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Abstract: This paper studies the bifurcations of the exact solutions for the time–space fractional
complex Ginzburg–Landau equation with parabolic law nonlinearity. Interestingly, for different
parameters, there are different kinds of first integrals for the corresponding traveling wave systems.
Using the method of dynamical systems, which is different from the previous works, we obtain the
phase portraits of the the corresponding traveling wave systems. In addition, we derive the exact
parametric representations of solitary wave solutions, periodic wave solutions, kink and anti-kink
wave solutions, peakon solutions, periodic peakon solutions and compacton solutions under different
parameter conditions.
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1. Introduction

The fractional complex Ginzburg–Landau (FCGL for short in the following) equation
was first proposed by Weitzner and Zaslavsky [1]. It describes the dynamical processes in
fractal media [2,3]. Various methods have been used to study the FCGL equation, including
the semigroup method, the Galerkin method, the exp−ϕ(χ)-expansion method, Jacobian
elliptic function expansion method, the improved tan(ψ(ξ/2))-expansion method and so
on [4–14]. For example, by employing the extended Jacobi’s elliptic function expansion
method, Abdou et al. [4] obtained the dark-singular combo optical solitons of the FCGL
equation. Arshed [5] researched the soliton solutions of the FCGL equation with Kerr law
and non-Kerr law nonlinearity. Using the modified Jacobian elliptic function expansion
method, Fang et al. [6] derived the discrete fractional soliton solutions of the FCGL equa-
tion. Li et al. [7] establish the existence and uniqueness of weak solutions to the FCGL
equation under the Galerkin method and a priori estimates. Lu et al. [8] studied the initial
boundary value problem of the FCGL equation in three spatial dimensions. Milovanov
and Rasmussen [9] discussed the fractional modifications of the free energy functional at
criticality and of the widely known Ginzburg–Landau equation central to the classical Lan-
dau theory of second-type phase transitions. Mvogo et al. [10] proposed both the semi and
the linearly implicit Riesz fractional finite-difference schemes to solve the FCGL equation
efficiently. Pu and Guo [11] studied the global well-posedness and long-time dynamics
of the FCGL equation. Qiu et al. [12] studied the soliton dynamics of an FCGL equa-
tion. Raza [13] investigated the exact periodic and explicit solutions of an FCGL equation.
Sadaf et al. [14] considered the exact solutions of an FCGL equation by using the improved
tan(ψ(ξ/2))-expansion method.

Different from the above methods, we apply the theory of dynamical systems to
research the exact solutions of the following FCGL equation with parabolic law nonlinearity:
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i
∂δu
∂tδ

+ a
∂2δu
∂x2δ

+ b|u|2u + c|u|4u− 1
|u|2u∗

(
α|u|2 ∂2δ|u|2

∂x2δ
− β

(
∂δ|u|2

∂xδ

)2)
− γu = 0, (1)

where x denotes distance along the fiber, t > 0 denotes time in dimensionless form, a, b, c, α,
β and γ are valued constants, and 0 < δ ≤ 1 denotes the order of the fractional derivative.
The fractional derivative in Equation (1) is the conformable fractional derivative, defined as

∂δ

∂tδ
f (t) = lim

ε→0

f (t + εt1−δ)− f (t)
ε

, 0 < δ ≤ 1,

where f : (0, ∞) → R, and t > 0. For the conformable fractional derivative, we have
following conclusions [15]:

∂δ

∂tδ
tk = ktk−δ, Dδ

t u(t) = t1−δ du(t)
dt

, k ∈ R, 0 < δ ≤ 1.

The dynamical system theory is a useful tool to obtain the traveling wave solutions of
the nonlinear partial differential equations. Via studying the number of zeros of Abelian,
Chen et al. [16] obtained the periodic solutions of the Friedmann–Robertson–Walker
model (also see [17,18]). Sun et al. [19] proved the existence of the periodic waves by
constructing the Melnikov functions. Employing the geometric singular perturbation theory,
Ge and Du [20] studied the solitary wave solutions of the perturbed shallow water wave
model (also see [21–23]). Based on abstract bifurcation theory, Song and Tang [24] discussed
the nonconstant solutions (also see [25]). Chen et al. [26] analyzed the global dynamics
of a mechanical system (also, see [27–29]). Applying the first integral method, Deng [30]
considered the solitary wave solutions of the generalized Burgers–Huxley equation. Li [31]
introduced the “three-step” method to investigate the singular traveling wave equations
(also see [32]). Under the “three-step” method, many results for exact solutions have been
produced [15,33–43].

How do the traveling wave solutions of Equation (1) depend on the parameters of the
system? Are there peakon solutions and periodic peakon solutions as well as compactons
of Equation (1)? As far as we know, no one has considered these problems. In this paper,
by using the method of dynamical systems, we shall consider the dynamical behavior of
the bounded traveling wave solutions of Equation (1) in different parameter domains.

To achieve the research purpose, in Equation (1), we apply the traveling wave transform

u(x, t) = φ(ξ)eiη(x,t), ξ =
xδ

δ
− v

tδ

δ
, η(x, t) = −κ

xδ

δ
+ ω

tδ

δ
+ θ, (2)

where φ(ξ) represents the shape of the pulse, and v is the wave velocity. The function η(x, t)
is the phase component of the soliton, κ is the soliton frequency, ω is the wave number, and
θ is the phase constant.

Then, separating the real part and the imaginary part, Equation (1) reduces to the
following equations:

(v + 2aκ)φξ = 0, (3)

which implies v + 2aκ = 0, and

(a− 2α)φξξ = (2α− 4β)
φ2

ξ

φ
+ (ω + γ + aκ2)φ− bφ3 − cφ5, (4)

that is,
dφ

dξ
= y,

dy
dξ

=
(2α− 4β)y2 + (ω + γ + aκ2)φ2 − bφ4 − cφ6

(a− 2α)φ
. (5)
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As defined in Li’s book [31], system (5) is the first class of the singular traveling wave
system when α 6= 2β, and its singular line is φ = 0. However, when α = 2β, system (5) is a
regular system:

dφ

dξ
= y,

dy
dξ

=
1

(a− 2α)

(
(ω + γ + aκ2)φ− bφ3 − cφ5

)
. (6)

The first integral of system (5) is

H(φ, y) = φ
4(2β−α)
(a−2α)

(
y2 − (ω + γ + aκ2)

(a− 4α + 4β)
φ2 +

b
(2a− 6α + 4β)

φ4 +
c

(3a− 8α + 4β)
φ6
)
= h, (7)

if a− 4α + 4β 6= 0, a− 3α + 2β 6= 0 and 3a− 8α + 4β 6= 0;

H(φ, y) =
y2

φ2 −
2(ω + γ + aκ2)

(a− 2α)
ln |φ|+ b

(a− 2α)
φ2 +

c
2(a− 2α)

φ4 = h, (8)

if a− 4α + 4β = 0;

H(φ, y) =
y2

φ4 +
(ω + γ + aκ2)

(a− 2α)φ2 +
2b

(a− 2α)
ln |φ|+ c

(a− 2α)
φ2 = h, (9)

if a− 3α + 2β = 0;

H(φ, y) =
y2

φ6 +
(ω + γ + aκ2)

2(a− 2α)φ4 −
b

(a− 2α)φ2 +
2c

(a− 2α)
ln |φ| = h, (10)

if 3a− 8α + 4β = 0.
In Section 2, through qualitative analysis, we give the phase portraits of system (5)

in various parameter domains. In Sections 3–5, we figure out the exact solutions of
Equation (1) in some special parameter domains. In Section 6, we give the main theory and
the conclusion.

2. Bifurcations of Phase Portraits of System (5)

The associated regular system of (5) is

dφ

dζ
= (a− 2α)φy,

dy
dζ

= (2α− 4β)y2 + (ω + γ + aκ2)φ2 − bφ4 − cφ6, (11)

where dξ = (a− 2α)φdζ. Systems (5) and (11) have the same first integral. However, they
have different time scales near the straight line φ = 0 (see [31]).

Firstly, we analyze the number of equilibrium points and their parametric regions. Obviously,
when ∆ = b2 + 4c(ω + γ + aκ2) > 0, φ2 = −b±

√
∆

2c make cφ4 + bφ2 − (ω + γ + aκ2) = 0.
Then, we have the following conclusions:

1. System (11) has only one equilibrium point E0(0, 0) in the φ-axis if ∆ < 0; or
∆ > 0, c > 0, b > 0, ω + γ + aκ2 ≤ 0; or ∆ > 0, c < 0, b < 0, ω + γ + aκ2 ≥ 0; or
∆ = 0, bc > 0.

2. System (11) has three equilibrium points E0(0, 0), E1

(√
−b+

√
∆

2c , 0
)

and

E2

(
−
√
−b+

√
∆

2c , 0
)

in the φ-axis if ∆ > 0, c > 0, ω + γ + aκ2 > 0; System (11) has

three equilibrium points E0(0, 0), E3

(√
−b−

√
∆

2c , 0
)

and E4

(
−
√
−b−

√
∆

2c , 0
)

in the φ-axis

if ∆ > 0, c < 0, ω + γ + aκ2 < 0; System (11) has three equilibrium points E0(0, 0),

E5

(√
− b

2c , 0
)

and E6

(
−
√
− b

2c , 0
)

in the φ-axis if ∆ = 0, bc < 0.
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3. System (11) has five equilibrium points E0(0, 0), E1

(√
−b+

√
∆

2c , 0
)

, E2

(
−
√
−b+

√
∆

2c , 0
)

E3

(√
−b−

√
∆

2c , 0
)

and E4

(
−
√
−b−

√
∆

2c , 0
)

inthe φ-axis if ∆ > 0, c > 0, b < 0, ω + γ + aκ2 < 0;

or ∆ > 0, c < 0, b > 0, ω + γ + aκ2 > 0.
Secondly, in order to judge the type of an equilibrium point Ej(φj, yj), we should know

the sign of J(φj, yj) = detM(φj, yj), where M is the coefficient matrix of the corresponding
linear system of (11). When α = 2β, we have

J(0, 0) = −ω + γ + aκ2

a− 2α
, J

±
√
−b +

√
∆

2c
, 0

 =

√
∆(
√

∆− b)
c(a− 2α)

,

J

±
√
−b−

√
∆

2c
, 0

 =

√
∆(
√

∆ + b)
c(a− 2α)

, J

(
±
√
− b

2c
, 0

)
= 0.

when α 6= 2β, we have

J(0, 0) = 0, J

±
√
−b +

√
∆

2c
, 0

 =
(a− 2α)

√
∆(
√

∆− b)2

2c2 ,

J

±
√
−b−

√
∆

2c
, 0

 = − (a− 2α)
√

∆(
√

∆ + b)2

2c2 , J

(
±
√
− b

2c
, 0

)
= 0.

If J < 0, then the equilibrium point Ej(φj, yj) is a saddle; if J > 0, then it is a center; if
J = 0 and the index of the equilibrium point is zero, then it is a cusp.

Next, we write that

h0 = H(0, 0) = 0(∞) for
4(2β− α)

(a− 2α)
≥ 0(< 0),

h1 = H

√−b +
√

∆
2c

, 0

, h2 = H

−
√
−b +

√
∆

2c
, 0

, h3 = H

√−b−
√

∆
2c

, 0

,

h4 = H

−
√
−b−

√
∆

2c
, 0

, h5 = H

(√
− b

2c
, 0

)
, h6 = H

(
−
√
− b

2c
, 0

)
,

where H is given by (7). We have h1 = h2, h3 = h4, h5 = h6, if 4(2β−α)
(a−2α)

= 2n, n ∈ N; and

h1 = −h2, h3 = −h4, h5 = −h6, if 4(2β−α)
(a−2α)

= 2n + 1, n ∈ N.
In the following, we only discuss the case of c > 0, because there is a similar conclusion

when c < 0. Using the aforementioned data, the bifurcations of the phase portraits of (5)
are given in Figures 1–6.
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(1) (2) (3) (4)

(5) (6) (7)

Figure 1. Phase portraits corresponding to system (5) under c > 0, α−2β = 0, a−2α > 0. (1) ∆ < 0 or
∆ = 0, b > 0 or ∆ > 0,b > 0, ω + γ + aκ2 ≥ 0. (2) ∆ = 0, b < 0. (3) ∆ > 0, ω + γ+ aκ2 > 0. (4) ∆ > 0,
b < 0, ω + γ + aκ2 = 0. (5) ∆ > 0, 3b2

16c < b < 0, ω + γ + aκ2 < 0. (6) ∆ > 0, b = 3b2

16c , ω + γ + aκ2 < 0.
(7) ∆ > 0, b < 3b2

16c , ω + γ+ aκ2 < 0.

(1) (2) (3) (4)

(5) (6)

Figure 2. Phase portraits corresponding to system (5) under c > 0, α−2β = 0, a−2α < 0. (1) ∆ < 0
or ∆ = 0, b > 0 or ∆ > 0, b > 0, ω + γ + aκ2 ≥ 0. (2) ∆ = 0, b < 0. (3) ∆ > 0, ω + γ + aκ2 > 0 or
∆ > 0, b < 0, ω + γ + aκ2 = 0. (4) ∆ > 0, 3b2

16c < b < 0, ω + γ + aκ2 < 0. (5) ∆ > 0, b = 3b2

16c , ω + γ +

aκ2 < 0. (6) ∆ > 0, b < 3b2

16c , ω + γ + aκ2 < 0.
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(1) (2) (3) (4)

(5) (6) (7)

Figure 3. Phase portraits corresponding to system (5) under c > 0, (2β−α)(a−2α) > 0, a−2α > 0.
(1) ∆ < 0 or ∆ = 0, b > 0 or ∆ > 0, b > 0, ω + γ + aκ2 ≥ 0. (2) ∆ = 0, b < 0. (3) ∆ > 0, ω + γ +

aκ2 > 0. (4) ∆ > 0, b < 0, ω + γ + aκ2 = 0. (5) ∆ > 0, b < 0, ω + γ + aκ2 < 0, h1 = h2 < h0 < h3 =

h4. (6) ∆ > 0, b < 0, ω + γ + aκ2 < 0, h1 = h2 = h0 < h3 = h4. (7) ∆ > 0, b < 0, ω + γ + aκ2 < 0,
h0 < h1 = h2 < h3 = h4.

(1) (2) (3) (4)

(5) (6)

Figure 4. Phase portraits corresponding to system (5) under c > 0, (2β−α)(a−2α) > 0, a−2α < 0.
(1) ∆ < 0 or ∆ = 0, b > 0 or ∆ > 0, b > 0, ω + γ + aκ2 ≥ 0. (2) ∆ = 0, b < 0. (3) ∆ > 0,
ω + γ + aκ2 > 0 or ∆ > 0, b < 0, ω + γ + aκ2 = 0. (4) ∆ > 0, b < 0, ω + γ + aκ2 < 0, h3 = h4 <

h0 < h1 = h2. (5) ∆ > 0, b < 0, ω + γ + aκ2 < 0, h3 = h4 < h0 = h1 = h2. (6) ∆ > 0, b < 0,
ω + γ + aκ2 < 0, h3 = h4 < h1 = h2 < h0.
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(1) (2) (3) (4)

(5) (6)

Figure 5. Phase portraits corresponding to system (5) under c > 0, (2β−α)(a−2α) < 0, a−2α > 0.
(1) ∆ < 0 or ∆ = 0, b > 0 or ∆ > 0, b > 0, ω + γ + aκ2 ≥ 0. (2) ∆ = 0, b < 0. (3) ∆ > 0,
ω + γ + aκ2 > 0 or ∆ > 0, b < 0, ω + γ + aκ2 = 0. (4) ∆ > 0, b < 0, ω + γ + aκ2 < 0, h1 =−h2 <

h0 < h3 =−h4. (5) ∆ > 0, b < 0, ω + γ + aκ2 < 0, h1 = h2 = h0 < h3 =−h4. (6) ∆ > 0,
b < 0, ω + γ + aκ2 < 0, h0 < h1 =−h2 < h3 =−h4.

(1) (2) (3) (4)

(5) (6) (7)

Figure 6. Phase portraits corresponding to system (5) under c > 0, (2β−α)(a−2α) < 0, a−2α < 0.
(1) ∆ < 0 or ∆ = 0, b > 0 or ∆ > 0, b > 0, ω + γ + aκ2 ≥ 0.(2) ∆ = 0, b < 0. (3) ∆ >

0, ω + γ + aκ2 > 0. (4) ∆ > 0, b < 0, ω + γ + aκ2 = 0. (5) ∆ > 0, b < 0, ω + γ + aκ2 < 0, h3 =−h4 <

h0 < h1 =−h2. (6) ∆ > 0, b < 0, ω + γ + aκ2 < 0, h3 =−h4 < h0 = h1 = h2. (7) ∆ > 0,
b < 0, ω + γ + aκ2 < 0, h3 =−h4 < h1 =−h2 < h0.

3. Expressions of the Traveling Wave Solutions of System (5) if C > 0, α = 2β

Currently, through integral calculation, we compute the exact parametric expressions
of the traveling wave solutions if c > 0, α = 2β. According to Equation (7) and the first
equation of system (5), we derive the following expression:

ξ =
∫ φ

φ0

dφ

y(φ)
=
∫ φ

φ0

±dφ√
c

3(2α−a)φ6 + b
2(2α−a)φ4 + ω+γ+aκ2

a−2α φ2 + h
. (12)

3.1. The Parameter Condition of A− 2α > 0, ∆ = 0, B < 0 (See Figure 1(2))

In formula (7), if H(φ, y) = h5, there are two heteroclinic orbits, which encircle
the equilibrium point E0 and link the saddle points E5 and E6. These two heteroclinic
orbits correspond to kink and anti-kink wave solutions, respectively. Here, we have
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y2 = c
3(a−2α)

(√
− b

2c − φ

)3(
φ +

√
− b

2c

)3
. Combined with the integral formula (12), we

get the expressions of the kink wave solution as (see Figure 7a)

φ(ξ) =


−
√

b3ξ2

24c2(2α−a)−2cb2ξ2 , ξ ∈ (−∞, 0],√
b3ξ2

24c2(2α−a)−2cb2ξ2 , ξ ∈ [0,+∞),
(13)

and the anti-kink wave solutions as (see Figure 7b):

φ(ξ) =


√

b3ξ2

24c2(2α−a)−2cb2ξ2 , ξ ∈ (−∞, 0],

−
√

b3ξ2

24c2(2α−a)−2cb2ξ2 , ξ ∈ [0,+∞).
(14)

From Equations (13) and (14), we deduce the expressions of two exact solutions of
Equation (1) as

u(x, t) =


−
√

b3(xδ−vtδ)2

24c2δ2(2α−a)−2cb2(xδ−vtδ)2 eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],√

b3(xδ−vtδ)2

24c2δ2(2α−a)−2cb2(xδ−vtδ)2 eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞),

(15)

and

u(x, t) =


√

b3(xδ−vtδ)2

24c2δ2(2α−a)−2cb2(xδ−vtδ)2 eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],

−
√

b3(xδ−vtδ)2

24c2δ2(2α−a)−2cb2(xδ−vtδ)2 eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞).

(16)

(a) (b)

Figure 7. Kink and anti-kink wave forms of system (5). (a) Kink wave. (b) Anti-kink wave.

3.2. The Parameter Condition of A− 2α > 0, ∆ > 0, ω + γ + aκ2 > 0 (See Figure 1(3))

(i) In formula (7), if H(φ, y) = h, h ∈ (h1, h0), there are two families of periodic
orbits, which respectively encircle the equilibrium points E1 and E2. These two families
of periodic orbits correspond to two periodic wave solutions of system (5). At present,
y2 = 4c

3(a−2α)
(r1 − φ2)(φ2 − r2)(φ

2 − r3), where r1 > r2 > 0 > r3. After calculation, we get
the expressions of the two periodic wave solutions as (see Figure 8)

φ(ξ) = ±

√
r1(r2 − r3) + r3(r1 − r2)sn2(g1ξ, k1)

r2 − r3 + (r1 − r2)sn2(g1ξ, k1)
, (17)

where g1 =
√

cr1(r2−r3)
3(a−2α)

, k2
1 = r3(r2−r1)

r1(r2−r3)
.
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Thus, the two exact solutions of Equation (1) are given as

u(x, t) = ±

√√√√ r1(r2 − r3) + r3(r1 − r2)sn2(g1
1
δ (xδ − vtδ), k1)

r2 − r3 + (r1 − r2)sn2(g1
1
δ (xδ − vtδ), k1)

eiη(x,t). (18)

(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respec-
tively encircle the equilibrium points E1 and E2. The traveling wave solutions of the two
homoclinic orbits are two solitary wave solutions of system (5). And, y2 = 4c

3(a−2α)
(r1 −

φ2)φ2(φ2 − r2), where r1 > 0 > r2.
Thus, we obtain the parametric representations of the solitary wave solutions (see

Figure 9)

φ(ξ) = ±
√

2r1r2

r1 + r2 + (r2 − r1) cosh(g2ξ)
, (19)

where g2 =
√

4cr1r2
3(2α−a) .

So, the two exact solutions of Equation (1) are given as

u(x, t) = ±
√

2r1r2

r1 + r2 + (r2 − r1) cosh(g2
1
δ (xδ − vtδ))

eiη(x,t). (20)

(a) (b)

Figure 8. Periodic wave forms of system (5). (a) Defined by (17)+. (b) Defined by (17)−.

(a) (b)

Figure 9. Solitary wave forms of system (5). (a) Bright solitary wave derived by (19)+. (b) Dark
solitary wave derived by (19)−.

3.3. The Parameter Condition of A− 2α > 0, ∆ > 0, B < 0, ω + γ + aκ2 = 0 (See Figure 1(4))

(i) There exist two families of periodic orbits when H(φ, y) = h, h ∈ (h1, h0), which
correspond to two periodic wave solutions of system (5). They have the same expressions
as Equation (17).

(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respectively
encircle the equilibrium points E1 and E2. The traveling wave solutions of the two homo-
clinic orbits are two solitary wave solutions of system (5). And, y2 = 4c

3(a−2α)
(r1 − φ2)φ4,
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where r1 > 0. Thus, we obtain the parametric representations of the solitary wave solutions
(see Figure 10):

φ(ξ) = ±
√

3r1(a− 2α)

3(a− 2α) + cr2
1ξ2

. (21)

(a) (b)

Figure 10. Solitarywave forms of system (5). (a) Bright solitary wave derived by (21)+. (b) Dark
solitary wave derived by (21)−.

So, the two exact solutions of Equation (1) are given as

u(x, t) = ±
√

3r1(a− 2α)

3(a− 2α) + cr2
1

1
δ2 (xδ − vtδ)2

eiη(x,t). (22)

3.4. The Parameter Condition of A− 2α > 0, ∆ > 0, 3b2

16c < b < 0, ω + γ + aκ2 < 0
(See Figure 1(5))

(i) There exist two families of periodic orbits when H(φ, y) = h, h ∈ (h1, h0], which
correspond to two periodic wave solutions of system (5). Their expressions are identical to
Equation (17).

(ii) In formula (7), if H(φ, y) = h, h ∈ (h0, h3), there are three families of periodic
orbits, which respectively encircle the equilibrium points E0, E1 and E2. For the periodic orbits
surrounding the equilibrium point E0, we have y2 = 4c

3(a−2α)
(r1 − φ2)(r2 − φ2)(r3 − φ2). Then,

we compute the representation of the periodic wave solution of system (5) (see Figure 11a)

φ(ξ) =


−
√

r2r3−r2r3sn2(g3ξ,k2)
r2−r3sn2(g3ξ,k2)

, ξ ∈
[
(4n + 1)ξ1, (4n + 3)ξ1

]
,√

r2r3−r2r3sn2(g3ξ,k2)
r2−r3sn2(g3ξ,k2)

, ξ ∈
[
4nξ1, (4n + 1)ξ1

]
∪
[
(4n + 3)ξ1, (4n + 4)ξ1

]
,

(23)

where g3 =
√

cr2(r1−r3)
3(a−2α)

, k2
2 = r3(r1−r2)

r2(r1−r3)
, ξ1 = 1

g3
sn−1(1, k2), n ∈ Z.

For the periodic orbits surrounding the equilibrium points E1 and E2, we have
y2 = 4c

3(a−2α)
(r1 − φ2)(φ2 − r2)(φ

2 − r3), where r1 > r2 > r3 > 0. Then, the expressions of
the two periodic wave solutions are derived as (see Figure 11b,c)

φ(ξ) = ±
√

r1r2

r2 + (r1 − r2)sn2(g3ξ, k2)
. (24)
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(a) (b) (c)

Figure 11. Periodic wave forms of system (5). (a) Defined by (23). (b) Defined by (24)+. (c) Defined
by (24)−.

Subsequently, the three exact periodic wave solutions of Equation (1) are given as

u(x, t) =


−
√

r2r3−r2r3sn2(g3
1
δ (xδ−vtδ),k2)

r2−r3sn2(g3
1
δ (xδ−vtδ),k2)

eiη(x,t), 1
δ (xδ − vtδ) ∈

[
(4n + 1)ξ1, (4n + 3)ξ1

]
,√

r2r3−r2r3sn2(g3
1
δ (xδ−vtδ),k2)

r2−r3sn2(g3
1
δ (xδ−vtδ),k2)

eiη(x,t), 1
δ (xδ − vtδ) ∈

[
4nξ1, (4n + 1)ξ1

]
∪
[
(4n + 3)ξ1, (4n + 4)ξ1

]
,

(25)

and

u(x, t) = ±
√

r1r2

r2 + (r1 − r2)sn2(g3
1
δ (xδ − vtδ), k2)

eiη(x,t). (26)

(iii) In formula (7), if H(φ, y) = h3, there are two homoclinic orbits encircling the
equilibrium points E1 and E2, and two heteroclinic orbits linking two saddle points E3 and

E4. For the two homoclinic orbits, we have y2 = 4c
3(a−2α)

(r1 − φ2)
(

φ2 − −b−
√

∆
2c

)2
. Then,

the expressions of the traveling wave solutions are derived as (see Figure 12)

φ(ξ) = ±

√
r1(b +

√
∆)(1 + cosh(g4ξ))

2(b +
√

∆) + 2cr1(1− cosh(g4ξ))
, (27)

where g4 =

√
(b+
√

∆)(2cr1+b+
√

∆)
3c(2α−a) .

(a) (b)

Figure 12. Solitarywave forms of system (5). (a) Bright solitary wave derived by (27)+. (b) Dark
solitary wave derived by (27)−.

For the two heteroclinic orbits, we have y2 = 4c
3(a−2α)

(r1 − φ2)
(
−b−

√
∆

2c − φ2
)2

, where

r1 > −b−
√

∆
2c > 0. Then, the the expression of the kink wave solution is given as

(see Figure 13a)

φ(ξ) =


−
√

r1(b+
√

∆)(1−cosh(g4ξ))

2(b+
√

∆)+2cr1(1+cosh(g4ξ))
, ξ ∈ (−∞, 0],√

r1(b+
√

∆)(1−cosh(g4ξ))

2(b+
√

∆)+2cr1(1+cosh(g4ξ))
, ξ ∈ [0,+∞),

(28)
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and the the expression of the anti-kink wave solution is given as (see Figure 13b)

φ(ξ) =


√

r1(b+
√

∆)(1−cosh(g4ξ))

2(b+
√

∆)+2cr1(1+cosh(g4ξ))
, ξ ∈ (−∞, 0],

−
√

r1(b+
√

∆)(1−cosh(g4ξ))

2(b+
√

∆)+2cr1(1+cosh(g4ξ))
, ξ ∈ [0,+∞).

(29)

(a) (b)

Figure 13. Kink and anti-kink wave forms of system (5). (a) Kink wave given by Equation (28).
(b) Anti-kink wave given by Equation (29).

So, Equation (1) has the following four exact solutions:

u(x, t) = ±

√√√√ r1(b +
√

∆)(1 + cosh(g4
1
δ (xδ − vtδ)))

2(b +
√

∆) + 2cr1(1− cosh(g4
1
δ (xδ − vtδ)))

eiη(x,t), (30)

u(x, t) =


−
√

r1(b+
√

∆)(1−cosh(g4
1
δ (xδ−vtδ)))

2(b+
√

∆)+2cr1(1+cosh(g4
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],√

r1(b+
√

∆)(1−cosh(g4
1
δ (xδ−vtδ)))

2(b+
√

∆)+2cr1(1+cosh(g4
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞),

(31)

and

u(x, t) =


√

r1(b+
√

∆)(1−cosh(g4
1
δ (xδ−vtδ)))

2(b+
√

∆)+2cr1(1+cosh(g4
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],

−
√

r1(b+
√

∆)(1−cosh(g4
1
δ (xδ−vtδ)))

2(b+
√

∆)+2cr1(1+cosh(g4
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞).

(32)

3.5. The Parameter Condition of A− 2α > 0, ∆ > 0, B = 3b2

16c , ω + γ + aκ2 < 0
(See Figure 1(6))

(i) In formula (7), if H(φ, y) = h, h ∈ (h0, h3), there are three families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical to
Equations (23) and (24).

(ii) In formula (7), if H(φ, y) = h3, there are two homoclinic orbits encircling the
equilibrium points E1 and E2, and two heteroclinic orbits linking two saddle points E3
and E4. The expressions of the traveling wave solutions of these curves are identical to
Equations (27)–(29).

3.6. The Parameter Condition of A− 2α > 0, ∆ > 0, B < 3b2

16c , ω + γ + aκ2 < 0
(See Figure 1(7))

(i) In formula (7), if H(φ, y) = h, h ∈ (h1, h3), there are three families of periodic
orbits. The expressions of the traveling wave solutions of these curves are are identical to
Equations (23) and (24).
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(ii) In formula (7), if H(φ, y) = h3, there are two homoclinic orbits encircling the
equilibrium points E1 and E2 and two heteroclinic orbits linking two saddle points E3
and E4. The expressions of the traveling wave solutions of these curves are identical to
Equations (27)–(29).

3.7. The Parameter Condition of ∆ > 0, ω + γ + aκ2 > 0 or ∆ > 0, B < 0, ω + γ + aκ2 = 0
(See Figure 2(3))

(i) In formula (7), if H(φ, y) = h, h ∈ (h0, h1), there is a family of periodic orbits, which
encircle the equilibrium point E0. We have y2 = 4c

3(2α−a) (r1 − φ2)(r2 − φ2)(φ2 − r3), where
r1 > r2 > 0 > r3. Then, the parametric representation of the periodic wave solution is
given as follows (see Figure 14):

φ(ξ) =


−
√

r1r2−r1r2sn2(g5ξ,k3)
r1−r2sn2(g5ξ,k3)

, ξ ∈
[
(4n + 1)ξ2, (4n + 3)ξ2

]
,√

r1r2−r1r2sn2(g5ξ,k3)
r1−r2sn2(g5ξ,k3)

, ξ ∈
[
4nξ2, (4n + 1)ξ2

]
∪
[
(4n + 3)ξ2, (4n + 4)ξ2

]
,

(33)

where g5 =
√

cr1(r3−r2)
3(a−2α)

, k2
3 = r2(r1−r3)

r1(r2−r3)
, ξ2 = 1

g5
sn−1(1, k3), n ∈ Z.

Figure 14. Periodicwave forms of system (5).

Therefore, the exact solution of Equation (1) is given as follows:

u(x, t) =


−
√

r1r2−r1r2sn2(g5
1
δ (xδ−vtδ),k3)

r1−r2sn2(g5
1
δ (xδ−vtδ),k3)

eiη(x,t), 1
δ (xδ − vtδ) ∈

[
(4n + 1)ξ2, (4n + 3)ξ2

]
,√

r1r2−r1r2sn2(g5
1
δ (xδ−vtδ),k3)

r1−r2sn2(g5
1
δ (xδ−vtδ),k3)

eiη(x,t), 1
δ (xδ − vtδ) ∈

[
4nξ2, (4n + 1)ξ2

]
∪
[
(4n + 3)ξ2, (4n + 4)ξ2

]
.

(34)

(ii) In formula (7), if H(φ, y) = h1, there are two heteroclinic orbits, which
encircle the equilibrium point E0 and link the saddle points E1 and E2. We have

y2 = 4c
3(2α−a)

(
−b+

√
∆

2c − φ2
)2

(φ2 − r1), where −b+
√

∆
2c > 0 > r1. Then, the parametric repre-

sentations of the kink and anti-kink wave solutions are given as (see Figure 15)

φ(ξ) =


−
√

r1(
√

∆−b)(1−cosh(g6ξ))

2(
√

∆−b)−2cr1(1+cosh(g6ξ))
, ξ ∈ (−∞, 0],√

r1(
√

∆−b)(1−cosh(g6ξ))

2(
√

∆−b)−2cr1(1+cosh(g6ξ))
, ξ ∈ [0,+∞),

(35)

and

φ(ξ) =


√

r1(
√

∆−b)(1−cosh(g6ξ))

2(
√

∆−b)−2cr1(1+cosh(g6ξ))
, ξ ∈ (−∞, 0],

−
√

r1(
√

∆−b)(1−cosh(g6ξ))

2(
√

∆−b)−2cr1(1+cosh(g6ξ))
, ξ ∈ [0,+∞),

(36)

where g6 =

√
2(
√

∆−b)
3(a−2α)

(
r1 − −b+

√
∆

2c

)
.
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(a) (b)

Figure 15. Kinkand anti-kink wave forms of system (5). (a) Kink wave given by (35). (b) Anti-kink
wave given by (36).

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) =


−
√

r1(
√

∆−b)(1−cosh(g6
1
δ (xδ−vtδ)))

2(
√

∆−b)−2cr1(1+cosh(g6
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],√

r1(
√

∆−b)(1−cosh(g6
1
δ (xδ−vtδ)))

2(
√

∆−b)−2cr1(1+cosh(g6
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞),

(37)

and

u(x, t) =


√

r1(
√

∆−b)(1−cosh(g6
1
δ (xδ−vtδ)))

2(
√

∆−b)−2cr1(1+cosh(g6
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],

−
√

r1(
√

∆−b)(1−cosh(g6
1
δ (xδ−vtδ)))

2(
√

∆−b)−2cr1(1+cosh(g6
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞).

(38)

3.8. The Parameter Condition of A− 2α < 0, ∆ > 0, 3b2

16c < b < 0, ω + γ + aκ2 < 0
(See Figure 2(4))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h0), there are two families of peri-
odic orbits, which respectively encircle the equilibrium points E3 and E4. We have
y2 = 4c

3(2α−a) (r3 − φ2)(r1 − φ2)(φ2 − r2), where r3 > r1 > r2 > 0. Then, we derive the
parametric representations of the periodic wave solutions are given as (see Figure 16)

φ(ξ) = ±

√
r1(r2 − r3) + r3(r1 − r2)sn2(g7ξ, k4)

r2 − r3 + (r1 − r2)sn2(g7ξ, k4)
, (39)

where g7 =
√

cr1(r2−r3)
3(a−2α)

, k2
4 = r3(r1−r2)

r1(r3−r2)
.

(a) (b)

Figure 16. Periodic wave forms of system (5). (a) Defined by (39)+. (b) Defined by (39)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±

√√√√ r1(r2 − r3) + r3(r1 − r2)sn2(g7
1
δ (xδ − vtδ), k4)

r2 − r3 + (r1 − r2)sn2(g7
1
δ (xδ − vtδ), k4)

eiη(x,t). (40)
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(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respec-
tively encircle the equilibrium points E3 and E4. We have y2 = 4c

3(2α−a) (r1 − φ2)(r2 − φ2)φ2,
where r1 > r2 > 0. Then, we derive the parametric expressions of the solitary wave solu-
tions as (see Figure 17)

φ(ξ) = ±
√

2r1r2

r1 + r2 + (r1 − r2) cosh(g8ξ)
, (41)

where g8 =
√

4cr1r2
3(2α−a) .

(a) (b)

Figure 17. Solitary wave forms of system (5). (a) Bright solitary wave derived by Equation (41)+.
(b) Dark solitary wave derived by Equation (41)−.

Thus, the exact expressions of two solitary wave solutions to Equation (1) are presented as

u(x, t) = ±
√

2r1r2

r1 + r2 + (r1 − r2) cosh(g8
1
δ (xδ − vtδ))

eiη(x,t). (42)

(iii) In formula (7), if H(φ, y) = h, h ∈ (h0, h1), there is a family of periodic orbits. The
expressions of the traveling wave solutions of these curves are identical to Equation (33).

(iv) The curves H(φ, y) = h1 correspond to two heteroclinic orbits. The parametric ex-
pressions of the traveling wave solutions of these curves are the same as
Equations (35) and (36).

3.9. The Parameter Condition of A− 2α < 0, ∆ > 0, B = 3b2

16c , ω + γ + aκ2 < 0(see Figure 2(5))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h0), there are two families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical to
Equation (39).

(ii) In formula (7), if H(φ, y) = h0, there are four heteroclinic orbits, which encircle
the equilibrium points E3 and E4 and link the saddle points E0, E1 and E2. We have

y2 = 4c
3(2α−a)

(
−b+

√
∆

2c − φ2
)2

φ2. The heteroclinic orbit in the first quadrant corresponds to
a kink wave solution, and the parametric expression of the kink wave solution is given as
(see Figure 18a)

φ(ξ) =

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3− −b +
√

∆
4c

g9ξ

)
, (43)

where g9 =
√

4c
3(2α−a) . The heteroclinic orbit in the forth quadrant corresponds to an
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anti-kink wave solution, and the parametric representation of the anti-kink wave solution
is given as (see Figure 18b)

φ(ξ) =

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3 +
−b +

√
∆

4c
g9ξ

)
. (44)

The heteroclinic orbit in the second quadrant corresponds to a kink wave solution, and the
parametric representation of the kink wave solution is given as (see Figure 18c)

φ(ξ) = −

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3 +
−b +

√
∆

4c
g9ξ

)
. (45)

The heteroclinic orbit in the third quadrant corresponds to a anti-kink wave solution, and
the parametric representation of the anti-kink wave solution is given as (see Figure 18d)

φ(ξ) = −

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3− −b +
√

∆
4c

g9ξ

)
. (46)

(a) (b) (c) (d)

Figure 18. Kink and anti-kink wave forms of system (5). (a) Kink wave given by (43). (b) Anti-kink
wave given by (44). (c) Kink wave given by (45). (d) Anti-kink wave given by (46).

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) =

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3− −b +
√

∆
4c

g9
1
δ
(xδ − vtδ)

)
eiη(x,t), (47)

u(x, t) =

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3 +
−b +

√
∆

4c
g9

1
δ
(xδ − vtδ)

)
eiη(x,t), (48)

u(x, t) = −

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3 +
−b +

√
∆

4c
g9

1
δ
(xδ − vtδ)

)
eiη(x,t), (49)

and

u(x, t) = −

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3− −b +
√

∆
4c

g9
1
δ
(xδ − vtδ)

)
eiη(x,t). (50)

3.10. The Parameter Condition of
A− 2α < 0, ∆ > 0, B < 3b2

16c , ω + γ + aκ2 < 0 (see Figure 2(6))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h1), there are two families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical to
Equation (39).
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(ii) In formula (7), if H(φ, y) = h1, there are two homoclinic orbits, which respectively

encircle the equilibrium points E3 and E4. We have y2 = 4c
3(2α−a)

(
−b+

√
∆

2c − φ2
)2

(φ2 − r1),

where −b+
√

∆
2c > r1 > 0. Then, the parametric representations of the solitary wave solutions

are given as (see Figure 19)

φ(ξ) = ±

√
r1(
√

∆− b)(1 + cosh(g10ξ))

2(
√

∆− b) + 2cr1(cosh(g10ξ)− 1)
, (51)

where g10 =

√
2(
√

∆−b)
3(a−2α)

(
r1 − −b+

√
∆

2c

)
.

(a) (b)

Figure 19. Solitary waves forms of system (5). (a) Bright solitary wave derived by (51)+. (b) Dark
solitary wave derived by (51)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±

√√√√ r1(
√

∆− b)(1 + cosh(g10
1
δ (xδ − vtδ)))

2(
√

∆− b) + 2cr1(cosh(g10
1
δ (xδ − vtδ))− 1)

eiη(x,t). (52)

4. Expressions of the Traveling Wave Solutions of System Equation (5) under
C > 0, A = 4β

Currently, through integral calculation, we compute the exact parametric expressions
of the traveling wave solutions under c > 0, a = 4β. It follows from Equation (7) and the
first equation of system (5) that

ξ =
∫ φ

φ0

±|φ|dφ√
c

4(2α−a)φ8 + b
3(2α−a)φ6 + ω+γ+aκ2

2(a−2α)
φ4 + h

≡
∫ φ

φ0

±|φ|dφ√
G(φ)

. (53)

4.1. The Parameter Condition of A− 2α > 0, ∆ > 0, ω + γ + aκ2 > 0 (see Figure 3(3))

(i) In formula (7), if H(φ, y) = h, h ∈ (h1, h0), there are two families of peri-
odic orbits, which respectively encircle the equilibrium points E1 and E2. We have
G(φ) = c

4(a−2α)
(r1 − φ2)(φ2 − r2)(φ

2 − r3)(φ
2 − r4), where r1 > r2 > 0 > r3 > r4. Then,

the expressions of the periodic wave solutions are derived as (see Figure 20)

φ(ξ) = ±

√
r1(r2 − r4) + r4(r1 − r2)sn2(g11ξ, k5)

r2 − r4 + (r1 − r2)sn2(g11ξ, k5)
, (54)

where g11 =
√

c(r1−r3)(r2−r4)
4(a−2α)

, k2
5 = (r1−r2)(r3−r4)

(r1−r3)(r2−r4)
.
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(a) (b)

Figure 20. Periodicwave forms of system (5). (a) Defined by (54)+. (b) Defined by (54)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±

√√√√ r1(r2 − r4) + r4(r1 − r2)sn2(g11
1
δ (xδ − vtδ), k5)

r2 − r4 + (r1 − r2)sn2(g11
1
δ (xδ − vtδ), k5)

eiη(x,t). (55)

(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respectively
encircle the equilibrium points E1 and E2. We have G(φ) = c

a−2α (r1 − φ2)φ4(φ2 − r2),
where r1 > 0 > r2. Then, the parametric representations of the solitary wave solutions are
given as (see Figure 21)

φ(ξ) = ±
√

2r1r2

r1 + r2 + (r2 − r1) cosh(g12ξ)
, (56)

where g12 =
√

cr1r2
2α−a .

(a) (b)

Figure 21. Solitarywave forms of system (5). (a) Bright solitary wave derived by (56)+. (b) Dark
solitary wave derived by (56)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√

2r1r2

r1 + r2 + (r2 − r1) cosh(g12
1
δ (xδ − vtδ))

eiη(x,t). (57)

4.2. The Parameter Condition of A− 2α > 0, ∆ > 0, B < 0, ω + γ + aκ2 = 0 (See Figure 3(4))

(i) In formula (7), if H(φ, y) = h, h ∈ (h1, h0), there are two families of peri-
odic orbits, which respectively encircle the equilibrium points E1 and E2. We have
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G(φ) = c
4(a−2α)

(r1 − φ2)(φ2 − r2)(φ
2 − r3)(φ

2 − r̄3), where r1 > r2, r3 and r̄3 are complex.
Then, the parametric representation of the periodic wave solution are given as (see Figure 22)

φ(ξ) = ±

√
r1B1 + r2 A1 + (r2 A1 − r1B1)cn(g13ξ, k6)

A1 + B1 + (A1 − B1)cn(g13ξ, k6)
, (58)

where A2
1 = (r1− r3)(r1− r̄3), B2

1 = (r2− r3)(r2− r̄3), g13 =
√

cA1B1
a−2α , k2

6 = (r1−r2)
2−(A1−B1)

2

4A1B1
.

(a) (b)

Figure 22. Periodicwave forms of system (5). (a) Defined by (58)+. (b) Defined by (58)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±

√√√√ r1B1 + r2 A1 + (r2 A1 − r1B1)cn(g13
1
δ (xδ − vtδ), k6)

A1 + B1 + (A1 − B1)cn(g13
1
δ (xδ − vtδ), k6)

eiη(x,t). (59)

(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respectively
encircle the equilibrium points E1 and E2. We have G(φ) = c

a−2α (r1 − φ2)φ6, where
r1 > 0. Then, the parametric representations of the solitary wave solutions are given as
(see Figure 23)

φ(ξ) = ±
√

4r1(a− 2α)

4(a− 2α) + cr2
1ξ2

. (60)

(a) (b)

Figure 23. Solitary wave forms of system (5). (a) Bright solitary wave derived by (60)+. (b) Dark
solitary wave derived by (60)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√

4r1(a− 2α)

4(a− 2α) + cr2
1

1
δ2 (xδ − vtδ)2

eiη(x,t). (61)
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4.3. The Parameter Condition of A− 2α > 0, ∆>0, B<0, ω + γ + aκ2<0,
H1=h2<h0<h3=h4 (See Figure 3(5))

(i) In formula (7), if H(φ, y) = h, h ∈ (h1, h0), there are two families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical
to Equations (56) and (58)

(ii) In formula (7), if H(φ, y) = h0, there are two families of periodic orbits, which
respectively encircle the equilibrium points E1 and E2. We have G(φ) = c

4(a−2α)
(r1 −

φ2)(φ2 − r2)φ
4, where r1 > r2 > 0. Then, the expressions of the periodic wave solutions

are derived as (see Figure 24)

φ(ξ) = ±
√

2r1r2

r1 + r2 − (r1 − r2) cos(g14ξ)
, (62)

where g14 =
√

cr1r2
a−2α .

(a) (b)

Figure 24. Periodic wave forms of system (5). (a) Defined by (62)+. (b) Defined by (62)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√

2r1r2

r1 + r2 − (r1 − r2) cos(g14
1
δ (xδ − vtδ))

eiη(x,t). (63)

(iii) In formula (7), if H(φ, y) = h, h ∈ (h0, h3), there are two families of periodic
orbits respectively surrounding the equilibrium points E1 and E2, and two families of open
curves, which tend to the singular line φ = 0 under |y| → ∞. G(φ) = c

4(a−2α)
(r1− φ2)(φ2−

r2)(φ
2 − r3)(φ

2 − r4) applies to the two families of periodic orbits. Then, the expressions of
the periodic wave solutions are derived as (see Figure 25)

φ(ξ) = ±

√
r1(r2 − r4) + r4(r1 − r2)sn2(g15ξ, k7)

r2 − r4 + (r1 − r2)sn2(g15ξ, k7)
, (64)

where g15 =
√

c(r1−r3)(r2−r4)
4(a−2α)

, k2
7 = (r1−r2)(r3−r4)

(r1−r3)(r2−r4)
.
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(a) (b)

Figure 25. Periodic wave forms of system (5). (a) Defined by (64)+. (b) Defined by (64)−.

G(φ) = c
4(a−2α)

(r1 − φ2)(r2 − φ2)(r3 − φ2)(φ2 − r4) applies to the two families of
open curves, where r1 > r2 > r3 > 0 > r4. Then, the parametric representations of the
compacton solutions are given as (see Figure 26)

φ(ξ) = ±

√
r3(r4 − r2) + r2(r3 − r4)sn2(g15ξ, k7)

r4 − r2 + (r3 − r4)sn2(g15ξ, k7)
, ξ ∈ (−ξ3, ξ3), (65)

where ξ3 = 1
g15

sn−1
(√

r3(r2−r4)
r2(r3−r4)

, k7

)
.

(a) (b)

Figure 26. Compactonsolution forms of system (5). (a) Compacton solution given by (65)+.
(b) Compacton solution given by (65)−.

So, Equation (1) has the following four exact solutions:

u(x, t) = ±

√√√√ r1(r2 − r4) + r4(r1 − r2)sn2(g15
1
δ (xδ − vtδ), k7)

r2 − r4 + (r1 − r2)sn2(g15
1
δ (xδ − vtδ), k7)

eiη(x,t), (66)

and

u(x, t) = ±

√√√√ r3(r4 − r2) + r2(r3 − r4)sn2(g15
1
δ (xδ − vtδ), k7)

r4 − r2 + (r3 − r4)sn2(g15
1
δ (xδ − vtδ), k7)

eiη(x,t),
1
δ
(xδ − vtδ) ∈ (−ξ3, ξ3). (67)

(iv) In formula (7), if H(φ, y) = h3, there are two homoclinic orbits, which respec-
tively encircle the equilibrium points E1 and E2. We have G(φ) = c

4(a−2α)
(r1 − φ2)(

φ2 − −b−
√

∆
2c

)2
(φ2 − r2), where r1 > −b−

√
∆

2c > 0 > r2. Then, the parametric repre-
sentations of the solitary wave solutions are given as (see Figure 27)

φ(ξ) = ±

√
4cr1r2 + (r1 + r2)(b +

√
∆) + (r1 − r2)(b +

√
∆) cosh(g16ξ)

2c(r1 + r2) + 2(b +
√

∆) + 2c(r2 − r1) cosh(g16ξ)
, (68)
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where g16 =

√
(2cr1+b+

√
∆)(2cr2+b+

√
∆)

4c(2α−a) .

(a) (b)

Figure 27. Solitary wave forms of system (5). (a) Bright solitary wave derived by (68)+. (b) Dark
solitary wave derived by (68)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±

√√√√4cr1r2 + (r1 + r2)(b +
√

∆) + (r1 − r2)(b +
√

∆) cosh(g16
1
δ (xδ − vtδ))

2c(r1 + r2) + 2(b +
√

∆) + 2c(r2 − r1) cosh(g16
1
δ (xδ − vtδ))

eiη(x,t). (69)

4.4. The Parameter Condition of A− 2α > 0, ∆>0, B<0, ω + γ + aκ2<0,
H1=h2=h0<h3=h4 (See Figure 3(6))

(i) In formula (7), if H(φ, y) = h, h ∈ (h0, h3), there are two families of periodic orbits
and two families of open curves. The parametric representations of the traveling wave
solutions of these curves are same as Equations (64) and (65).

(ii) The curves H(φ, y) = h3 correspond to two homoclinic orbits. The parametric
expressions of the traveling wave solutions of these curves are the same as Equations (68).

4.5. the Parameter Condition of A− 2α > 0, ∆>0, B<0, ω + γ + aκ2<0,
H0<h1=h2<h3=h4 (See Figure 3(7))

(i) In formula (7), if H(φ, y) = h, h ∈ (h2, h3), there are two families of periodic orbits
and two families of open curves. The parametric representations of the traveling wave
solutions of these curves are the same as Equations (64) and (65).

(ii) The curves H(φ, y) = h3 correspond to two homoclinic orbits. The parametric
expressions of the traveling wave solutions of these curves are the same as Equations (68).

4.6. The Parameter Condition of A− 2α < 0, ∆ > 0, ω + γ + aκ2 > 0 or ∆ > 0,
B < 0, ω + γ + aκ2 = 0 (See Figure 4(3))

In formula (7), if H(φ, y) = h, h ∈ (h0, h1), there are two families of open curves, which
tend to the singular line φ = 0 when |y| → ∞. We have G(φ) = c

4(2α−a) (r1 − φ2)(r2 −
φ2)(φ2 − r3)(φ

2 − r4), where r1 > r2 > 0 > r3 > r4. Then, the parametric representations
of the compacton solutions are given as (see Figure 28)

φ(ξ) = ±

√
r2(r3 − r1) + r1(r2 − r3)sn2(g17ξ, k8)

r3 − r1 + (r2 − r3)sn2(g17ξ, k8)
, ξ ∈ (−ξ4, ξ4), (70)

where g17 =
√

c(r3−r1)(r2−r4)
4(a−2α)

, k2
8 = (r2−r3)(r1−r4)

(r1−r3)(r2−r4)
, ξ4 = 1

g17
sn−1

(√
r2(r1−r3)
r1(r2−r3)

, k8

)
.
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(a) (b)

Figure 28. Compactonsolution forms of system (5). (a) Compacton solution given by Equation (70)+.
(b) Compacton solution given by Equation (70)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±

√√√√ r2(r3 − r1) + r1(r2 − r3)sn2(g17
1
δ (xδ − vtδ), k8)

r3 − r1 + (r2 − r3)sn2(g17
1
δ (xδ − vtδ), k8)

eiη(x,t),
1
δ
(xδ − vtδ) ∈ (−ξ4, ξ4). (71)

4.7. The Parameter Condition of A− 2α < 0, ∆>0, B<0, ω + γ + aκ2<0,
H3=h4<h0<h1=h2 (see Figure 4(4))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h0), there are two families of peri-
odic orbits, which respectively encircle the equilibrium points E3 and E4. We have
G(φ) = c

4(2α−a) (r1 − φ2)(r2 − φ2)(φ2 − r3)(φ
2 − r4), where r1 > r2 > r3 > 0 > r4. Then,

the expressions of the periodic wave solutions are derived as (see Figure 29)

φ(ξ) = ±

√
r2(r3 − r1) + r1(r2 − r3)sn2(g18ξ, k9)

r3 − r1 + (r2 − r3)sn2(g18ξ, k9)
, (72)

where g18 =
√

c(r3−r1)(r2−r4)
4(a−2α)

, k2
9 = (r2−r3)(r1−r4)

(r1−r3)(r2−r4)
.

(a) (b)

Figure 29. Periodic wave forms of system (5). (a) Defined by (72)+. (b) Defined by (72)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±

√√√√ r2(r3 − r1) + r1(r2 − r3)sn2(g18
1
δ (xδ − vtδ), k9)

r3 − r1 + (r2 − r3)sn2(g18
1
δ (xδ − vtδ), k9)

eiη(x,t). (73)

(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respectively
encircle the equilibrium points E3 and E4. We have G(φ) = c

2α−a (r1 − φ2)(r2 − φ2)φ4,
where r1 > r2 > 0. Then, the parametric representations of the solitary wave solutions are
given as (see Figure 30)

φ(ξ) = ±
√

2r1r2

r1 + r2 + (r1 − r2) cosh(g19ξ)
, (74)
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where g19 =
√

cr1r2
2α−a .

(a) (b)

Figure 30. Solitary wave forms of system (5). (a) Bright solitary wave derived by (74)+. (b) Dark
solitary wave derived by (74)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√

2r1r2

r1 + r2 + (r1 − r2) cosh(g19
1
δ (xδ − vtδ))

eiη(x,t). (75)

(iii) In formula (7), if H(φ, y) = h, h ∈ (h0, h1), there are two families of open curves,
which tend to the singular line φ = 0 under |y| → ∞. The traveling wave solutions of these
curves are as (70).

4.8. The Parameter Condition of A− 2α < 0, ∆>0, B<0, ω + γ + aκ2<0,
H3=h4<h0=h1=h2 (See Figure 4(5))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h0), there are two families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical
to Equation (72).

(ii) In formula (7), if H(φ, y) = h0, there are four heteroclinic orbits, which encircle
the equilibrium points E3 and E4 and link the saddle points E0, E1 and E2. Now, we have

G(φ) = c
2α−a

(
−b+

√
∆

2c − φ2
)2

φ4. The heteroclinic orbit in the first quadrant corresponds to
a kink wave solution, and the parametric expression of the kink wave solution is given as
(see Figure 31a)

φ(ξ) =

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3− −b +
√

∆
4c

g20ξ

)
, (76)

where g20 =
√

c
2α−a .

The heteroclinic orbit in the forth quadrant corresponds to an anti-kink wave solution,
and the parametric representation of the anti-kink wave solution is given
as (see Figure 31b)

φ(ξ) =

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3 +
−b +

√
∆

4c
g20ξ

)
. (77)

The heteroclinic orbit in the second quadrant corresponds to a kink wave solution,
and the parametric representation of the kink wave solution is given as (see Figure 31c)

φ(ξ) = −

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3 +
−b +

√
∆

4c
g20ξ

)
. (78)
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The heteroclinic orbit in the third quadrant corresponds to an anti-kink wave solution,
and the parametric representation of the anti-kink wave solution is given as (see Figure 31d)

φ(ξ) = −

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3− −b +
√

∆
4c

g20ξ

)
. (79)

(a) (b) (c) (d)

Figure 31. Kink and anti-kink wave forms of system (5). (a) Kink wave given by (76). (b) Anti-kink
wave given by (77). (c) Kink wave given by (78). (d) Anti-kink wave given by (79).

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) =

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3− −b +
√

∆
4c

g20
1
δ
(xδ − vtδ)

)
eiη(x,t), (80)

u(x, t) =

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3 +
−b +

√
∆

4c
g20

1
δ
(xδ − vtδ)

)
eiη(x,t), (81)

u(x, t) = −

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3 +
−b +

√
∆

4c
g20

1
δ
(xδ − vtδ)

)
eiη(x,t), (82)

and

u(x, t) = −

√√√√−b +
√

∆
4c

− −b +
√

∆
4c

tanh

(
ln
√

3− −b +
√

∆
4c

g20
1
δ
(xδ − vtδ)

)
eiη(x,t). (83)

4.9. The Parameter Condition of A− 2α < 0, ∆>0, B<0, ω + γ + aκ2<0,
H3=h4<h1=h2<h0 (See Figure 4(6))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h1), there are two families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical to
Equation (72).

(ii) In formula (7), if H(φ, y) = h1, there are two homoclinic orbits, which respectively

encircle the equilibrium points E3 and E4. We have G(φ) = c
4(2α−a)

(
−b+

√
∆

2c − φ2
)2

(φ2 −

r1)(φ
2 − r2), where −b+

√
∆

2c > r1 > 0 > r2. Then, the parametric representations of the
solitary wave solutions are given as (see Figure 32)

φ(ξ) = ±

√
(r1 + r2)(

√
∆− b)− 4cr1r2 + (r1 − r2)(

√
∆− b) cosh(g21ξ)

2(
√

∆− b)− 2c(r1 + r2) + 2c(r1 − r2) cosh(g21ξ)
, (84)

where g21 =

√
(
√

∆−b−2cr1)(
√

∆−b−2cr2)
4c(2α−a) .
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(a) (b)

Figure 32. Solitary wave forms of system (5). (a) Dark solitary wave derived by (84)+. (b) Bright
solitary wave derived by (84)−.

Thus, the exact solutions of Equation (1) are

u(x, t) = ±

√√√√ (r1 + r2)(
√

∆− b)− 4cr1r2 + (r1 − r2)(
√

∆− b) cosh(g21
1
δ (xδ − vtδ))

2(
√

∆− b)− 2c(r1 + r2) + 2c(r1 − r2) cosh(g21
1
δ (xδ − vtδ))

eiη(x,t). (85)

5. Expressions of the Traveling Wave Solutions of System Equation (5) under
C > 0, A = 6α − 8β

Currently, through integral calculation, we compute the exact parametric expressions
of the traveling wave solutions under c > 0, a = 6α− 8β. However, in many cases, we
cannot find the corresponding solution formulation; here, we only analyze the part where
the solution formulation can be found. Because the solution of system (5) in this part
is given in the form of a parametric expression, and the calculation process of the exact
solution of Equation (1) obtained after the traveling wave transformation is substituted
back is too complicated, the exact solution of Equation (1) is not given here. The solution
follows from Equation (7) and the first equation of system (5):

ξ =
∫ φ

φ0

dφ

y(φ)
=
∫ φ

φ0

±dφ√
2c

5(2α−a)φ6 + 2b
3(2α−a)φ4 + 2(ω+γ+aκ2)

a−2α φ2 + hφ

. (86)

5.1. The Parameter Condition of A− 2α > 0, ∆>0, B<0, ω + γ + aκ2<0,
H1=−h2<h0<h3=−h4 (See Figure 5(4))

(i) In formula (7), if H(φ, y) = h4, there are two homoclinic orbits and a periodic orbit.
For one of the homoclinic orbits that tangents the singular line φ = 0 to E0(0, 0), we have

y2 = 2c
5(a−2α)

(r1 − φ)(r2 − φ)(0− φ)

(
φ +

√
−b−

√
∆

2c

)2
(φ− r3). For the other homoclinic

orbit, we have y2 = 2c
5(a−2α)

(r1 − φ)(r2 − φ)(0− φ)

(
−
√
−b−

√
∆

2c − φ

)2
(φ − r3). For the

periodic orbit, we have y2 = 2c
5(a−2α)

(r1 − φ)(φ − r2)φ

(
φ +

√
−b−

√
∆

2c

)2
(φ − r3), where

r1 > r2 > 0 > −
√
−b−

√
∆

2c > r3. Then, the parametric representations of the traveling wave
solution for the homoclinic orbit that contacts the singular line φ = 0 at E0 are given as

φ(χ) =
r2r3sn2(χ, k10)

r2 − r3 + r3sn2(χ, k10)
,

ξ(χ) =
β2

1 − α2
1

g22
Π(χ, β2

1) +
α2

1
g22

χ,
(87)
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where α2
1 = r3

r3−r2
, β2

1 =
r3

(
r2+

√
−b−

√
∆

2c

)
(r3−r2)

√
−b−

√
∆

2c

, k2
10 = r3(r2−r1)

r1(r2−r3)
, g22 = 1

2 β2
1

√
−b−

√
∆

2c

√
2cr1(r2−r3)

5(a−2α)
.

The parametric representations of the traveling wave solution for the other homoclinic
orbit are given as

φ(χ) =
r1r3(1− sn2(χ, k11))

r1 − r3sn2(χ, k11)
,

ξ(χ) =
β2

2 − α2
2

g23
Π(χ, β2

2) +
α2

2
g23

χ,
(88)

where β2
2 = α2

2

(
r1 +

√
−b−

√
∆

2c

)(
r3 +

√
−b−

√
∆

2c

)
, g23 = − 1

2 β2
2

(
r3 +

√
−b−

√
∆

2c

)
√

2cr1(r2−r3)
5(a−2α)

, α2
2 = r3

r1
, k2

11 = r3(r2−r1)
r1(r2−r3)

.
The parametric expressions of the traveling wave solution for the periodic orbit are

given as

φ(χ) =
r1(r2 − r3) + r3(r1 − r2)sn2(χ, k12)

r2 − r3 + (r1 − r2)sn2(χ, k12)
,

ξ(χ) =
β2

3 − α2
3

g24
Π(χ, β2

3) +
α2

3
g24

χ,
(89)

where β2
3 =

(r2−r1)

(
r3+

√
−b−

√
∆

2c

)
(r2−r3)

(
r1+

√
−b−

√
∆

2c

) , g24 = 1
2 β2

3

(
r1 +

√
−b−

√
∆

2c

)√
2cr1(r2−r3)

5(a−2α)
, α2

3 = r2−r1
r2−r3

,

k2
12 = r3(r2−r1)

r1(r2−r3)
.

(ii) For the curves H(φ, y) = h3, there exist a periodic orbit and two homoclinic

orbits. For the periodic orbit, we have y2 = 2c
5(a−2α)

(r1 − φ)

(√
−b−

√
∆

2c − φ

)2
(0− φ)(r2 −

φ)(φ − r3). For one of the homoclinic orbits that contacts the singular line φ = 0 at

E0(0, 0), we have y2 = 2c
5(a−2α)

(r1 − φ)

(√
−b−

√
∆

2c − φ

)2
φ(φ− r2)(φ− r3). For the other

homoclinic orbit, we have y2 = 2c
5(a−2α)

(r1 − φ)

(
φ−

√
−b−

√
∆

2c

)2
φ(φ− r2)(φ− r3), where

r1 >
√
−b−

√
∆

2c > 0 > r2 > r3. Then, the parametric representations of the traveling wave
solution for the periodic orbit are given as

φ(χ) =
r2r3

r3 + (r2 − r3)sn2(χ, k13)
,

ξ(χ) =
β2

4 − α2
4

g25
Π(χ, β2

4) +
α2

4
g25

χ,
(90)

where β2
4 =

(r2−r3)

√
−b−

√
∆

2c

r3

(
r2−

√
−b−

√
∆

2c

) , g25 = 1
2 β2

4

(√
−b−

√
∆

2c − r2

)√
2cr3(r2−r1)

5(a−2α)
, α2

4 = r3−r2
r3

, k2
13 =

r1(r2−r3)
r3(r2−r1)

.
The parametric representations of the traveling wave solution for the homoclinic orbit

that contacts the singular line φ = 0 at E0 are given as

φ(χ) =
r1r2sn2(χ, k14)

r2 − r1 + r1sn2(χ, k14)
,

ξ(χ) =
β2

5 − α2
5

g26
Π(χ, β2

5) +
α2

5
g26

χ,
(91)
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where α2
5 = r1

r1−r2
, β2

5 =
r1

(√
−b−

√
∆

2c −r2

)
(r1−r2)

√
−b−

√
∆

2c

, k2
14 = r1(r2−r3)

r3(r2−r1)
, g26 = 1

2 β2
5

√
−b−

√
∆

2c

√
2cr3(r2−r1)

5(a−2α)
.

The parametric representations of the traveling wave solution for the other homoclinic
orbit are given as

φ(χ) =
r1r3(sn2(χ, k15)− 1)

r1sn2(χ, k15)− r3
,

ξ(χ) =
β2

6 − α2
6

g27
Π(χ, β2

6) +
α2

6
g27

χ,
(92)

where β2
6 =

r1

(√
−b−

√
∆

2c −r3

)
r3

(√
−b−

√
∆

2c −r1

) , g27 = 1
2 β2

6

(
r1 −

√
−b−

√
∆

2c

)√
2cr3(r2−r1)

5(a−2α)
, α2

6 = r1
r3

,

k2
15 = r1(r2−r3)

r3(r2−r1)
.

5.2. The Parameter Condition of A− 2α > 0, ∆>0, B<0, ω + γ + aκ2<0,
H1=h2=h0<h3=−h4 (See Figure 5(5))

(i) In formula (7), if H(φ, y) = h4, there are two homoclinic orbits. For one of the homo-
clinic orbits that tangents the singular line φ = 0 to E0(0, 0), we have

y2 = 2c
5(a−2α)

(0− φ)

(
φ +

√
−b−

√
∆

2c

)2
(φ− r1)(φ− r2)(φ− r̄2), but we do not find a corre-

sponding formulation for solving it.

For the other homoclinic orbit, we have y2 = 2c
5(a−2α)

(0− φ)

(
−
√
−b−

√
∆

2c − φ

)2
(φ−

r1)(φ− r2)(φ− r̄2), where −
√
−b−

√
∆

2c > r1, r2 and r̄2 are complex. Then, we derive the
parametric representations of the traveling wave solution for the homoclinic orbit as follows:

φ(χ) =
r1 A2(1 + cn(χ, k16))

A2 + B2 + (B2 − A2)cn(χ, k16)
,

ξ(χ) =g28

(
β7χ +

α7 − β7

1− α2
7

Π

(
χ,

α2
7

α2
7 − 1

)
− α7(α7 − β7)

2(1− α2
7)

√
α2

7 − 1
k2

16 + (1− k2
16)α

2
7

ln


√

k2
16 + (1− k2

16)α
2
7dnχ +

√
α2

7 − 1snχ√
k2

16 + (1− k2
16)α

2
7dnχ−

√
α2

7 − 1snχ

,

(93)

where A2
2 = r2r̄2, B2

2 = (r1 − r2)(r1 − r̄2), g28 = A2+B2
√

A2B2

(
(B2−A2)

√
−b−

√
∆

2c −r1 A2

)√ 5(a−2α)
2c ,

k2
16 =

r2
1−(A2−B2)

2

4A2B2
, α7 =

r1 A2+(A2−B2)

√
−b−

√
∆

2c

r1 A2+(A2+B2)

√
−b−

√
∆

2c

, β7 = A2−B2
A2+B2

, α2
7

α2
7−1

> k2
16.

(ii) In formula (7), if H(φ, y) = h3, there are two homoclinic orbits. For one of the homo-
clinic orbits that tangents the singular line φ = 0 to E0(0, 0), we have

y2 = 2c
5(a−2α)

(r1 − φ)

(√
−b−

√
∆

2c − φ

)2
φ(φ − r2)(φ − r̄2), where r1 >

√
−b−

√
∆

2c > 0,

r2 and r̄2 are complex. Then, we derive the expressions of the traveling wave solution for
the homoclinic orbit as follows:
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φ(χ) =
r1B3(1− cn(χ, k17))

A3 + B3 + (A3 − B3)cn(χ, k17)
,

ξ(χ) =g29

(
β8χ +

α8 − β8

1− α2
8

Π

(
χ,

α2
8

α2
8 − 1

)
− α8(α8 − β8)

2(1− α2
8)

√
α2

8 − 1
k2

17 + (1− k2
17)α

2
8

ln


√

k2
17 + (1− k2

17)α
2
8dnχ +

√
α2

8 − 1snχ√
k2

17 + (1− k2
17)α

2
8dnχ−

√
α2

8 − 1snχ

,

(94)

where A2
3 = (r1 − r2)(r1 − r̄2), B2

3 = r2r̄2, g29 = A3+B3
√

A3B3

(
r1B3+(A3−B3)

√
−b−

√
∆

2c

)√ 5(a−2α)
2c ,

k2
17 =

r2
1−(A3−B3)

2

4A3B3
, α8 =

(B3−A3)

√
−b−

√
∆

2c −r1B3

r1B3−(A3+B3)

√
−b−

√
∆

2c

, β8 = A3−B3
A3+B3

, α2
8

α2
8−1

> k2
17.

For the other homoclinic orbit, we have y2 = 2c
5(a−2α)

(r1 − φ)

(
φ−

√
−b−

√
∆

2c

)2
φ(φ−

r2)(φ− r̄2), but we do not find a corresponding formulation for solving it.

5.3. The Parameter Condition of A− 2α > 0, ∆>0, B<0, ω + γ + aκ2<0,
H0<h1=−h2<h3=−h4 (See Figure 5(6))

(i) In formula (7), if H(φ, y) = h4, there are one homoclinic orbit and two heteroclinic
orbits that contact the singular line φ = 0 at E0(0, 0). The traveling wave solutions of these
curves are the same as (93).

(ii) In formula (7), if H(φ, y) = h3, there are one homoclinic orbit and two heteroclinic
orbits that contact the singular line φ = 0 at E0(0, 0). The traveling wave solutions of these
curves are same as (94).

5.4. The Case of ∆ > 0, ω + γ + aκ2 > 0 (See Figure 6(3))

For the curves H(φ, y) = h1, there exists a homoclinic orbit, which contacts the singular

line φ = 0 at E0(0, 0). We have y2 = 2c
5(2α−a)

(√
−b+

√
∆

2c − φ

)2
φ(φ− r1)(φ− r2)(φ− r̄2),

where
√
−b+

√
∆

2c > 0 > r1 , r2 and r̄2 are complex. Then, we derive the expressions of the
traveling wave solution for the homoclinic orbit as follows:

φ(χ) =
r1 A4(1− cn(χ, k18))

A4 − B4 − (A4 + B4)cn(χ, k18)
,

ξ(χ) =g30

(
β9χ +

α9 − β9

1− α2
9

Π

(
χ,

α2
9

α2
9 − 1

)
− α9(α9 − β9)

2(1− α2
9)

√
α2

9 − 1
k2

18 + (1− k2
18)α

2
9

ln


√

k2
18 + (1− k2

18)α
2
9dnχ +

√
α2

9 − 1snχ√
k2

18 + (1− k2
18)α

2
9dnχ−

√
α2

9 − 1snχ

,

(95)

where A2
4 = r2r̄2, B2

4 = (r1 − r2)(r1 − r̄2), g30 = A4−B4
√

A4B4

(
r1 A4−(A4+B4)

√
−b+

√
∆

2c

)√ 5(2α−a)
2c ,

k2
18 =

(A4+B4)
2−r2

1
4A4B4

, α9 =
r1 A4−(A4+B4)

√
−b+

√
∆

2c

(A4−B4)

√
−b+

√
∆

2c −r1 A4

, β9 = B4+A4
B4−A4

, α2
9

α2
9−1

> k2
18.

5.5. The Parameter Condition of A− 2α < 0, ∆>0, B<0, ω + γ + aκ2<0,
H3=−h4<h0<h1=−h2 (See Figure 6(5))

(i) For the curves H(φ, y) = h2, there exist a periodic orbit and a homoclinic orbit that
contacts the singular line φ = 0 at E0. For the periodic orbit, we have y2 = 2c

5(2α−a) (r1 −
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φ)(r2− φ)(φ− r3)φ

(
φ +

√
−b+

√
∆

2c

)2
. For the homoclinic orbit, we have y2 = 2c

5(2α−a) (r1−

φ)(r2 − φ)(r3 − φ)(0− φ)

(
φ +

√
−b+

√
∆

2c

)2
, where r1 > r2 > r3 > 0 > −

√
−b+

√
∆

2c . Then,

the parametric representations of the traveling wave solutions for the periodic orbit are
given as

φ(χ) =
r2(r1 − r3)− r1(r2 − r3)sn2(χ, k19)

r1 − r3 − (r2 − r3)sn2(χ, k19)
,

ξ(χ) =
β2

10 − α2
10

g31
Π(χ, β2

10) +
α2

10
g31

χ,

(96)

where β2
10 =

(r2−r3)

(
r1+

√
−b+

√
∆

2c

)
(r1−r3)

(
r2+

√
−b+

√
∆

2c

) , g31 = 1
2 β2

10

(
r2 +

√
−b+

√
∆

2c

)√
2cr2(r3−r1)

5(a−2α)
, α2

10 = r2−r3
r1−r3

,

k2
19 = r1(r2−r3)

r2(r1−r3)
. The expressions of the traveling wave solution for the homoclinic orbit are

presented as

φ(χ) =
r1r3sn2(χ, k20)

r3 − r1 + r1sn2(χ, k20)
,

ξ(χ) =
β2

11 − α2
11

g32
Π(χ, β2

11) +
α2

11
g32

χ,
(97)

where α2
11 = r1

r1−r3
, β2

11 =
r1

(
r3+

√
−b+

√
∆

2c

)
(r1−r3)

√
−b+

√
∆

2c

, k2
20 = r1(r2−r3)

r2(r1−r3)
, g32 = 1

2 β2
11

√
−b+

√
∆

2c

√
2cr2(r3−r1)

5(a−2α)
.

(ii) For the curves H(φ, y) = h1, there exist a periodic orbit and a homoclinic orbit that
contacts the singular line φ = 0 at E0. For the periodic orbit, we have

y2 = 2c
5(2α−a)

(√
−b+

√
∆

2c − φ

)2
(0− φ)(r1 − φ)(φ− r2)(φ− r3). For the homoclinic orbit,

we have y2 = 2c
5(2α−a)

(√
−b+

√
∆

2c − φ

)2
φ(φ− r1)(φ− r2)(φ− r3), where

√
−b+

√
∆

2c > 0 >

r1 > r2 > r3. The parametric expressions of the traveling wave solution for the periodic
orbit are given as

φ(χ) =
r1r2

r2 + (r1 − r2)sn2(χ, k21)
,

ξ(χ) =
β2

12 − α2
12

g33
Π(χ, β2

12) +
α2

12
g33

χ,
(98)

where β2
12 =

(r1−r2)

√
−b+

√
∆

2c

r2

(
r1−

√
−b+

√
∆

2c

) , g33 = 1
2 β2

12

(√
−b+

√
∆

2c − r1

)√
2cr2(r1−r3)

5(a−2α)
, α2

12 = r2−r1
r2

,

k2
21 = r3(r1−r2)

r2(r1−r3)
. The implicit parametric expression of the traveling wave solution for

the homoclinic orbit is given as follows:

φ(χ) =
r1r3sn2(χ, k22)

r1 − r3 + r3sn2(χ, k22)
,

ξ(χ) =
β2

13 − α2
13

g34
Π(χ, β2

13) +
α2

13
g34

χ,

(99)

where α2
13 = r3

r3−r1
, β2

13 =
r3

(
r1−

√
−b+

√
∆

2c

)
(r1−r3)

√
−b+

√
∆

2c

, k2
22 = r3(r1−r2)

r2(r1−r3)
, g34 = 1

2 β2
13

√
−b+

√
∆

2c

√
2cr2(r1−r3)

5(a−2α)
.
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5.6. The Parameter Condition of A− 2α < 0, ∆>0, B<0, ω + γ + aκ2<0,
H3=−h4<h1=−h2<h0 (See Figure 6(7))

For the level curves H(φ, y) = h1, there exists a homoclinic orbit to E1. We have

y2 = 2c
5(2α−a)

(√
−b+

√
∆

2c − φ

)2
(φ− r1)φ(φ− r2)(φ− r̄2), where

√
−b+

√
∆

2c > r1 > 0, r2 and

r̄2 are complex. Then, the parametric representations of the traveling wave solution for the
homoclinic orbit are given as

φ(χ) =
r1B5(1 + cn(χ, k23))

B5 − A5 + (A5 + B5)cn(χ, k23)
,

ξ(χ) =g35

(
β14χ +

α14 − β14

1− α2
14

Π

(
χ,

α2
14

α2
14 − 1

)
− α14(α14 − β14)

2(1− α2
14)

√
α2

14 − 1
k2

23 + (1− k2
23)α

2
14

ln


√

k2
23 + (1− k2

23)α
2
14dnχ +

√
α2

14 − 1snχ√
k2

23 + (1− k2
23)α

2
14dnχ−

√
α2

14 − 1snχ

,

(100)

where A2
5 = (r1 − r2)(r1 − r̄2), B2

5 = r2r̄2, g35 = A5−B5
√

A5B5

(
r1B5−(A5+B5)

√
−b+

√
∆

2c

)√ 5(2α−a)
2c ,

k2
23 =

(A5+B5)
2−r2

1
4A5B5

, α14 =
r1B5−(A5+B5)

√
−b+

√
∆

2c

r1B5+(A5−B5)

√
−b+

√
∆

2c

, β14 = B5+A5
B5−A5

, α2
14

α2
14−1

> k2
23.

6. Main Results

Based on the above analysis and calculation, we obtain the exact expressions of wave
solutions of the FCGL equation. We list them all in the following theorem.

Theorem 1. The exact expressions of wave solutions of the FCGL equation are as below:
(B1) Corresponding to some periodic orbits, there exist exact periodic wave solutions determined

by (17), (23), (24), (33), (39), (54), (58), (62), (64), (72), (89), (90), (96) and (98).
(B2) Corresponding to some homoclinic orbits, there exist exact solitary wave solutions deter-

mined by (19), (21), (27), (41), (51), (56), (60), (68), (74), (84), (87), (88), (91)–(95), (97), (99)
and (100).

(B3) Corresponding to some heteroclinic orbits, there exist exact kink and anti-kink wave
solutions determined by (13), (14), (28), (29), (35), (36), (43)–(46) and (76)–(79).

(B4) Corresponding to some open orbits, there exist exact compacton solutions determined by
(65) and (70).

7. Conclusions

In this paper, we investigate the bifurcations and the exact solutions of the time–space
fractional complex Ginzburg–Landau equation with parabolic law nonlinearity (F(|q|2) =
c1|q|2 + c2|q|4). All possible explicit representations of traveling wave solutions are given
for the time-space FCGL equation under different parameter domains, including peakon
solutions, periodic peakon solutions, compacton solutions, kink and anti-kink wave solu-
tions, solitary wave solutions, periodic wave solutions and so on. Our method is different
from the previous works on the exact solutions of the time-space FCGL equation and is
based on the applying bifurcation theory of planar dynamical systems.
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