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Abstract: Highly accurate cryptocurrency price predictions are of paramount interest to investors
and researchers. However, owing to the nonlinearity of the cryptocurrency market, it is difficult
to assess the distinct nature of time-series data, resulting in challenges in generating appropriate
price predictions. Numerous studies have been conducted on cryptocurrency price prediction using
different Deep Learning (DL) based algorithms. This study proposes three types of Recurrent Neural
Networks (RNNs): namely, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and
Bi-Directional LSTM (Bi-LSTM) for exchange rate predictions of three major cryptocurrencies in the
world, as measured by their market capitalization—Bitcoin (BTC), Ethereum (ETH), and Litecoin
(LTC). The experimental results on the three major cryptocurrencies using both Root Mean Squared
Error (RMSE) and the Mean Absolute Percentage Error (MAPE) show that the Bi-LSTM performed
better in prediction than LSTM and GRU. Therefore, it can be considered the best algorithm. Bi-LSTM
presented the most accurate prediction compared to GRU and LSTM, with MAPE values of 0.036,
0.041, and 0.124 for BTC, LTC, and ETH, respectively. The paper suggests that the prediction models
presented in it are accurate in predicting cryptocurrency prices and can be beneficial for investors
and traders. Additionally, future research should focus on exploring other factors that may influence
cryptocurrency prices, such as social media and trading volumes.

Keywords: machine learning; artificial neural network; deep learning; cryptocurrency

1. Introduction

The current monetary system is predicated upon the use of fiat currency, which
possesses several advantages such as divisibility, transferability, durability, and scarcity [1].
However, this system has several drawbacks, including the absence of a tangible backing
for currency and government control over the money supply, which can result in issues
such as hyperinflation and income inequality [2]. Furthermore, the current ledgers used
to record transactions are susceptible to manipulation and violations, and transactions
are often conducted through intermediaries such as financial institutions and credit card
companies, leading to high costs and longer transfer times. This can lead to a loss of control
and ownership of data by individuals. Despite these limitations, the current financial
system is still trusted by the general public due to the backing of government regulations
and legal contracts. However, historical instances of trust breaches, such as the dot-com in
the 1990s and real estate bubbles in 2008, have resulted in significant financial losses [3].
Thus, it is crucial to develop a new model that can effectively establish trust among all
stakeholders in the financial system. In October 2008, an individual or group operating
under the pseudonym Satoshi Nakamoto [4] introduced a revolutionary system known
as blockchain technology, which was accompanied by the invention of the first digital
currency, BTC. This system facilitates peer-to-peer (P2P) monetary transactions over the
public internet without the need for intermediaries and has emerged as an important asset
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class in the international financial landscape [5]. It is now being studied by academic
institutions, government agencies, media outlets, and the general public.

Cryptocurrencies are a new type of digital currency that uses cryptography to safe-
guard the transaction process and prevent counterfeiting [6]. One important fact about
cryptocurrencies is that they are independent of traditional banks, as they are not issued by
any central authority, which makes them distinguishable from the traditional centralized
currencies. Since the blockchain is essential to cryptocurrencies, it is stated that cryptocur-
rencies share all the characteristics of the blockchain. For instance, BTC provides people
with a secure way to conduct digital transactions pseudo-anonymously, which makes it
easy to know the patron and recipient in its transactions. The blockchain technology has
gained attention from governments worldwide, leading to calls for regulation in the cryp-
tocurrency sector. The motivation behind this governmental interest stems from concerns
related to crime, sovereignty, and opportunities. However, the BTC network operates on
Proof-of-Work (PoW) and Proof-of-Stake (PoS) hybrid schemes, which demand high energy
consumption in their computational processes to secure the network [7]. Proof-of-work
is a consensus algorithm used in some blockchain systems, such as BTC that requires
users to perform a certain amount of computational work to validate transactions and
add them to the blockchain. This work, also known as mining, is typically conducted
using specialized hardware, such as Application Specific Integrated Circuits (ASICs), and
consumes a significant amount of energy. A disadvantage of PoW systems is that they are
often criticized for their high energy consumption and centralization of mining power. The
energy consumption associated with PoW, in light of the global push towards combating
climate change, presents a challenge to the sustainability of the BTC network. Nevertheless,
alternative mechanisms, such as PoS, are consensus algorithms that do not require users
to perform computational work to validate transactions. Instead, users are required to
hold a certain amount of the asset in question, also known as staking, to participate in
the validation process. The advantage of PoS systems is that they are often seen as a
more energy-efficient alternative to PoW systems, as they do not require the same level of
computational power [8].

Among the numerous cryptocurrencies available, BTC stands out as the most well-
known and widely used. This is due to its early arrival in the market and its status as the
first decentralized cryptocurrency, which helped it gain a significant amount of attention
and popularity. Over time, this has established BTC as the leading currency in the crypto-
market. Other popular cryptocurrencies include ETH, LTC, and Ripple (XRP). Ethereum is
considered the second largest blockchain platform after BTC, and it enables the creation
of smart contracts, decentralized apps, and decentralized organizations (DAOs). The
primary goal of LTC’s introduction to the blockchain was to prioritize transaction speed,
making it a popular choice for time-sensitive mining processes. Ref. [9] highlights that the
competition between Bitcoin and other cryptocurrencies is a positive development, as it
drives technological and security advancements within the industry. The relationship and
interaction between big data and cryptocurrency have been studied in [10]. Big data refer
to the vast amounts of data generated by various sources such as social media, sensors,
and mobile devices. These data are typically unstructured and challenging to process
using traditional methods. The digitization and high-end technology of the past decade
have undergone significant changes in computing and communication platforms. This
progression has resulted in the widespread collection and implementation of big data
analytics into various aspects of daily life, as stated in [11]. The Internet of Things (IoT) and
the use of big data analytics are transforming communication infrastructure and shaping the
way data are processed and analyzed. They both rely on advanced technology, including
Artificial Intelligence (AI) and machine learning, to manage large amounts of data. The
connection between big data and cryptocurrencies is close, as blockchain technology, which
is used in cryptocurrency management, to leverage big data techniques for secure and
decentralized data storage and processing. Additionally, big data analytics can be used to
study cryptocurrency market trends and detect fraudulent activities, thereby strengthening
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the cryptocurrency market. The interdependence between big data and cryptocurrencies
creates growth opportunities for both.

Cryptocurrency is a lucrative market for speculation due to its high volatility. The
application of AI and machine learning algorithms can aid in predicting future cryptocur-
rency prices, yet the task remains challenging due to the complexity and nonlinear behavior
of the prices. Despite this, the market value of cryptocurrencies is predicted to grow in
the future, with an estimated compound annual growth rate of 11.1%. However, investors
have faced difficulties in the past with price bubbles leading to excessive volatility. To
overcome these challenges, a reliable model is necessary to assist market participants in
capturing trends and making predictions. However, accurately predicting cryptocurrency
prices is challenging as they are heavily influenced by various factors such as government
policies, technological advancements, public perception, and global events. As a result,
the purpose of the paper is to use deep learning algorithms to improve predictions by
identifying concealed patterns in the data, combining them, and generating predictions
that are significantly more accurate:

• Presenting a framework model for price predictions of BTC, ETH, and
LTC cryptocurrencies;

• Application of DL algorithms such as LSTM, Bi-LSTM, and GRU techniques;
• Evaluating the prediction performance of the proposed deep learning algorithms

using metrics of RMSE and MAPE

The main idea behind the proposed deep learning models is to achieve reliable price
prediction models that investors and speculators of cryptocurrencies can rely on based
on historical data. Moreover, we aim to answer the research question of ‘How can both
AI and DL algorithms help investors and speculators to forecast the prices of cryptocur-
rencies?’ and ‘What is the best artificial neural network model to forecast prices of the
chosen cryptocurrencies?’ This section provides an overview of cryptocurrencies, and the
remainder in the paper is structured as follows: Section 2 describes the literature review,
and Section 3 presents the materials and methodology, Section 4 illustrates the experimental
results, Section 5 presents a relative comparison of our model with those of similar studies,
and Section 6 summarizes the conclusions of the paper.

2. Literature Review

Machine learning is an artificial intelligence tool that uses past data to predict the
future. From this aspect, by training a machine learning model on historical cryptocurrency
price data, it may be possible to predict future price movements with some degree of
accuracy. Prior research has shown that machine learning based techniques have a number
of advantages over traditional forecasting models, including the ability to give results that
is nearly or exactly the same as the actual result while also improving the accuracy of the
results [12]. There are a number of different machine learning techniques that can be used
for this purpose, including decision trees, support vector machines (SVM), and neural
networks (NN). The authors of [13] reveal that inclusion of cryptocurrencies in multi-asset
portfolios improves the effectiveness of the portfolio in different ways. First, it enhances
the minimum variance of the portfolio and also moves the efficient frontier into a better
position. Furthermore, the standard deviation of the portfolio decreases and the Sharpe
ratio increases by including cryptocurrency assets into the portfolios.

In the literature, a number of research studies that used machine learning algorithms
in BTC price forecasting demonstrated their encouraging results. In a study conducted
by [12], machine learning algorithms were used to forecast the prices of different currency
including BTC, ETH, LTC, XRP, and Stellar. The researchers compared the performance
of three different machine learning techniques—SVM, Artificial Neural Network (ANN),
and DL and found that the SVM technique had the highest accuracy among the three. The
authors of [14] employed a range of features to forecast the prices of BTC and ETH, carefully
selecting the most reliable predictors through correlation analysis. When applying SVM,
linear regression, and random forest (RF) to these chosen features, the results demonstrated
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that linear regression outperformed the other methods. Additionally, the authors experi-
mented with using LSTM, a particular type of deep learning, to predict the prices of BTC
and ETH and found that LSTM had the lowest prediction error for BTC. Researchers in [15]
examined the use of machine learning based ensemble methods as a combination of ANN,
KNN, gradient boosted trees, and an ensemble model that combines several techniques to
forecast the prices of nine different cryptocurrencies. The findings demonstrated that the
ensemble learning model demonstrated the lowest error in the predictions. The authors
in [16] also used an ensemble model, comprising RF and a Gradient Boosting Machine
(GBM), to predict the prices of three cryptocurrencies—BTC, ETH, and XRP. The MAPE
was calculated for these predictions, and the results showed that the MAPE values for
the ensemble model ranged from 0.92% to 2.61%. Lately, we have seen a vast amount of
DL based models focused on financial time series predictions. Deep learning is a type of
machine learning that involves training ANN on a large dataset. These neural networks
are inspired by the structure and function of the human brain, and they are able to learn
and make intelligent decisions on their own. Deep learning algorithms have made sig-
nificant advancements and achieved impressive results in several areas including image
processing, speech recognition, computer vision, and natural language processing. For
deep learning, RNNs, in particular, are types of algorithms that are particularly well-suited
for processing sequential data, such as time series, natural language, and speech, while
Convolutional Neural Networks (CNNs) are particularly well-suited for image and video
analysis tasks. LSTM and GRU, two types of RNNs, are frequently utilized for time series
prediction. The authors in [17] developed a two-stage approach for forecasting BTC prices,
first employing ANN and RF to determine the relevant features for prediction, and then
using an LSTM model with these selected features. The results demonstrated that the
LSTM model outperformed ARIMA and SVM. In another study [18], a hybrid method
was implemented, combining LSTM and GRU networks, to predict the prices of LTC and
Monero (XMR). This hybrid approach was compared to an LSTM only method, and the
results indicated that the hybrid model had higher accuracy in predicting the prices of
the selected cryptocurrencies. Another study in [19] developed a method for predicting
daily BTC prices by integrating autoregressive (AR) features into an LSTM network. When
compared to a traditional LSTM model, their proposed LSTM-AR model demonstrated
lower error rates as measured by mean squared error (MSE), RMSE, MAPE, and mean
absolute error (MAE). The authors in [20] utilized deep learning techniques to predict
trends and prices for selected cryptocurrencies using hourly prices for BTC, ETH, and
XRP. They proposed an ensemble learning method that combined LSTM, Bi-LSTM, and
CNN, and found that this method could provide accurate and reliable predictions. The
authors in [21] compared the use of two machine learning approaches, RF and GBM, in
predicting the prices of three cryptocurrencies—BTC, ETH, and XRP. The results showed
that the GBM was more effective at forecasting the prices, with an RMSE of 263.34 on BTC,
5.02 on ETH, and 0.92 on XRP. In their study, Ref. [22] aimed to improve the accuracy of
cryptocurrency price prediction using a novel approach called the weighted and attentive
memory convolutional neural network (WAMC). The WAMC model was designed to take
advantage of the strengths of three different types of neural networks: a GRU, which es-
tablishes an attentive memory for each input sequence; a channel-wise weighting module,
which helps to identify interdependencies among various cryptocurrencies; and a CNN,
which extracts local temporal features from historical price data. The authors tested the
performance of the WAMC model on ETH and BTC, and found that it achieved an RMSE
of 9.70 and 1.37, respectively. These results suggest that the WAMC model is a promising
approach for predicting cryptocurrency prices.

3. Materials and Methods

In this section, we outline the procedures employed in the pre-processing and model-
ing phase of the study. Subsequently, a demonstration of the prediction plot results for a
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selection of cryptocurrencies is presented. Finally, we provide a comprehensive evaluation
of the study’s performance and analysis.

The goal of this study is to use deep learning techniques, including LSTM, GRU,
and Bi-LSTM, to predict the prices of three cryptocurrencies: BTC, ETH, and LTC. For
evaluation purposes, the study follows a specific process, which involves: (1) historical
data collection for BTC, ETH, and LTC; (2) exploratory data visualization; (3) splitting each
dataset into training and testing datasets; (4) training three types of models; (5) testing the
models; and (6) comparing the performance of each DL method.

3.1. Dataset

In this study, we proposed a simple three-layer network architecture for each deep
learning model, consisting of 100-neuron deep learning layers (LSTM, Bi-LSTM, and GRU).
The pre-processing methods for the dataset are shown in Figure 1. We conducted various
pre-processing techniques on the cryptocurrency data to prepare it for deep learning
processing. After handling missing values through data imputation, we reshaped the
data to be compatible with the application of LSTM, Bi-LSTM, and GRU. The examination
of the dataset revealed the presence of missing values, which we then replaced using
a straightforward imputation technique by replacing them with the previous recorded
observations. Normalization is fundamental to ensure the accuracy of model fitting and to
avoid bias. To mitigate the potential issue of unequal treatment of variables with different
scales, we utilized feature-wise normalization techniques such as MinMax Scaling prior
to model fitting. Recent studies have demonstrated the effectiveness of such data scaling
methods in enhancing model performance [23]. Thus, in this study, we employed MinMax
Scalar for scaling the data. We used a training:test split strategy of 80:20 to preserve
continuity in features for each cryptocurrency. The training dataset is from 1 January 2018
to 31 December 2021 (80% of the data), while the testing dataset consists of data from
1 January 2022 to 1 January 2023 (20% of the data). The experiments were conducted using
Python 3 and relevant libraries such as NumPy, Pandas, Matplotlib, Keras, and scikit-learn.

Figure 1. Methodology of processing data and model selection.
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The model was trained and run on a Macbook Air, 8-core CPU with 4 performance
cores and 4 efficiency cores, a 7-core GPU, a 16-core Neural Engine, and 256 GB SSD of disk
space. In conducting the experiments, we used Python 3 and several core libraries, such as
NumPy for numerical computing, Pandas for data processing and analysis, Matplotlib for
data visualization, and Keras and scikit-learn (sklearn) for the deep learning application
programming interface (API) in Python.

Figures 2–4 illustrate the daily closing prices of the targeted cryptocurrencies BTC,
ETH, and LTC and are divided into training and testing datasets. Note that we only
included historical data for the last five years to filter out monotonous data in the early
days of cryptocurrency.

The interpretation of Figure 2 reveals that the BTC price has a much more extensive
price track record compared to alternative cryptocurrencies. The currency price has been
gradually increasing to reach an all-time high of over USD 65,000 in November 2021.

Figure 3 shows that the price for the second-largest in the blockchain ecosystem,
Ethereum (ETH), soared to new heights back in 2021 reaching USD 4800 after a rough year
in 2020.

Figure 4 reveals that LTC has large variability to ETH and BTC. The coin was valued at
more than USD 385 per coin during 2021, a price that was nearly four times higher than its
2020 peak. It is worth noting that LTC has been relatively volatile in recent years, revealing
high price swings for the currency coin.

Figure 2. Training and Test sample for BTC.

Figure 3. Training and Test sample for ETH.
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Figure 4. Training and Test samples for LTC.

In statistics and machine learning, it is important to understand the distribution of the
dataset using meaningful charts in order to understand trends and patterns. Figure 5 shows
the time series data for BTC, ETH, and LTC ranging from 1 January 2018 to 1 January 2023.
The period was chosen to obtain a sufficient amount of dataset entries to feed into the
DL models.

Figure 5. BTC, ETH, and LTC time-series.

The dataset was collected from https://finance.yahoo.com/ (accessed on 23 July 2022)
in CSV format. The CSV file had three separate sheets: BTC, ETH, and LTC. Table 1
illustrates the specification of the used parameters whilst Figure 6 represents the sample
data from the datasets of the targeted cryptocurrencies used in the study.

Table 1. Dataset specifications.

Parameter Description Data Type

Date Date of the observation Date
Open Daily opening price of the selected cryptocurrency Number
High Daily high price of the selected cryptocurrency Number
Low Daily low price of the selected cryptocurrency Number
Close Daily close price of the selected cryptocurrency Number

Close Adj Close Daily Adjusted close price of the selected cryptocurrency Number

https://finance.yahoo.com/
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(a)
(b)

(c)

Figure 6. A snippet showing a sample of the data from the BTC, ETH, and LTC datasets. (a) sample
of the BTC dataset; (b) sample of the ETH dataset; (c) sample of the LTC dataset.

The correlation matrix Figure 7 below demonstrates the Pearson correlation coefficient
between the targeted cryptocurrencies. In Pearson correlation, we say that variables are
correlated when a change in the value of one affects the other. Variables are said to be
significantly correlated when the coefficient r is greater than 0.5, and the coefficient lies
between [–1, 1]. The correlation matrix indicates a positive correlation between the closing
prices for BTC, LTC, and ETH. This implies that, if one of the coin prices rises or falls, the
others will follow suit.

Figure 7. Heat map representing the correlation for BTC, ETH, and LTC.
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3.2. Deep Leaning Algorithms
3.2.1. Long Short-Term Memory—LSTM

LSTM is an updated version of RNN. They are specifically designed to avoid long-
term dependence problems, whilst solving the vanishing gradient problem with an added
mechanism, for regulating information, allowing it to be retained for long periods of
time [24]. In short, the LSTM architecture is made up of a number of memory blocks
that are recurrently connected sub networks. The network’s memory blocks serve the
dual functions of maintaining the network’s state over time and regulating the flow of
information between the cells. Figure 8 shows the LSTM block architecture, with input
signal xt, output ht, and the activation function. The input gate step is responsible for
determining the information which should be kept in the cell state while the output is
responsible for computation of the information that should be sent out from the cell state.

Figure 8. The structure of a long short-term memory (LSTM) algorithm.

The forward training process of an LSTM network can be described using the following
equations [25]:

it = σ(Wi[ht−1, xt] + bi) (1)

ft = σ(W f [ht−1, xt] + bt) (2)

ct = ft ∗ ct−1 + it ∗ tanh(Wc[ht−1, xt] + bc) (3)

ot = σ(Wo[ht−1, xt] + bo) (4)

ht = ot ∗ tanh(ct) (5)

where xt is the input at time step t, ht is the hidden state at time step t, ct is the cell state at
time step t, and it, ft, and ot are the input gate, forget gate, and output gate, respectively, at
time step t. W and b are the weight matrices and bias vectors, respectively. The sigmoid
function and the hyperbolic tangent function (tanh) are used to bound the output between
0 and 1, and between –1 and 1, respectively.
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3.2.2. Gated Recurrent Unit—GRU

Gated Recurrent Units (GRUs) are a type of RNN that were introduced by [26] in 2014
as an improvement over the traditional LSTM networks. Like LSTMs, GRUs are designed
to be able to process input sequences of arbitrary length and maintain a state that encodes
information about the past. However, unlike LSTMs, which use multiple gates and an
internal memory cell to control the flow of information, GRUs use a single update gate to
decide which information to retain and a reset gate to decide which information to discard.
This makes GRUs simpler and easier to train than LSTMs, while still being able to achieve
similar performance on many tasks [27].

In a study by [26], GRUs were shown to outperform LSTMs on the task of language
modeling on the Penn Treebank dataset. In a comparison of NLP models by [28], GRUs were
found to be competitive with LSTMs and CNNs on several benchmarks. One advantage
of GRUs is that they are able to capture long-range dependencies in sequential data more
effectively than simple RNNs. This is because the update and reset gates in a GRU allow it
to selectively retain or forget information from the past, depending on the current input and
the state of the network. This makes GRUs particularly well-suited for tasks that require the
ability to remember and use information from long sequences, such as language translation.

In Figure 9, the hidden state at time t, ht, is updated based on the input at time t, xt,
and the previous hidden state, ht−1, using the following equations [29]:

ut = σ(Wu[ht−1, xt]) (6)

rt = σ(Wr[ht−1, xt]) (7)

ht = (1− ut) ∗ ht−1 + ut ∗ tanh(W[rt ∗ ht−1, ut]) (8)

where ut and rt is update and reset gate, respectively.

Figure 9. The diagram of a GRU cell.
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3.2.3. Bi-Directional LSTM

A Bi-LSTM or bidirectional GRU (Bi-GRU) represented by Figure 10, is a type of RNN
that processes sequential data in both forward and backward directions. This allows the
network to use information from both the past and future when making predictions or
classifications. This can be particularly useful for tasks where the context of the current
time depends on both past and future events. In a Bi-LSTM or Bi-GRU, two layers of LSTM
or GRU cells are stacked together, and one layer processes the data in the forward direction
while the other processes the data in the backward direction.

One of the key contributions of Bi-LSTMs was presented in the paper “Bi-directional
Recurrent Neural Networks” [30] in 1997, where they introduced the concept of using
a forward and backward LSTM to model both past and future context for speech signal
processing tasks. Since then, Bi-LSTMs have been widely used in many natural language
processing tasks, including language translation, sentiment analysis, and text classification.
Bi-LSTMs have also shown themselves to be effective in time series prediction in several
studies [27,31,32], using Bi-LSTM and obtaining successful results. Similarly, Refs. [25,33]
have utilized Bi-LSTM and demonstrated its powerful performance on time series data.

Figure 10. The structure of a bi-directional LSTM (Bi-LSTM) algorithm.

3.3. Hyperparameter Tuning

Hyperparameter optimization is a fundamental aspect that has a considerable effect
on the efficacy of a machine learning algorithm. By selecting optimal hyperparameters,
the algorithm’s performance can be notably improved, leading to more precise predic-
tions [34]. The process of tuning the hyperparameters before the final run of the deep
learning algorithm is crucial for ensuring optimal results. In the current study, the number
of neurons in each layer, epoch size, and batch size were considered as the hyperparameters
to be optimized. An epoch refers to a complete forward and backward pass of the entire
dataset during the model’s execution, while the batch size refers to the number of samples
used in one forward/backward pass. It determines the number of samples that will be
propagated through the network and updated the weights in a single iteration. Batch size
is a hyperparameter that can affect model performance, and it can also affect the training
time. A smaller batch size will result in more frequent weight updates but may lead to
slower convergence, while a larger batch size may converge faster but may be computa-
tionally more demanding. For the following batch size 16, 32, 64, and 120 were used in the
experiments. However, 120 was selected as the best hyperparameter, as it produced more
accurate results for all prediction models used in this study.
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3.4. Performance Metrics

To evaluate the performance of the proposed DL algorithms’ schemes, we used root
mean squared error (RMSE) and mean absolute error percentage (MAPE). The smaller the
RMSE and MAPE values, the better the prediction model performance:

RMSE =

√
∑n

t=1(At − Pt)2

n
(9)

MAPE =
100
n
×

n

∑
i=1

|At − Pt|
At

(10)

where Pt and At are the forecast and actual value, respectively, and n is the number of
time steps.

4. Results

The proposed deep learning models used Python libraries such as Sklearn, Keras, and
Tensorflow. The algorithms were coded using Python 3.9 and run on a Mac computer with
a M1 processor, 8 GB of memory, and a 7-core GPU using Jupyter Lab. The results of using
these models to predict BTC, ETH, and LTC are listed in Table 2, with the model with the
smallest error values being determined as the best. The comparison between the actual
values and the predicted values for these currencies are shown in Figures 11–19, where it
can be seen that the predicted values are similar to the actual values with some variations.
These variations can be seen in the performance metrics presented in Table 2.

Table 2. Performance results for the proposed models.

Currency Model RMSE MAPE

BTC LSTM 1031.3401 0.0394
Bi-LSTM 1029.3617 0.0356
GRU 1274.1706 0.0572

ETH LSTM 148.5215 0.2971
Bi-LSTM 83.9531 0.1243
GRU 98.3136 0.1479

LTC LSTM 9.6680 0.0636
Bi-LSTM 8.0249 0.0411
GRU 8.1224 0.0458

Bold value represents the lowest error score for each cryptocurrency pair.

4.1. Results for BTC

According to Table 2, the Bi-LSTM model has the best performance for predicting
BTC prices, with the lowest RMSE and MAPE values. This is confirmed by Figure 11,
which shows that the Bi-LSTM model predictions closely match the actual prices. The
results suggest that the Bi-LSTM model is more effective at predicting BTC trends than
LSTM and GRU, with a small difference in performance compared to the LSTM model.
The second-best model for BTC is the LSTM, with slightly higher RMSE and MAPE values.
These results suggest that bidirectional RNN networks are more effective for BTC price
prediction than traditional RNN networks. The comparison of actual and predicted values
of the training dataset for the three models can be seen in Figures 11–13 for BTC.
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Figure 11. BTC—actual and predicted results using Bi-LSTM model.

Figure 12. BTC—actual and predicted results using the LSTM model.

Figure 13. BTC—actual and predicted results using the GRU model.

4.2. Results for ETH

The results from Table 2 and Figure 14 show that the Bi-LSTM model has the best
performance in forecasting ETH prices, with the lowest RMSE and MAPE values of 83.9531
and 0.1243, respectively. The graph in Figure 14 also demonstrates that the Bi-LSTM model
has the smallest difference between the actual and predicted prices of ETH.

The graph in Figure 15 illustrates how well the GRU model predicted the prices of
ETH. The difference between the predicted prices and the actual prices is minimal, as seen
by the low MAPE of 0.1480 and RMSE of 98.3141. This suggests that the model had a high
level of accuracy in its predictions.

The graph in Figure 16 illustrates the comparsion between the actual and the predicted
price of ETH using the LSTM model. The difference between the predicted prices and the
actual prices is minimal along the testing set, as seen by the MAPE of 0.2972 and RMSE
of 148.5221 This suggests that the model had a lower level of accuracy in its predictions
compared to GRU and Bi-LSTM.

Overall, bidirectional RNN networks perform better than traditional LSTM and GRU
networks in forecasting ETH prices.
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Figure 14. ETH—actual and predicted results using the Bi-LSTM model.

Figure 15. ETH—actual and predicted results using the GRU model.

Figure 16. ETH—actual and predicted results using the LSTM model.

4.3. Results for LTC

Table 2 demonstrates the accuracy of models for the LTC cryptocurrency. The Bi-LSTM
model had the smallest MAPE at 0.0411 and the smallest RMSE at 8.0249, making it the most
effective model for predicting LTC compared to LSTM and GRU. Figures 17–19 display a
comparison of the actual and predicted values of the training dataset for LTC using three
different models through visual representation.

The graph in Figure 18 illustrates how well the GRU model predicted the prices of
LTC. The difference between the predicted prices and the actual prices is minimal, as seen
by the low MAPE of 0.0458 and RMSE of 8.1224. This suggests that the model had a high
level of accuracy in its predictions.

The graph in Figure 19 illustrates how well the LSTM model predicted the prices of
LTC. The difference between the predicted prices and the actual prices is minimal, as seen
by the MAPE of 0.0636 and RMSE of 9.6680. This suggests that the model had a lower level
of accuracy in its predictions compared to GRU and Bi-LSTM.

Figure 17. LTC—actual and predicted results using the Bi-LSTM model.
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Figure 18. LTC—actual and predicted results using the GRU model.

Figure 19. LTC—actual and predicted results using the LSTM model.

5. Discussion

In the final analysis, the performance of the proposed method for predicting future
cryptocurrency values is compared to other models in the literature [35,36]. Based on
the evaluation methods and results obtained, these models are deemed dependable and
suitable. However, it should be noted that these models have several limitations that can
impact their accuracy in predicting cryptocurrency prices. Firstly, cryptocurrency prices are
highly dependent on multiple variables, and LSTMs, GRUs, and Bi-LSTMs may not capture
all of these dependencies, leading to suboptimal predictions. Furthermore, these models
are prone to overfitting, especially when trained on small datasets, which can result in poor
performance when applied to new data. Additionally, cryptocurrency prices are subject
to high levels of noise and volatility, making it challenging for these models to accurately
capture underlying trends.

Table 3 presents comparisons of various studies based on their RMSE and MAPE
results. The proposed three methods are seen to perform well and are comparable to other
methods in the literature. The MAPE values obtained in this paper show that the Bi-LSTM
performed better in predicting the price of all three types of cryptocurrency used in the
study, compared to the traditional LSTM and GRU models.

Table 3. Relative comparison with similar studies.

Authors Cryptocurrencies Methods MAPE RMSE

[35] BTC - USD LSTM 0.042 2518.02
Bi-LSTM 0.038 2222.74
GRU 0.035 1777.31

[35] ETH -USD LSTM 0.064 150.09
Bi-LSTM 0.060 147.85
GRU 0.057 151.62

[36] BTC - USD LSTM 0.040 2350.53
Bi-LSTM 0.033 1992.88
GRU 0.053 3223.01
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Table 3. Cont.

Authors Cryptocurrencies Methods MAPE RMSE

[36] ETH -USD LSTM 0.047 183.84
Bi-LSTM 0.042 168.60
GRU 0.047 181.03

[36] XRP -USD LSTM 0.063 0.098
Bi-LSTM 0.048 0.079
GRU 0.072 0.104

Our approach BTC - USD LSTM 0.039 1031.340
Bi-LSTM 0.036 1029.362
GRU 0.057 1274.171

Our approach ETH -USD LSTM 0.297 148.522
Bi-LSTM 0.124 83.953
GRU 0.148 98.314

Our approach LTC-USD LSTM 0.064 9.668
Bi-LSTM 0.041 8.025
GRU 0.046 8.122

A cost–benefit analysis of building a cryptocurrency price prediction model using
LSTM, GRU, and Bi-LSTM involves weighing the potential benefits against the costs
involved. The benefits of this project include valuable predictions, revenue generation, and
suitability for sequential data prediction. However, there are also costs involved in building
and training the models, including hardware and software expenses, risk of inaccurate
predictions, and ongoing maintenance.

6. Conclusions

In this study, three types of deep learning techniques—LSTM, GRU, and Bi-LSTM—
were used to predict the prices of three major cryptocurrencies, as measured by their
market capitalization: Bitcoin, Ethereum, and Litecoin. The performance of the models was
evaluated using two scores, RMSE and MAPE. The results of the study showed that the
Bi-LSTM model provided the most accurate predictions for all three currencies, followed
by the GRU model. This suggests that the combination of forward and backward flows in
bi-directional models improves the performance of time-series prediction. The conclusion
of the study is that deep learning algorithms are effective in predicting cryptocurrency
prices, and that the Bi-LSTM model is more efficient in predicting cryptocurrency prices
than traditional LSTM and GRU. In future studies, the effect of tweets and sentiments on
cryptocurrency prices will be explored using machine learning techniques.
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2. Bulíř, A. Income inequality: Does inflation matter? IMF Staff. Pap. 2001, 48, 139–159.
3. Basco, S. Globalization and financial development: A model of the Dot-Com and the Housing Bubbles. J. Int. Econ. 2014,

92, 78–94. [CrossRef]

https://finance.yahoo.com
https://ssrn.com/abstract=884539
http://doi.org/10.1016/j.jinteco.2013.10.008


Fractal Fract. 2023, 7, 203 17 of 18

4. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260. Available online: https:
//bitcoin.org/bitcoin.pdf (accessed on 19 October 2022) .

5. Sureshbhai, P.N.; Bhattacharya, P.; Tanwar, S. KaRuNa: A blockchain-based sentiment analysis framework for fraud cryptocur-
rency schemes. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops),
Dublin, Ireland, 7–11 June 2020; pp. 1–6.

6. Rose, C. The evolution of digital currencies: Bitcoin, a cryptocurrency causing a monetary revolution. Int. Bus. Econ. Res. J. (IBER)
2015, 14, 617–622. [CrossRef]
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