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Abstract: This paper applies a recently proposed numerical algorithm to discuss the deflection of
viscoelastic micro-beams in the time domain with direct access. A nonlinear-fractional order model
for viscoelastic micro-beams is constructed. Before solving the governing equations, the operator
matrices of shifted Chebyshev polynomials are derived first. Shifted Chebyshev polynomials are
used to approximate the deflection function, and the nonlinear fractional order governing equation is
expressed in the form of operator matrices. Next, the collocation method is used to discretize the
equations into the form of algebraic equations for solution. It simplifies the calculation. MATLAB
software was used to program this algorithm to simulate the numerical solution of the deflection.
The effectiveness and accuracy of the algorithm are verified by the numerical example. Finally,
numerical simulations are carried out on the viscoelastic micro-beams. It is found that the viscous
damping coefficient is inversely proportional to the deflection, and the length scale parameter of
the micro-beam is also inversely proportional to the deflection. In addition, the stress and strain of
micro-beam, the change of deflection under different simple harmonic loads, and potential energy of
micro-beam are discussed. The results of the study fully demonstrated that the shifted Chebyshev
polynomial algorithm is effective for the numerical simulations of viscoelastic micro-beams.

Keywords: nonlinear-fractional order differential equations; shifted Chebyshev polynomial
algorithm; viscoelastic micro-beams; operator matrix; numerical simulation

1. Introduction

Fractional calculus is the definition of arbitrary order differential and integral. It is
unified with integer order calculus and is the extension of integer order calculus. Integer
order calculus has been generally accepted as a mathematical tool to describe theories of
classical physics and related subjects. However, when doing research on some complex
systems and complex phenomena, the description of these systems by classical integer
order calculus equations will encounter some problems. For example, it is necessary to
construct nonlinear equations, introduce some empirical parameters and assumptions,
construct new models, etc. Based on the above reasons, people urgently hope to have an
available mathematical tool and basic principles to model these complex systems. Fractional
differential equations are well suited to characterize materials and processes with memory
and genetic properties [1–6]. It has the advantages of simple modeling, clear physical
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meaning of parameters, and accurate description for the description of complex systems.
Therefore, fractional calculus is known as one of the important tools for mathematical
modeling of complex mechanics and physical processes [7–10]. Nowadays, inspired by
many physical phenomena, scholars worldwide have made more and more contributions
in different fields by applying fractional-order constitutive relations and fractional-order
systems containing fractional-order derivatives and integrals [11–13], and these new models
are superior to the traditional integer-order ones. Fractal methods are widely used in
the modeling of deformation–relaxation processes. Among them, viscoelastic materials
are very closely coupled with fractional-order differential and fractional-order integral
operators. Viscoelastic materials have four major characteristics, which are relaxation,
creep, preconditioning, and hysteresis, and the traditional integer-order vibration equations
cannot accurately describe the viscoelastic material properties. However, the fractional
order derivative model has fewer parameters and a better fitting effect. Hendy et al. [14]
proposed a unified new model for the thermal viscoelasticity theory of fractional heat
transfer. Bonfanti et al. [15] proposed that fractional calculus is a promising tool for
accurately describing the rheological properties of soft materials and provided an easy-to-
understand fractional viscoelastic model description.

Researchers pay more and more attention to the combination of viscoelastic properties
and fractional constitutive models. They have established that the fractional-order con-
stitutive model can better describe the viscoelastic behavior, so a series of related studies
have been conducted on it. Lewandowski [16], for example, used the fractional consti-
tutive model of the beam to study the nonlinear vibration behavior of the beam under
simple harmonic loading. Duan et al. [17] considered relaxation, creep, dissipation, and
hysteresis resulting from a six-parameter fractional constitutive model and its particular
cases. Usuki [18] investigated the effect of viscoelastic fractional order through drawing
of the phase and group rate curves on beams with solid round cross-sectional sections.
Catania [19] analyzed the vibration of fractional-order nonuniform beams using the finite
element method. The rheological model used is a combination of the fractional Zener
model and fractional standard linear solid model. Xu [20] discretized the beam according
to the discontinuous characteristic position of the beam during vibration analysis, and then
calculated the vibration extent of the beam from the spreading, transfer, and reflection
matrices associated with the beam.

The viscoelastic control equations established using the fractional order constitutive
model are not easily solved analytically [21]. Therefore, for ideal results, researchers mostly
use the discussion of numerical solutions to make approximations. Approaches to the
solution of fractional order governing equations also include the Galerkin method [22], the
finite element method [23], the finite difference method [24], and the Laplace transform [25].
However, the limitation of these methods is that they cannot be solved directly in the time
domain and require complex transformation processes. In other words, a Laplace transform
of the frequency domain solution is required to obtain the time domain solution. The
complexity of Laplace transform and inverse transform makes the fractional order equations
difficult to answer efficiently [26]. The variational iterative method is an influential method
for solving some linear and nonlinear problems. Birol et al. [27] studied the basic idea of
the variational iterative method and its convergence, and used the variational iterative
method to solve some fractional order differential equations. The Adomian decomposition
method was used by Duan et al. [28] to solve fractional order differential equations.
Muhammad Abbas et al. [29] used cubic B-spline functions to solve third-order time
fractional differential equations. In addition, polynomial algorithms also work well when
solving approximations to fractional order systems, such as Legendre wavelet method [30],
Legendre polynomials method, Bernstein polynomials method [31], Chebyshev wavelet
method [32], etc. The method approximates the unknown function with polynomials,
uses the properties of fractional order differentiation to infer the matrices of differential
operators of the polynomials, in addition to combining the idea of operator matrices to
turn it into a problem of solving a system of the algebraic equations.
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In recent years, microstructure-scale experiments confirm the existence of size effects
on the mechanical properties of microstructures. Traditional mechanical theories do not
contain any scale-associated parameters in their constitutive relations, and are not able
to relate and explain the phenomenon of dimensional effects on mechanical properties.
Therefore, the research on microstructures in the engineering field is gradually increasing.
For example, in [33], the size-dependent buckling of variable-thickness FG-CNTRC mi-
croplates under inhomogeneous biaxial compression was investigated using third-order
shear deformation theory (TSDT) and modified couple stress theory (MCST) combined
with the total potential energy principle. In [34], a general PD beam-shell model based on
microbeam bonding is proposed. The bond deformation is obtained directly by interpola-
tion method, the micropotential energy of the bond is established, and the micromodulus
of the beam-shell model is solved spontaneously.

Micro-beams are one of the most diffusible microstructures and have been analyzed
by many researchers. The vibration amplitude of functionally graded (FGM) microbeams
has been studied in detail by Al-Basyouni et al. [35]. Farokhi et al. [36] discussed the free
vibration theory of crystalline microbeams and solved the equations of motion of PQC
microbeams using modified coupled stress theory (MCST) and differential quadrature
method (DQM). Zhang et al. [37] have numerically researched the modal properties of a
microperforated sandwich beam having a corrugated square honeycomb hybrid core using
the finite element method. It can be seen that research on microstructures is gradually
increasing in the engineering field.

The chapter distribution is shown below. In this paper, Section 2 introduces the
fractional order calculus definition and properties, and establishes the dimensionless
fractional order constitutive equations for viscoelastic micro-beams. Section 3 presents the
relevant properties of shifted Chebyshev polynomials and computes integer-order and
fractional-order differential operator matrices. A number of examples of this algorithm are
presented in Section 4. The stress, strain, deflection, and potential energy of viscoelastic
micro-beams were obtained in Section 5. The practical application of the algorithm in the
study of viscoelastic materials is demonstrated. Section 6 concludes the paper.

2. Pre-Requisite Knowledge

In this section, the fractional order calculus is defined and its properties are described
in detail for easier understanding of the applications that follow [38]. Combining the
theoretical knowledge of viscoelastic materials, a governing equation for a viscoelastic
micro-beam is derived and established using a fractional order model.

2.1. Definition and Related Properties of Fractional Order Calculus

From the existing literature [21], it is clear that the fractional order calculus has several
different ways of definition, including the Riemann–Liouville definition [39], the Caputo
definition, and the Grünwald–Letnikov definition [40]. This paper applies the Caputo
definition of a fractional order differential operator [39].

Definition 1. The α > 0 order derivative of Caputo may be expressed by the following equation:

cDα
x f (x) =


dq f (x)

dxq α = q ∈ N+,
1

Γ(q−α)

∫ x
0

f (q)(τ)
(x−τ)α+1−q 0 ≤ q− 1 < α < q.

(1)

where f (x) is a continuous differentiable function of order q on [0,+∞). When 0 < α < 1, cDα
x f (x)

is a Caputo fractional order derivative operator. Γ(•) is Gamma function,
Γ(y) =

∫ +∞
0 e−xxy−1dx.
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From Definition 1, the fractional order derivative of a polynomial can be introduced
as the following equation:

cDα
x(xp) =

{ Γ(p+1)
Γ(p+1−α)

xp−α, p = 1, 2, · · ·
0, p = 0

(2)

The fractional order derivative of Caputo has the following properties.
The result of finding the fractional order derivative of Caputo for a constant is zero:

cDα
xC = 0, where C is a constant.

The Caputo fractional order derivative satisfies the linearity property [41]: cDα
x [λ f (x)+

µg(x)] = λ(cDα
x f (x)) + µ(cDα

x g(x)), where λ, µ ∈ R.

Definition 2. Supposing that f (x) is a continuous and integrable function on (0,+∞), 0 < β <
1, we have [21]:

cD−β
x f (x) =

1
Γ(β)

∫ x

0
(x− τ)β−1 f (τ)dτ (3)

From Definition 2, the fractional order integration of a polynomial can be introduced
as the following equation:

cD−β
x (xp) =

Γ(p + 1)
Γ(p + 1 + β)

xp+β, p = 0, 1, 2, · · · (4)

Definition 3. If f (x) and ϕ(x) along with all its derivatives are continuous in [0,+∞], under
this condition, the Leibniz rule for fractional differentiation takes the form [21]:

cDα
x(ϕ(x) f (x)) =

∞

∑
k=0

(
α
k

)
ϕ(k)(x)cDα−k

x f (x) (5)

2.2. Establishment of Viscoelastic Micro-Beams Constitutive Equations

In this part, we will discuss the motion equations for viscoelastic micro-beams. The
motion equations are obtained from the Euler–Bernoulli beam theory and the Modified
Coupled Stress Theory. For the convenience of the derivation, we will ignore the effects of
rotational inertia and shear stress.

The cross section of viscoelastic micro-beams is denoted by A, the density by ρ, and
the modulus of elasticity by E. The viscoelastic micro-beam studied in this paper is a beam
structure with both ends fixed, which is illustrated in Figure 1.

Figure 1. Bending deformation of viscoelastic micro-beams under simple harmonic load f (x, t).
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The kinetic (T) and potential (Up) energies for viscoelastic micro-beams can be obtained
using Modified Couple Stress Theory (MCST) [22]:

T =
1
2

ρA
∫ L

0

(
∂ω(x, t)

∂t

)2

dx

Up =
∫

V
(σ : ε + m : γ)

(6)

where ω represents the transverse deflection, t represents the time, x represents the axial
coordinate, V represents the occupied area volume, σ represents the stress tensor, ε repre-
sents the strain tensor, m represents the deviation part of the couple stress tensor, and γ
represents the symmetric curvature tensor.

Through the von Kármán stress–strain relationship, the strain expression for the
nonlinear Euler–Bernoulli beam can be written as:

ε =
1
2

(
∂ω(x, t)

∂x

)2

− z
∂2ω(x, t)

∂x2 (7)

where z represents the vertical coordinate.
Furthermore, the relationship between the symmetric curvature tensor γ and the

rotation vector θ might usefully be described in [42]:

θ =
1
2

curl(u)

γij =
1
2

(
∂θj

∂xi
+

∂θi
∂xj

) (8)

where u is the displacement vector.
By means of Equation (8), the elements of γ are obtained as:

γ12 = γ21 = −1
2

∂2ω(x, t)
∂x2 (9)

using Equation (9) to find the coupled stress tensor as mij = 2µL2.γij, where the components
are found to be:

m12 = m21 = −µL2 ∂2ω(x, t)
∂x2 (10)

µ is the shear modulus of elasticity, and L is the length scale parameter.
From Equations (6), (7), (9), and (10), the potential energy for the viscoelastic micro-

beam can be obtained by calculating [22] as:

Up =
1
2

∫
V

(
σε + mxyγxy + myxγyx

)
dV

=
∫ L

0

(
1
8

EA
(

∂ω(x, t)
∂x

)4

+
1
2

EI
(

∂2ω(x, t)
∂x2

)2

+
1
2

µAL2
(

∂2ω(x, t)
∂x2

)2)
dx

(11)

For a viscoelastic micro-beam affected by an external loads f , the amount of change
in virtual work carried out with an applied load and the amount of change in virtual
work carried out with non-conservative viscous damping loads, considering the viscous
damping factor, are [22,43]:

δW f =
∫ L

0
f (x, t)δWdx

δWD = −a
∫ L

0

(
∂ω

∂t
δW
)

dx
(12)
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From Hamilton’s principle, it is obtained that [22,43]:∫ t2

t1

(δT − δUp + δW)dt = 0 (13)

The kinetic energy expressions of Equation (6) and Equations (11) and (12) are brought
into Equation (13) to obtain the equations of motion governing for a nonlinear viscoelastic
micro-beam as:

ρA
∂2ω(x, t)

∂t2 +
(

EI + µAL2
)∂4ω(x, t)

∂x4 − 3
2

EA
(

∂ω(x, t)
∂x

)2 ∂2ω(x, t)
∂x2

+ a
∂ω(x, t)

∂t
= f (x, t)

(14)

In studying the properties of viscoelastic micro-beams, we will invoke the fractional
Kelvin–Voigt model. For obtaining a fractional order constitutive equation, the moduli of
elasticity E and shear modulus µ are modified to [22]:

E = E + E · ηd
∂α

∂tα

µ = µ + µ · ηd
∂α

∂tα

(15)

where ηd denotes the viscoelastic coefficient, and α denotes the order of the fractional order
derivative (0 < α ≤ 1, integer order at α = 1). Thus, Equation (14) can be rewritten as:

ρA
∂2ω(x, t)

∂t2 +
(

EI + µAL2
)∂4ω(x, t)

∂x4 +
(

EI + µAL2
)

ηd
CDα

t

(
∂4ω(x, t)

∂x4

)
− 3

2
EA
(

∂ω(x, t)
∂x

)2 ∂2ω(x, t)
∂x2 − 3

2
EAηd

CDα
t

[(
∂ω(x, t)

∂x

)2 ∂2ω(x, t)
∂x2

]

+ a
∂ω(x, t)

∂t
= f (x, t)

(16)

Next, the calculations are simplified by replacing the physical quantities involved in
the above with suitable variables by means of dimensionless methods [22]:

ω̄ = ω
h x̄ = x

L t̄ =
√

EI/ρAL4 · t η1 = µAL2

EI χ = ηd

(
EI

ρAL4

) α
2

ā = a L4

EI

√
EI/ρAL4 η2 = µAL2

EI ηd

(
EI

ρAL4

) α
2 f̄ (x, t) = f (x,t)L4

EIh

β1 = 3
2

Ah2

I β2 = 3
2

Ah2

I ηd

(
EI

ρAL4

) α
2

(17)

where h is the height of the micro-beam. Replacing the dimensionless parameters into the
equation, the following fractional order viscoelastic constitutive equation can be obtained:

∂2ω(x, t)
∂t2 + (1 + η1)

∂4ω(x, t)
∂x4 + (χ + η2)

CDα
t

[
∂4ω(x, t)

∂x4

]
− β1

∂2ω(x, t)
∂x2

(
∂ω(x, t)

∂x

)2

− β2
CDα

t

[
∂2ω(x, t)

∂x2

(
∂ω(x, t)

∂x

)2
]
+ a

∂ω(x, t)
∂t

= f (x, t)

(18)
In the above equation, the overbar has been removed from the symbol for simplicity,

where the boundary conditions of the equation are:

ω(0, t) = ω(L, t) =
∂ω(0, t)

∂x
=

∂ω(L, t)
∂x

= 0 (19)
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and the initial conditions are:

ω(x, 0) =
∂ω(x, 0)

∂t
= 0 (20)

3. Shift Chebyshev Polynomial Numerical Algorithm

In the literature reviewed, we can find that there are many ways to solve the governing
equations of fractional viscoelastic micro-beams, such as using the finite difference method
(FDM) and the finite element method (FEM) to solve at the same time. In addition, the
FDM method is required to be discretized in the time domain, and the FEM method is
required to discretize in space. Alternatively, Laplace transform and inverse transform can
be used to solve the problem. These methods are more complicated, and it is not easy to
directly solve the deflection changes of viscoelastic material micro-beams at different times
and different positions in the time domain [44]. Using the algorithm proposed in this paper
to solve the fractional differential equation only needs to apply the least squares method
and the MATLAB program, and the program takes about 20 s to run, which is simple and
fast, and has a good accuracy rate.

The shifted Chebyshev polynomial algorithm can be better applied to the solution of
fractional differential equations. Therefore, the properties are described in detail in this
section for the shifted Chebyshev polynomials. In addition, the viscoelastic micro-beam
governing equation with operator matrix form is derived.

3.1. Correlation Properties of Shifted Chebyshev Polynomials

Chebyshev polynomials satisfy the recurrence relation [45–47]:

Ri+1(s) = 2sRi(s)− Ri−1(s), i = 1, 2, · · · (21)

where R0(s) = 1, R1(s) = s, s ∈ [−1, 1], i = 1, 2, · · ·
For the Shifted Chebyshev polynomials, the interval of the independent variable

s becomes [0, L], in which L is a non-negative real number. According to the shifted
Chebyshev polynomials, a new independent variable u is introduced such that s = 2u

L − 1.
Therefore, the recurrence relation of the new independent variable u with respect to the
shifted Chebyshev polynomials is obtained as:

R̄i+1(u) = 2
(

2u
L
− 1
)

R̄i(u)− R̄i−1(u), i = 1, 2, · · · (22)

where R̄0(u) = 1, R̄1(u) = 2u
L − 1.

On the interval [0, L], the general formula for the shift Chebyshev based polynomials
has been written as [48]:

R̄i(u) = i
i

∑
k=0

(−1)i−k (i + k− 1)!22k

(i− k)!(2k)!Lk uk, i = 1, 2, · · · (23)

where R̄i(0) = (−1)i, R̄i(L) = 1. The shifted Chebyshev polynomials with weighted
orthogonality are in the closed range [0, L]. The orthogonality relation is satisfied by:∫ L

0
R̄j(u)R̄k(u)ωL(u)du = hk, (24)

where ωL(u) = 1√
Lu−u2 , hk =

{
bk
2 π, k = j
0, k 6= j

, b0 = 2, bk = 1, k ≥ 1 .

Thus, the vector consisting of the shifted Chebyshev polynomials is:

Φn(u) = [R̄0(u), R̄1(u), · · · , R̄n(u)]T (25)
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Let Mn(u) = [1, u, u2, · · · , un]T , and let Cn be the coefficient matrix of the shifted
Chebyshev polynomials. Then,

Φn(u) = Cn Mn(u) (26)

Cn =


c00 0 · · · 0
c10 c11 · · · 0
...

...
. . .

...
cn0 cn1 · · · cnn

 (27)

where Cn =
[
cij
]n

i,j=0, cij =


1, i = j = 0
2
( 2

L ci−1,j−1 − ci−1,j
)
− ci−2,j, others

0, i < j or i < 0 or j < 0

. Clearly,

Cn is a full rank invertible matrix.

3.2. Functional Approximation of ω(x, t)

Let ω(x) be a differentiable and square integrable function on the closed interval [0, L].
Then, the approximate form of ω(x) with respect to the shifted Chebyshev polynomials
can be expressed as:

ω(x) =
∞

∑
i=0

aiR̄i(x), i ∈ N (28)

where ai =
1
hi

∫ L
0 ω(x)R̄i(x)ωL(x)dx, ai is the shifted Chebyshev polynomials coefficient.

ω(x) can be approximated by the first n + 1 terms as:

ω(x) ≈ ωn(x) =
n

∑
i=0

aiR̄i(x) = ATΦn(x) (29)

where A = [ai]
n
i=0, Φn(x) is the matrix consisting of shifted Chebyshev polynomials. The

form of Φn(x) is shown below:

Φn(x) = [R̄0(x), R̄1(x), · · · , R̄n(x)]T (30)

Similarly, for any continuous two-dimensional function ω(x, t) ∈ L2([0, L]× [0, T]), ω(x, t)
is a continuous integrable function on this interval. It can be written in the form of a
truncated sequence as follows:

ω(x, t) =
∞

∑
i=0

∞

∑
j=0

UijR̄i(x)R̄j(t) ≈ ΦT
n (x)UΦn(t) (31)

where U =
[
Uij
]n

ij=0, Φn(t) is to replace the independent variable x in Φn(x) with t.

3.3. Differential Operator Matrices on the Basis of Shifted Chebyshev Polynomials
3.3.1. Integer-Order Differential Operator Matrices

Definition 4. There exists a matrix Q(1)
x satisfying condition d

dx Φn(x) = Q(1)
x Φn(x). Then, Q(1)

x
is said to be a matrix of a first order differential operator based on shifted Chebyshev polynomials.

From Equation (26), the derivative d
dx Φn(x) of the first-order differential operator of

Φn(x) can be calculated as:
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d
dx

Φn(x) =
d

dx
(Cn Mn(x)) = Cn

d
dx

Mn(x) = Cn



1′

x′(
x2)′
...(

xn−1)′
(xn)′


= Cn



0
1

2x
...

(n− 1)xn−2

nxn−1


= Cn HMn(x) (32)

where H is a square matrix of order n + 1. H =



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · n 0


that is

H =
[
hij
]n

i,j=0, hij =

{
i, i = j + 1
0, others

.

From Φn(x) = Cn Mn(x), we have:

Mn(x) = C−1
n Φn(x) (33)

Therefore,
d

dx
Φn(x) = CnHC−1

n Φn(x) = Q(1)
x Φn(x) (34)

That is, Q(1)
x = Cn HC−1

n . Q(1)
x is the matrix of a first-order differential operator based on

shifted Chebyshev polynomials of Φn(x) with respect to x.
Similarly, we can proceed to define the second order differential operator matrices.

Definition 5. There exists a matrix Q(2)
x satisfying the condition d2

dx2 Φn(x) = Q(2)
x Φn(x). Then,

Q(2)
x is said to be a matrix of a second order differential operator based on shifted Chebyshev polynomials:

d2

dx2 Φn(x) =
d

dx

(
d

dx
Φn(x)

)
=

d
dx

(
Cn HC−1

n Φn(x)
)

=
(

Cn HC−1
n

) d
dx

Φn(x) =
(

Cn HC−1
n

)2
Φn(x) = Q(2)

x Φn(x)

(35)

where Q(2)
x =

(
Cn HC−1

n
)2 is the matrix of a second-order differential operator based on shifted

Chebyshev polynomials of Φn(x) with respect to x.

Thus, the m-order differential operator matrix Qm
x based on the shifted Chebyshev

polynomials can be derived :

dm

dxm Φn(x) =
dm−1

dxm−1

(
d

dx
Φn(x)

)
=

dm−1

dxm−1

(
Cn HC−1

n Φn(x)
)

=
(

CnHC−1
n

) dm−1

dxm−1 Φn(x) = · · · =
(

Cn HC−1
n

)m−1 d
dx

Φn(x)

=
(

CnHC−1
n

)m
Φn(x) = Q(m)

x Φn(x)

(36)

That is, Q(m)
x =

(
Cn HC−1

n
)m

= (Q(1)
x )m, m ∈ N+.

In summary, it is obtained that:
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∂ω(x, t)
∂x

≈
∂
(
ΦT

n (x)UΦn(t)
)

∂x
= ΦT

n (x)
(

CnHC−1
n

)T
UΦn(t)

= ΦT
n (x)

(
Q(1)

x

)T
UΦn(t)

(37)

∂2ω(x, t)
∂x2 ≈

∂2(ΦT
n (x)UΦn(t)

)
∂x2 = ΦT

n (x)
((

CnHC−1
n

)T
)2

UΦn(t)

= ΦT
n (x)

((
Q(1)

x

)T
)2

UΦn(t)

(38)

∂4ω(x, t)
∂x4 ≈

∂4(ΦT
n (x)UΦn(t)

)
∂x4 = ΦT

n (x)
((

CnHC−1
n

)T
)4

UΦn(t)

= ΦT
n (x)

((
Q(1)

x

)T
)4

UΦn(t)

(39)

∂ω(x, t)
∂t

≈
∂
(
ΦT

n (x)UΦn(t)
)

∂t
= ΦT

n (x)U
(

Cn HC−1
n

)
Φn(t)

= ΦT
n (x)UQ(1)

t Φn(t)
(40)

∂2ω(x, t)
∂t2 ≈

∂2(ΦT
n (x)UΦn(t)

)
∂t2 = ΦT

n (x)U
(

Cn HC−1
n

)2
Φn(t)

= ΦT
n (x)U

(
Q(1)

t

)2
Φn(t)

(41)

(
∂ω(x, t)

∂x

)2

≈
(

ΦT
n (x)

(
Q(1)

x

)T
UΦn(t)

)(
ΦT

n (x)
(

Q(1)
x

)T
UΦn(t)

)T

= ΦT
n (x)

(
Q(1)

x

)T
UΦn(t)ΦT

n (t)U
TQ(1)

x Φn(x)

= ΦT
n (x)

(
Q(1)

x

)T
UCn Mn(t)MT

n (t)C
T
n UTQ(1)

x Φn(x)

= ΦT
n (x)

(
Q(1)

x

)T
UCn


1 t · · · tn

t t2 · · · tn+1

...
...

. . .
...

tn tn+1 · · · t2n

CT
n UTQ(1)

x Φn(x)

(42)

∂2ω(x, t)
∂x2

(
∂ω(x, t)

∂x

)2

≈ ΦT
n (x)

((
Q(1)

x

)T
)2

UΦn(t)

·ΦT
n (x)

(
Q(1)

x

)T
UCn


1 t · · · tn

t t2 · · · tn+1

...
...

. . .
...

tn tn+1 · · · t2n

CT
n UTQ(1)

x Φn(x)
(43)

where Q(1)
t is the matrix of a first-order differential operator based on shifted Chebyshev

polynomials for Φn(t) with respect to t.

3.3.2. Fractional Order Differential Operator Matrices

Definition 6. There exists a matrix Q(α)
t (0 < α < 1) satisfying condition CDα

t Φn(t) =

Q(α)
t Φn(t); then, Q(α)

t is said to be a matrix of a differential operator of order α based on the
shifted Chebyshev polynomials.

From Equation (26), the derivative CDα
t Φn(x) of the α-order differential operator of

Φn(x) can be calculated as:
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CDα
t Φn(t) = CDα

t (Cn Mn(t)) = Cn
CDα

t (Mn(t))

= Cn


0

Γ(2)
Γ(2−α)

t1−α

...
Γ(n+1)

Γ(n+1−α)
tn−α

 = Cn Hα Mn(t) = Cn HαC−1
n Φn(t)

(44)

where Hα =


0 0 · · · 0
0 Γ(2)

Γ(2−α)
t−α · · · 0

...
...

. . .
...

0 0 · · · Γ(n+1)
Γ(n+1−α)

t−α

, that is, Hα =
[
hα,ij

]n
i,j=0,

hα,ij =

{
Γ(i+1)

Γ(i+1−α)
t−α, i = j 6= 0

0, others

Thus, Q(α)
t = CnHαC−1

n , Q(α)
t is the matrix of fractional order differential operator based on

shifted Chebyshev polynomials for Φn(t) with respect to t.
In summary, it is obtained that:

CDα
t

(
∂4ω(x, t)

∂x4

)
≈ CDα

t

(
ΦT

n (x)
((

CnHC−1
n

)T
)4

UΦn(t)

)

= ΦT
n (x)

((
Cn HC−1

n

)T
)4

UCDα
t Φn(t)

= ΦT
n (x)

((
Cn HC−1

n

)T
)4

UCn HαC−1
n Φn(t)

= ΦT
n (x)

((
Q(1)

x

)T
)4

UQ(α)
t Φn(t)

(45)

3.3.3. Handling of Nonlinear Terms

According to Definition 2 and Definition 3, the nonlinear terms of the governing
Equation (18) can be dealt with as follows:

cDα
t

[
∂2ω(x, t)

∂x2

(
∂ω(x, t)

∂x

)2
]

=
+∞

∑
k=0

(
α
k

)(
∂2ω(x, t)

∂x2

)(k)

· cDα−k
t

[(
∂ω(x, t)

∂x

)2
]

≈
n

∑
k=0

(
α
k

)(
∂2ω(x, t)

∂x2

)(k)

· cDα−k
t

[(
∂ω(x, t)

∂x

)2
]

≈
n

∑
k=0

(
α
k

)(
ΦT

n (x)
((

Q(1)
x

)T
)2

UΦn(t)

)(k)

· cDα−k
t

ΦT
n (x)

(
Q(1)

x

)T
UCn


1 t · · · tn

t t2 · · · tn+1

...
...

. . .
...

tn tn+1 · · · t2n

CT
n UTQ(1)

x Φn(x)


=

n

∑
k=0

(
α
k

)(
ΦT

n (x)
((

Q(1)
x

)T
)2

U
(

Q(1)
t

)k
Φn(t)

)
·ΦT

n (x)
(

Q(1)
x

)T
UCnWCT

n UTQ(1)
x Φn(x)

(46)



Fractal Fract. 2023, 7, 204 12 of 23

where W =
[
wij
]n+1

i,j=1, wij =


0 α− k > 0, i = j = 1

Γ(i+j−2+1)
Γ(i+j−2+1−(α−k)) xi+j−2−(α−k) α− k > 0, others

Γ(i+j−2+1)
Γ(i+j−2+1+(k−α))

xi+j−2+(k−α) α− k < 0

Note in Formula (46) that, because dk Mn(t)
dtk = 0(n+1)×1 for k ≥ n + 1, the infinite sum

can be cut; just take the first n terms.

3.4. Algebraic Equation Form of the Viscoelastic Micro-Beam

Using Equations (37)–(46), Equation (18) is discretized into the following form:

ΦT
n (x)U

(
Q(1)

t

)2
Φn(t) + (1 + η1)ΦT

n (x)
(
(Q(1)

x )T
)4

UΦn(t)

+ (χ + η2)ΦT
n (x)

(
(Q(1)

x )T
)4

UQ(α)
t Φn(t)

− β1

[
ΦT

n (x)
((

Q(1)
x

)T
)2

UΦn(t)
(

ΦT
n (x)

(
Q(1)

x

)T
UΦn(t)

)2
]

− β2

n

∑
k=0

(
α
k

)(
ΦT

n (x)
((

Q(1)
x

)T
)2

U
(

Q(1)
t

)k
Φn(t)

)
·ΦT

n (x)
(

Q(1)
x

)T
UCnWCT

n UTQ(1)
x Φn(x)

+ aΦT
n (x)UQ(1)

t Φn(t) = f (x, t)

(47)

The boundary conditions are: ω(0, t) = ω(L, t) = ∂ω(0,t)
∂x = ∂ω(L,t)

∂x = 0.

The initial conditions are: ω(x, 0) = ∂ω(x,0)
∂t = 0.

The algorithm is based on the collocation method, which converts the fractional
differential equation into a set of algebraic equations, solves the coefficient matrix U, uses
the least squares method and MATLAB software to calculate, and substitutes the result
into Equation (31) to obtain the numerical solution of the fractional differential equation.
Through the introduction of the shifted Chebyshev polynomial algorithm in Section 3, we
can summarize the steps required to use the algorithm as follows:

1. First, approximate the function: ω(x, t) ≈ ΦT
n (x)UΦn(t);

2. Integer-order fractional-order differential operators are derived;
3. Substituting the operator matrix into Equation (18) converts the initial equation into

an algebraic equation;
4. Next, it is necessary to use the collocation method to discretize the variables; take the

nodes to discretize the variables (x, t) into (xi, yj)

xi =
2i− 1

2(n + 1)
L, i = 0, 1, 2, · · · , n, tj =

2j− 1
2(n + 1)

T, j = 0, 1, 2, · · · , n;

5. Finally, the system of algebraic equations is solved using the method of least squares.

4. Convergence Analysis and Numerical Example
4.1. Convergence Analysis

This section will introduce the uniform convergence of shifted Chebyshev polynomials.

Theorem 1. Assume that the function ω(x) : [0, 1] → R is m + 1 times continuously differen-
tiable, i.e., ω(x) ∈ Cm+1[0, 1] and Y = Span{B0,n, B1,n, B2,n, · · · Bn,n}. If ATΦn(x) is the best
approximation to ω(x) from Y, the mean error bound can be expressed as:

∥∥∥ω(x)− ATΦn(x)
∥∥∥

2
≤

√
2MS

2m+3
2

(m + 1)!
√

2m + 3
(48)

where M = maxx∈[0,1]
∣∣ωm+1(x)

∣∣, S = max{1− x0, x0}, 0 ≤ x0 ≤ 1
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Proof. Let the Taylor expansion of ω(x) be ω1(x); then,

ω1(x) = ω(x0) + ω′(x0)(x− x0) + ω′(x0)
(x− x0)

2

2
+ · · ·+ ω(m)(x0)

(x− x0)
m

m!

In addition, because |ω(x)−ω1(x)| =
∣∣∣ω(m+1)(ε)

∣∣∣ (x−x0)
m+1

(m+1)! , ∃ε ∈ (0, 1), ATΦn(x) is the
best approximation to ω(x) from Y. Therefore,∥∥∥ω(x)− ATΦn(x)

∥∥∥2

2
≤ ‖ω(x)−ω1(x)‖2

2 =
∫ 1

0
(ω(x)−ω1(x))2dx

=
∫ 1

0

(∣∣∣ωm+1(ε)
∣∣∣ (x− x0)

m+1

(m + 1)!

)2

dx

≤ M2

[(m + 1)!]2

∫ 1

0
(x− x0)

2m+2dx

≤ 2M2S2m+3

[(m + 1)!]2(2m + 3)

The upper bound on
∥∥ω(x)− ATΦn(x)

∥∥
2 can be obtained by taking the square root.

4.2. Numerical Example

The accuracy of the shifted Chebyshev polynomial algorithm will be illustrated by a
numerical example. The following equation is a dimensionless equation, and the coefficients
in the equation can be any value in the interval range without practical significance. The
specific equation is given in below (See Appendix A for detailed calculation procedure):

10, 000
∂2ω(x, t)

∂t2 + 0.01
∂4ω(x, t)

∂x4 + 0.01CDα
t

[
∂4ω(x, t)

∂x4

]
− 0.1

∂2ω(x, t)
∂x2

(
∂ω(x, t)

∂x

)2

− 0.01CDα
t

[
∂2ω(x, t)

∂x2

(
∂ω(x, t)

∂x

)2
]

+ 0.001
∂ω(x, t)

∂t
= f (x, t)

(49)

The boundary conditions and initial conditions are written as follows:
ω(0, t) = ω(1, t) = ∂ω(0,t)

∂x = ∂ω(1,t)
∂x = 0. ω(x, 0) = ∂ω(x,0)

∂t = 0. Where α = 0.5, x ∈ [0, 1],
t ∈ [0, 1].

f (x, t) =20, 000x2(1− x)2 + 0.24t2 + 0.24
Γ(3)

Γ(3− α)
t2−α

− 0.1
(

2− 12x + 12x2
)

t6
(

2x− 6x2 + 4x3
)2

− 0.01
(

2− 12x + 12x2
)(

2x− 6x2 + 4x3
)2 Γ(7)

Γ(7− α)
t6−α

+ 0.002t
(

x2 − 2x3 + x4
)

(50)

The analytical solution of Equation (49) can be found as:

ω(x, t) = x2(1− x)2t2 (51)

When n = 4, Equation (49) is solved by the shifted Chebyshev polynomial algorithm. The
numerical solution is found by using a MATLAB program and matching point method.
ωn(x, t) is the numerical solution, and e(x, t) is the absolute error:

e(x, t) = |ω(x, t)−ωn(x, t)| (52)
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In Figure 2a–c are the analytical solution, numerical solution, and absolute error of
Equation (49), respectively. By observing Figure 2c, it can be found that the change trend of
the absolute error is: viewed from the x-axis, it is symmetrically distributed. From the per-
spective of the t-axis, the absolute error fluctuates less and is relatively stable in the range
of t ∈ [0, 0.9] and increases sharply at t ∈ [0.9, 1]. However, from a macro point of view, the
absolute error is small. It can be seen in Figure 2c that the maximum magnitude of error is
10−8, and the minimum magnitude is 10−9. Therefore, the shifted Chebyshev polynomial
algorithm has a relatively high accuracy and can effectively solve such fractional order
differential equations. This is then used to solve the problem for the governing equations
of viscoelastic micro-beams.

(a) Analytical solution (b) Numerical solution (c) Absolute error
Figure 2. Numerical example results.

Tables 1–4 list the absolute errors between the numerical solution and the analytical
solution when the derivative α = 0.2, α = 0.5, α = 0.8, and α = 1, respectively. When
α = 0.2, the series of absolute errors are 10−7 and 10−8; when α = 0.5, the series of absolute
errors are 10−9 and 10−10, and when α = 0.8, the series of absolute errors are 10−8 and 10−9.
We can see that, when calculating the fractional derivative equation, the fitting effect of the
numerical solution is better. By observing Table 4, when α = 1 (first order derivative), the
absolute error is relatively large, and the fitting effect is not ideal.

Table 1. Absolute error of each point when α = 0.2.

e(x, t) t = 0.1 t = 0.3 t = 0.5 t = 0.7

x = 0.1 5.21× 10−8 8.94× 10−8 3.25× 10−8 5.41× 10−7

x = 0.5 6.41× 10−8 8.37× 10−8 1.78× 10−8 1.46× 10−7

x = 0.9 1.10× 10−7 8.82× 10−8 1.01× 10−7 1.46× 10−7

Table 2. Absolute error of each point when α = 0.5.

e(x, t) t = 0.1 t = 0.3 t = 0.5 t = 0.7

x = 0.1 1.77× 10−9 7.44× 10−9 1.76× 10−9 5.53× 10−9

x = 0.5 3.32× 10−10 8.26× 10−9 1.15× 10−9 6.82× 10−9

x = 0.9 1.77× 10−9 7.54× 10−9 1.68× 10−9 5.53× 10−9

Table 3. Absolute error of each point when α = 0.8.

e(x, t) t = 0.1 t = 0.3 t = 0.5 t = 0.7

x = 0.1 7.01× 10−9 1.34× 10−9 1.52× 10−8 6.17× 10−9

x = 0.5 4.85× 10−8 1.27× 10−9 1.65× 10−8 6.85× 10−9

x = 0.9 7.04× 10−8 1.34× 10−9 1.54× 10−9 5.17× 10−9
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Table 4. Absolute error of each point when α = 1.

e(x, t) t = 0.1 t = 0.3 t = 0.5 t = 0.7

x = 0.1 1.80× 10−3 2.80× 10−3 1.33× 10−2 3.57× 10−2

x = 0.5 1.90× 10−3 3.00× 10−3 1.46× 10−2 4.81× 10−2

x = 0.9 3.20× 10−3 4.70× 10−3 1.05× 10−2 6.62× 10−2

By comparing the absolute errors of solutions of fractional differential equations and
integer order differential equations, for equations of this type, the numerical solutions
obtained by fractional order differential equations have a better fitting effect than integer
order differential equations.

5. Numerical Simulation

This section presents numerical simulations of the nonlinear viscoelastic micro-beam
governing equation. All of the following studies will be based on the parameter values
provided in Table 5. The MATLAB program for solving the fractional order differential
equation of the same form as Equation (49) has been constructed in Section 4. Now, it is
necessary to substitute the material parameters listed in Table 5 into the MATLAB program
to find the numerical solution of the deflection first, i.e., the solution of Equation (49). After
that, they are solved separately according to the relationship between deflection and stress,
strain, and potential energy. The program only needs to run for about 20 s, which is fast
and easy to solve. In addition, the solved deflection solution is fully consistent with the
actual situation of the micro-beam, where the deflection occurs at the boundary conditions,
and initial conditions are zero, and the most obvious deflection occurs at the middle of
the micro-beam.

Table 5. Values of the parameters.

E (GPa) h (m) ρ (kg/m3) µ (GPa) ηd (GPa) l (m)

21 4.166× 10−6 7850 0.956 (µ/E)α 5× 10−4

5.1. Effect of Viscous Damping Coefficient on Deflection of the Micro-Beam

Figure 3 shows the effect of different viscous damping coefficients on the deflection of
the micro-beam. Because the effect of the viscous damping coefficient on the deflection is
not very obvious intuitively, we apply a simple harmonic load ( f = 100(x− 2)cos1.7t) with
a frequency of Ω = 1.7 to reach the resonant frequency of the micro-beam (through multiple
experiments, it is determined that the resonance frequency is between 1.69–1.71), so that
the amplitude reaches the maximum value. In this way, the observation effect will be more
intuitive and clear. The deflection change of the micro-beam is symmetrical from the middle
position of the micro-beam. In other words, under the action of simple harmonic load, the
deflection is the most obvious in the middle of the micro-beam, and the closer to the fixed
points at both ends, the smaller the deflection. By observing Figure 3, it can be found that:
when the viscous damping coefficient a = 0.1, the maximum deflection is 5.99× 10−4 cm;
when the viscous damping coefficient a = 0.5, the maximum deflection is 5.61× 10−4 cm;
when the viscous damping coefficient a = 0.1, the maximum deflection is 5.39× 10−4 cm. It
can be found that the smaller the viscous damping coefficient, the greater the deflection of
the micro-beam. This is consistent with the properties of viscoelastic damping. The larger
the damping coefficient, the stronger the ability to resist the deformation of the material,
resulting in smaller deflection. This is also consistent with the conclusion obtained in [49],
that is, as the viscous damping coefficient increases, the amplitude of the longitudinal
impedance decreases.
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Figure 3. Effect of different viscous damping coefficients on deflection of the micro-beam.

5.2. Effect of Length Scale Parameters on Deflection of the Micro-Beam

In this section, different micro-beams with length scale parameters are analyzed as
research objects, and the applied load is f = 100(x− 2)cost. Figure 4 shows the deflection
variation of the micro-beam with five length scale parameters in the middle position. By
observing Figure 4, it can be found that, as time goes on, the deflection increases. The
micro-beam with the smallest length scale parameter (l/h = 96) has the largest deflection,
and the deflection reaches 5.8× 10−5 cm at t = 1 s. When the micro-beam length scale
parameter is 192, the deflection is the smallest. In addition, the deflection is 2.6× 10−5 cm at
t = 1 s. Under the same load, the deflection of the micro-beam decreases with the increase
of the length scale parameters at the same time. It can be predicted that the stiffness of
the structure increases as the length scale parameter increases. This is compared with the
deflection of micro-beams under different length scale parameters shown in [50], and the
conclusion is found to be consistent.

0 0.2 0.4 0.6 0.8 1
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0.1
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ct
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Figure 4. Deflection of micro-beams of different length scale parameters.
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5.3. Effect of Different Simple Harmonic Loads on the Deflection of the Micro-Beam

The effect of different simple harmonic loads on the deflection of the micro-beam is
investigated with a viscous damping coefficient of a = 0. Since the use of simple harmonic
forces is more frequent in practical engineering, we therefore mainly study the deflection
variation of micro-beam when B(x)in f (x, t) = B(x)cosΩt is constant, primary, secondary,
and tertiary functions, respectively, and Ω = 0.75, 1, 1.25.

The four plots in Figure 5 show the deflection on the micro-beam at the moment of
time t = 0.5s for the four cases where B(x) in the simple harmonic load f (x, t) is constant
(Figure 5a), primary function (Figure 5b), secondary function (Figure 5c), and tertiary
function (Figure 5d), respectively. From the four graphs, it can be found that the deflection
of the micro-beam increases as angular frequency increases, when B(x) takes the same value.
We can guess that Ω = 0.75–1.25 is a stage that gradually tends to the resonance frequency.
The rule at this stage is that the deflection increases with frequency. This is consistent with
the reality. Moreover, this is also in line with the deflection curve of the Euler–Bernoulli
beam [51,52], which shows that the analysis of the micro-beam deflection in this article is
correct. Under the load in Figure 5d, at t = 0.5 s, the deflection produced by Ω = 1 and
Ω = 1.25 is very close. Under the load in Figure 5c, the deflection produced when Ω = 0.75
and Ω = 1 is quite different. There is a maximum difference of 3× 10−6 cm in the middle
of the beam. This provides a new idea for the future research on simple harmonic loads,
which is beneficial to expanding the idea of solving practical engineering problems.
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Figure 5. Deflection of the micro-beam under different simple harmonic loads.

5.4. Stress and Strain of the Micro-Beam

From the stress–strain relationship equation:

σ = E(z)ε + η
∂αε

∂tα
(53)

Stress and strain are positively related. Figure 6a,b show the variation of strain and stress
of the micro-beam at different locations at different times under the simple harmonic load
f (x, t) = 100(x− 2)cost. Through the three-dimensional graph, it can be clearly seen that
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the trend of stress and strain is consistent, showing a positive relationship. Under the
simple harmonic load, the stress is symmetrical at x = 2.5× 10−4 m in the middle of the
micro-beam. At t = 0 s, the stress and strain of the micro-beam are zero at any position,
which conforms to the initial condition of the governing equation of the viscoelastic micro-
beam. As the loading time increases, the force resisting the deformation of the micro-beam
also increases. The stress and strain values of the micro-beam are the smallest at the middle
position, and the stress and strain gradually increase when approaching the two ends. The
stress reaches the maximum at x = 0.625× 10−4 m and x = 4.375× 10−4 m, which are
29.01 Pa and 28.78 Pa, respectively. This shows that the micro-beam has the weakest ability
to resist deformation in the middle position, and the closer to the end point, the stronger
the ability to resist deformation. This is consistent with the theory of Euler–Bernoulli beams
with both ends fixed. It is shown that the shifted Chebyshev polynomial algorithm is
capable of solving the stress and strain problems in viscoelastic materials.

(a) strain (b) stress
Figure 6. Stress and strain in the viscoelastic micro-beam under f (x, t) = 100(x− 2)cost.

5.5. Potential Energy Change of the Micro-Beam

The previous sections compare the physical quantities of viscous damping coefficient,
length scale parameters, micro-beam deflection, and strain with the conclusions in other
papers. It can be verified that the algorithm proposed in this paper is effective for the
numerical simulation of viscoelastic micro-beams. Therefore, in this section, we will
numerically simulate the potential energy of micro-beams to provide more reference data
for the study of viscoelastic materials.

The variation of potential energy for the viscoelastic micro-beam subjected to the
simple harmonic load f = 100(x − 2)cost will be studied in this section. The potential
energy here is the energy generated by the elastic deformation of the micro-beam. The
relationship between potential energy and deflection can be found from Equation (11).
According to the algorithm proposed in this paper, the deflection occurred by the micro-
beam is found. Then, the potential energy generated by the micro-beam during the motion
is found. The three-dimensional relationship diagram can be obtained as shown in Figure 7.

Figure 7 shows the potential energy values generated by the micro-beam at different
times and at different positions under the simple harmonic load f = 100(x− 2)cost. By
looking at the three-dimensional diagram on the left and the planar diagram on the right,
we can see that the generated potential energy is symmetrical with respect to the micro-
beam x = 2.5× 10−4 m. The generated potential energy decreases and then increases from
the middle of the micro-beam towards the two end points. The maximum potential energy
can reach 25.68 J. The potential energy in the middle position x = 2.5× 10−4 m is 7.13 J. The
position with the smallest potential energy is 0.21 J at x = 1× 10−4 m andx = 4× 10−4 m.
The potential energy starts to increase sharply about 6.25× 10−5 m from the ends of the
micro-beam. The potential energy generated increases with the time of application of the
simple harmonic load.
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Figure 7. Potential energy change of the viscoelastic micro-beam.

See Table A1 for explanations of professional terms.

6. Conclusions

In this paper, a numerical algorithm for solving nonlinear-fractional order differential
equations is proposed. The features of the algorithm are mainly reflected in the following
three aspects. First, the algorithm can directly find the numerical solution of the unknown
function in the time domain, and only needs to substitute the operator matrix form of the
fractional order differential equation into the Matlab program, which is easier to operate.
Secondly, the numerical solution of the fractional order differential equation is solved
with high accuracy using this algorithm. This can be verified in the numerical example,
where the error between the analytical and numerical solutions is of the order of 10−9. In
addition, the numerical simulations of micro-beams in viscoelastic materials is investigated
in this paper, and the following conclusions are obtained. This has important practical
implications for the study of viscoelastic materials:

• The constitutive equations of the nonlinear-fractional-order viscoelastic micro-beam
are first established and dimensionless. The numerical examples are used to demon-
strate the effectiveness and accuracy of the algorithm;

• Through numerical analysis, it is found that viscous damping has the effect of resisting
deformation. The larger the viscous damping coefficient, the stronger the ability to
resist deformation;

• The algorithm is used to compare the deflection of micro-beams under different length
scale parameters. It can be found that the deflection of the microbeam is inversely
proportional to the length scale parameter;

• The deflection changes of the viscoelastic micro-beam were obtained using this al-
gorithm. The effect of different simple harmonic loads on the deflection variation of
the micro-beam was studied. It can be found that, when the frequency of the simple
harmonic load approaches the first resonance region, the deflection will increase as
the frequency increases. It is also consistent with the actual situation;

• Using this algorithm, we calculated the stress and strain of the micro-beam. The
calculated stress and strain conform to the properties of viscoelastic materials, and the
two are also proportional. The reliability of the algorithm is verified;

• Using this algorithm, the change in potential energy of a viscoelastic micro-beam
under the simple harmonic load was calculated. It is found that the value of the
potential energy of the micro-beam is symmetrically distributed in the middle of the
micro-beam, with the potential energy decreasing and then increasing. The potential
energy increases sharply at the two end points of the micro-beam.
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This paper provides a research direction for the research of fractional viscoelastic
constitutive model and dynamic analysis of viscoelastic materials. In the future, further
research can be carried out on this basis. The research directions are as follows:

• The parameters in the paper are all selected from the references, and experiments can
be carried out in the future to use the experimental data for kinetic analysis;

• In the future, the algorithm in this paper can be used to compare the fitting effects of
different fractional models to the same viscoelastic material micro-beam;

• In the future, more complex viscoelastic materials can be numerically simulated using
variable fractional orders.
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Appendix A

This part explains the rationality of Equation (51) as a solution of Equation (49).
From Formula (51), we know that:

∂ω(x, t)
∂t

= 2x2(1− x)2t (A1)

∂2ω(x, t)
∂t2 = 2x2(1− x)2 (A2)

∂ω(x, t)
∂x

= 2(x− 3x2 + 2x3)t2 (A3)

∂2ω(x, t)
∂x2 = 2(1− 6x + 6x2)t2 (A4)

∂3ω(x, t)
∂x3 = 12(2x− 1)t2 (A5)

CDα
t

(
∂4ω(x, t)

∂x4

)
= CDα

t

(
24t2

)
= 24

Γ(3)
Γ(3− α)

t2−α (A6)

CDα
t

[
∂2ω(x, t)

∂x2

(
∂ω(x, t)

∂x

)2
]
= CDα

t

[(
2− 12x + 12x2

)(
2x− 6x2 + 4x3

)2
t6
]

=
(

2− 12x + 12x2
)(

2x− 6x2 + 4x3
)2 Γ(7)

Γ(7− α)
t6−α

(A7)

Substituting Equations (A1)–(A7) into the left side of the equal sign in Equation (49),
Equation (49) becomes:

20, 000x2(1− x)2 + 0.24t2 + 0.24
Γ(3)

Γ(3− α)
t2−α

− 0.1
(

2− 12x + 12x2
)

t6
(

2x− 6x2 + 4x3
)2

− 0.01
(

2− 12x + 12x2
)(

2x− 6x2 + 4x3
)2 Γ(7)

Γ(7− α)
t6−α

+ 0.002t
(

x2 − 2x3 + x4
)
= f (x, t)

(A8)
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It can be obtained that Equation (A8) is equal to Equation (50).
In addition, for boundary conditions:

ω(0, t) = x2(1− x)2t2|x=0 = 0 (A9)

ω(1, t) = x2(1− x)2t2|x=1 = 0 (A10)

∂ω(0, t)
∂x

=
∂ω(x, t)

∂x
|x=0 = 2(x− 3x2 + 2x3)t2|x=0 = 0 (A11)

∂ω(1, t)
∂x

=
∂ω(x, t)

∂x
|x=1 = 2(x− 3x2 + 2x3)t2|x=1 = 0 (A12)

The initial conditions are as follows:

ω(x, 0) = x2(1− x)2t2|t=0 = 0 (A13)

∂ω(x, 0)
∂t

= 2x2(1− x)2t|t=0 = 0 (A14)

Appendix B

Table A1. Nomenclature.

Symbol Explanation
cDα

x Caputo fractional order derivative operator
cD−β

x fractional integration
A cross-sectional area
ρ density
E modulus of elasticity
T kinetic energy

Up potential energy
t time
x position
V occupied area volume
σ stress
ε strain
m deviation part of the couple stress tensor
γ symmetric curvature tensor
z vertical coordinate
θ rotation vector
µ shear modulus of elasticity
L length scale parameter
I Moment of inertia
a Viscous damping coefficient

ηd viscoelastic coefficient
h height

Φn(u),Φn(x),Φn(t) Family of shifted Chebyshev polynomials
Ri(s) Chebyshev polynomials

R̄i(u), R̄i(x), R̄j(t) Shifted Chebyshev polynomials
Cn, U, H, Hα, W Coefficient matrix

Q(m)
x Integer order operator matrix

Q(α)
t fractional operator matrix

ω(x, t) analytical solution
ωn(x, t) numerical solution
e(x, t) absolute error
f (x, t) load

Ω frequency
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