)| ≤
3es

10000

(
|v1 − v2|+ |ṽ1 − ṽ2|+ | ˜̃v1 − ˜̃v2|

)
,

|R2(s, v1, ṽ1, ˜̃v1)−R2(s, v2, ṽ2, ˜̃v2)| ≤
s

10000

(
|v1 − v2|+ |ṽ1 − ṽ2|+ | ˜̃v1 − ˜̃v2|

)
,

|R3(s, v1, ṽ1, ˜̃v1)−R3(s, v2, ṽ2, ˜̃v2)| ≤
es

25000

(
|v1 − v2|+ |ṽ1 − ṽ2|+ | ˜̃v1 − ˜̃v2|

)
,

|R4(s, v1, ṽ1, ˜̃v1)−R4(s, v2, ṽ2, ˜̃v2)| ≤
9s

10000

(
|v1 − v2|+ |ṽ1 − ṽ2|+ | ˜̃v1 − ˜̃v2|

)
,

|R5(s, v1, ṽ1, ˜̃v1)−R5(s, v2, ṽ2, ˜̃v2)| ≤
s

10000

(
|v1 − v2|+ |ṽ1 − ṽ2|+ | ˜̃v1 − ˜̃v2|

)
,

|R6(s, v1, ṽ1, ˜̃v1)−R6(s, v2, ṽ2, ˜̃v2)| ≤
s

25000

(
|v1 − v2|+ |ṽ1 − ṽ2|+ | ˜̃v1 − ˜̃v2|

)
.

Here, Z1(s) = 3es

10000 ,Z2(s) = s
10000 ,Z3(s) = es

25000 ,Z4(s) = 9s
10000 ,Z5(s) = s

10000 , and
Z6(s) = s

25000 , where ‖Z1‖ = 3
10000 , ‖Z2‖ = 1

10000 , ‖Z3‖ = 1
25000 , ‖Z4‖ = 9

10000 , ‖Z5‖ =
1

10000 , and ‖Z6‖ = 1
25000 . Let U1,U2, . . . ,U6 : [0, ∞)→ R be identity functions. Thus, we obtain

|R1(s, v, ṽ, ˜̃v)| ≤ 3es

10000
(|v|+ |ṽ|+ | ˜̃v|),

|R2(s, v, ṽ, ˜̃v)| ≤ s
10000

(|v|+ |ṽ|+ | ˜̃v|),

|R3(s, v, ṽ, ˜̃v)| ≤ es

25000
(|v|+ |ṽ|+ | ˜̃v|),

|R4(s, v, ṽ, ˜̃v)| ≤ 9s
10000

(|v|+ |ṽ|+ | ˜̃v|),

|R5(s, v, ṽ, ˜̃v)| ≤ s
10000

(|v|+ |ṽ|+ | ˜̃v|),

|R6(s, v, ṽ, ˜̃v)| ≤ s
25000

(|v|+ |ṽ|+ | ˜̃v|),
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for all s ∈ [0, 1] and v, ṽ, ˜̃v ∈ R. In addition, the continuous function Q1,Q2, . . . ,Q6 : [0, 1]→
R are defined by Q1(s) = 3es

10000 ,Q2(s) = s
10000 ,Q3(s) = es

25000 ,Q4(s) = 9s
10000 ,Q5(s) =

s
10000 , and Q6(s) = s

25000 . In addition,

V∗0 ' 2.2346, V∗1 ' 0.6031 and V∗2 ' 5.9096,

and so
V∗0 + V∗1 + V∗2 ' 8.7473.

Furthermore,

Λ := (V∗0 + V∗1 + V∗2 )(‖Z1‖+ ‖Z2‖+ ‖Z3‖+ ‖Z4‖+ ‖Z5‖+ ‖Z6‖) ' 0.0136 < 1.

Hence, by Theorem 4, the problem (22)–(23) has a solution.

Example 2. Consider the problem stated below:

D1.25v1(s) =
21s

5000
arctan v1(s) +

63[D0.2v1(s)]2s
15000 + 15000[D0.2v1(s)]2

+ 0.0042s(arctan v′1(s)),

D1.25v2(s) =
106[sin v2(s)]2es

16000(1 + [sin v2(s)]2)
+

371es

56000

(
sin
(
D0.2v2(s)

))
+

53[arctan v′2(s)]
2es

8000 + 8000[arctan v′2(s)]
2 ,

D1.25v3(s) = 0.005125s(arctan v3(s)) +
41s[D0.2v3(s)]2

8000(1 + [D0.3v3(s)]2)
+

205s
40000

sinh−1 v′3(s),

(24)

with boundary conditions

v1(0) =
∫ 0.5

0
D0.25v1(θ)dθ

11
3
D0.2v1(1) +

13
7
D0.4v1(1) =

21
4

∫ 0.5

0
D0.25v1(θ)dθ

v2(0) =
∫ 0.5

0
D0.25v2(θ)dθ

11
3
D0.2v2(1) +

13
7
D0.4v2(1) =

21
4

∫ 0.5

0
D0.25v2(θ)dθ

v3(0) =
∫ 0.5

0
D0.25v3(θ)dθ

11
3
D0.2v3(1) +

13
7
D0.4v3(1) =

21
4

∫ 0.5

0
D0.25v3(θ)dθ

(25)

where m = 1.25, n = 0.2, η1 = 11
3 , η2 = 13

7 , η3 = 21
4 , and Dm, Dn are the Caputo derivatives of

order m and n, respectively. LetR1,R2,R3 : [0, 1]×R×R→ R be continuous functions defined
by

R1(s, v, ṽ, ˜̃v) =
21s

5000
arctan v +

63[D0.2ṽ]2s
15000 + 15000[D0.3ṽ]2

+ 0.0042s(arctan ˜̃v),

R2(s, v, ṽ, ˜̃v) =
106[sin v]2es

16000(1 + [sin v]2)
+

371es

56000
sin
(
D0.2ṽ

)
+

53[arctan ˜̃v]2es

8000 + 8000[arctan ˜̃v]2
,

R3(s, v, ṽ, ˜̃v) = 0.005125s(arctan v) +
41s[D0.2ṽ]2

8000(1 + [D0.3ṽ]2)
+

205s
40000

sinh−1 ˜̃v.
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Let v1, v2, ṽ1, ṽ2, ˜̃v1, ˜̃v2 ∈ R. Then, we have

|R1(s, v1, ṽ1, ˜̃v1)−R1(s, v2, ṽ2, ˜̃v2)| ≤
21s

5000

(
|v1 − v2|+ |ṽ1 − ṽ2|+ | ˜̃v1 − ˜̃v2|

)
,

|R2(s, v1, ṽ1, ˜̃v1)−R2(s, v2, ṽ2, ˜̃v2)| ≤
53es

8000

(
|v1 − v2|+ |ṽ1 − ṽ2|+ | ˜̃v1 − ˜̃v2|

)
,

|R3(s, v1, ṽ1, ˜̃v1)−R3(s, v2, ṽ2, ˜̃v2)| ≤
41s

8000

(
|v1 − v2|+ |ṽ1 − ṽ2|+ | ˜̃v1 − ˜̃v2|

)
.

Here, Z1(s) = 21s
5000 ,Z2(s) = 53es

8000 ,Z3(s) = 41s
8000 , and Z5(s) = · · · = Z13(s) = 0, where

‖Z1‖ = 21
5000 , ‖Z2‖ = 53

8000 , ‖Z3‖ = 41
8000 , and ‖Z5‖ = · · · = ‖Z13‖ = 0. Let U1,U2, . . . ,U13 :

[0, ∞)→ R be identity functions. Then, we obtain

|R1(s, v, ṽ, ˜̃v)| ≤ 21s
5000

(|v|+ |ṽ|+ | ˜̃v|),

|R2(s, v, ṽ, ˜̃v)| ≤ 53es

8000
(|v|+ |ṽ|+ | ˜̃v|),

|R3(s, v, ṽ, ˜̃v)| ≤ 41s
8000

(|v|+ |ṽ|+ | ˜̃v|),

for all s ∈ [0, 1] and v, ṽ, ˜̃v ∈ R. In addition, the continuous functionQ1,Q2, . . . ,Q13 : [0, 1]→ R
is defined by Q1(s) = 21s

5000 ,Q2(s) = 53es

8000 ,Q3(s) = 41s
8000 , and Q5(s) = · · · = Q13(s) = 0.

In addition,
V∗0 ' 2.840, V∗1 ' 0.946 and V∗2 ' 0.881,

and so
V∗0 + V∗1 + V∗2 ' 4.667.

Furthermore,

Λ := (V∗0 + V∗1 + V∗2 )(‖Z1‖+ ‖Z2‖+ ‖Z3‖+ ‖Z4‖) ' 0.074 < 1.

Hence, by Theorem 4, the problem (24)–(25) has a solution.

4. Conclusions

CGT refers to a specific part of graph theory that has applications in chemistry. Mathe-
matical tools from pure mathematics, graph theory, functional analysis, and trigonometry
are used to tackle chemistry-based problems such as structure elucidation and isomer
enumeration, with repercussions for both fields. The rapid expansion of this field over the
last several decades has led to the introduction of a plethora of novel ideas and methods
for pursuing this kind of study. This article defines the boundary-value problems for each
edge within the context of an isobutane graph. Using the Krasnoselskii and Schaefer fixed
point theorems, we investigated the existence of solutions to the suggested problem. Our
proposed model may be used for various graph configurations, including digraphs, which
are often used in medical technology in connection to protein networks. Future studies
can investigate more challenges involving the graph characterization of various chemical
structures using quantitative and computational approaches.
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