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Abstract: In this article, a novel and efficient approach based on Lucas polynomials is introduced for solv-
ing three-dimensional mixed Volterra–Fredholm integral equations for the two types (3D-MVFIEK2).
This method transforms the 3D-MVFIEK2 into a system of linear algebraic equations. The error
evaluation for the suggested scheme is discussed. This technique is implemented in four exam-
ples to illustrate the efficiency and fulfillment of the approach. Examples of numerical solutions
to both linear and nonlinear integral equations were used. The Lucas polynomial method and other
approaches were contrasted. A collection of tables and figures is used to present the numerical
results. We observe that the exact solution differs from the numerical solution if the exact solution is
an exponential or trigonometric function, while the numerical solution is the same when the exact
solution is a polynomial. The Maple 18 program produced all of the results.

Keywords: three-dimensional Volterra–Fredholm integral equations; Lucas polynomials; collocation
points; error estimation
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1. Introduction

The multi-dimensional integral equations (MDIE) provide considerable flexibility
in order to implement a wide range of problems and relationships as well as resolve
boundary issues for differential equations (DE). In three-dimensional electromagnetic
modeling, Hursan and Zhdanov [1] pioneered the Contraction integral equation method.
Pachpatte presented numerous MDIE applications in [2]. Cheng investigated quantum
mechanics with thermal radiation effect in [3]. Chew et al used integral equation methods
for electromagnetic and Elastic Waves in [4]. Integral equations with two or more variables
are challenging to resolve analytically. Thus, in such instances, it is essential to utilize
numerical procedures to approach the solution.

The numerical solution of MDIE has been the subject of research. To illustrate,
Guoqiang et al in [5], calculated the numeric solution of two-dimensional nonlinear
Volterra integral equations (VIE) via employment and repeated employment techniques.
Bazm, in [6], used Bernoulli polynomials to obtain the solution of a class of nonlinear
two-dimensional integral equations. The numeric solution of two-dimensional nonlinear
Fredholm integral equations (FIE), in the most general type of kernels, is based on Bernstien
polynomials introduced by Maleknejad et al. in [7]. In [8], a three-dimensional differ-
ential converts technique is implemented for overcoming nonlinear three-dimensional
VIE. Basseem, in [9], implemented the degenerate kernel technique for solving three-
dimensional nonlinear integral equations of the two types. Kazemi et al., in [10], applied
the Haar wavelet procedure for solving the three-dimensional nonlinear FIE. Using the 3D-
block-pulse functions developed by Manafian and Bolghar in [11], the numerical solution
of nonlinear three-dimensional Volterra integro-differential equations is presented.
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Many works have been concentrated on the expansion of a better, higher, and more power-
ful technique for solving Volterra–Fredholm integral equations (VFIE), such as Maleknejad et al.
in [12], applying the Bernstein’s approximation for solving the three-dimensional VFIE of the ini-
tial and two types. Mirzaee and Hadadiyan, in [13], applied a computing technique for over-
coming the nonlinear composite VFIE. Mirzaee et al., in [14], presented triangular functions
for solving the nonlinear mixed VFIE. Moreover, Mirzaee et al., in [15], implemented the amend-
ment block-pulse functions to clarify the three-dimensional VFIE.

In this work, the approximate solution of 3D-MVFIEK2 have been obtained using three-
dimensional Lucas polynomials. These polynomials are non-orthogonal. This polynomial was
used by several scientists to solve fractional differential equations [16,17].
Cetin et al., in [18], utilized the Lucas polynomial procedure to research a system of higher-order
DE. Baykus and Sezer, in [19], implemented a hybrid Taylor–Lucas employment procedure
for the delay DE. Nadir, in [20], procured a solution of the differential-integro equation utiliza-
tion of the Lucas series. Haq and Ali, in [21], analyze the approach to solving two-dimensional
Sobolev equality utilization mixed Lucas and Fibonacci polynomials. Nisar et al., in [22], ap-
plied Lucas polynomials for solving 1D and 2D advection–diffusion–reaction equations. The
properties of Lucas polynomials are presented in [23]. In [24], Chelyshkov polynomials ap-
proach the first class of two-dimensional nonlinear VIE. In [25], Lucas polynomials are used
to approximate the solution of Cauchy integral equations. Modified Lucas polynomials
were used by Youssri et al. [26] to numerically solve boundary value issues. The primary
benefit of the current approach is that the issue at hand is converted into a set of algebraic
equations that can be quickly resolved using computer programming.

The paper is set up as shows: Section 2 presents various Lucas polynomial properties.
Lucas polynomials are used to solve 3D-MVFIEK2 in Section 3. Error analysis is discussed
in Section 4. Numerical outcomes and comparisons with other techniques are presented
in Section 5. The conclusion of the paper is presented in Section 6.

In this article, we shall contemplate the numerical solution of a size of 3D-MVFIEK2
in the next section, to create:

w(x, y, z) = g(x, y, z) + λ
∫ 1

0

∫ 1

0

∫ 1

0
K(x, y, z, s, t, r)w(s, t, r)dsdtdr+

+λ
∫ 1

0

∫ 1

0

∫ 1

0
k2(x, y, z, s, t, r)w(s, t, r)dsdtdr, (1a)

where

K(x, y, z, s, t, r) =


k1(x, y, z, s, t, r) (s, t, r) ≤ (x, y, z),

0, (s, t, r) > (x, y, z),
(1b)

x, y, z ∈ [0, 1), λ ∈ R, and w is the unknown function, g, k1 and k2 have analytic functions
on D and D× D severally, where D = [0, 1)× [0, 1)× [0, 1).

Equation (1a) could be expressed as follows:

w(x, y, z) = g(x, y, z) + λ
∫ 1

0

∫ 1

0

∫ 1

0
H(x, y, z, s, t, r)w(s, t, r)dsdtdr, (1c)

where
H(x, y, z, s, t, r) = K(x, y, z, s, t, r) + k2(x, y, z, s, t, r).

2. Properties of Lucas Polynomials

Definition 1. ([23]) The Lucas polynomials have specified via the recurrence relationship

Lm+2(ζ) = ζLm+1(ζ) + Lm(ζ), m ≥ 0, (2a)

with L0(ζ) = 2 and L1(ζ) = ζ.
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These polynomials possess the following expression, to establish:

Lm(ζ) =
(ζ +

√
ζ2 + 4)m + (ζ −

√
ζ2 + 4)m

2m , (2b)

furthermore, they possess the subsequent explicit power form of representation

Lm(ζ) =
dm

2 e

∑
k=0

n
n− k

(
m− k

k

)
ζm−2k, m ≥ 1, (2c)

where

dm
2
e =


m
2 , m even,

m−1
2 , m odd.

The initially smaller Lucas polynomials have expressed lower, and the collection
of these factors is in Table 1.

Table 1. The initially smaller Lucas polynomials are the array of these factors.

Polynomials’ Lucas Coefficients’ Array

L1(ζ) = ζ 1
L2(ζ) = ζ2 + 2 1 2

L3(ζ) = ζ3 + 3ζ 1 3
L4(ζ) = ζ4 + 4ζ2 + 2 1 4 2

L5(ζ) = ζ5 + 5ζ3 + 5ζ 1 5 5
L6(ζ) = ζ6 + 6ζ4 + 9ζ2 + 2 1 6 9 2

L7(ζ) = ζ7 + 7ζ5 + 14ζ3 + 7ζ 1 7 14 7
L8(ζ) = ζ8 + 8ζ6 + 20ζ4 + 16ζ2 + 2 1 8 20 16 2

L9(ζ) = ζ9 + 9ζ7 + 27ζ5 + 30ζ3 + 9ζ 1 9 27 30 9
L10(ζ) = ζ10 + 10ζ8 + 35ζ6 + 50ζ4 + 25ζ2 + 2 1 10 35 50 25 2

Definition 2. (Rodrigues’s formula). The Lucas polynomials Lm(ζ) shall be obtained over
the Rodrigue polynomials, and the formula is specified via

Lm(ζ) = 2
m!

(2m)!
(ζ2 + 4)1/2 dm

dζm {(ζ
2 + 4)m− 1

2 }. (2d)

Proposition 1. The producing function for Lucas polynomials is determined as [23]

G(ζ, t) =
∞

∑
m=0

Lm(ζ)tm =
1 + t2

1− t2 − ζt
= 1 + ζt + (ζ2 + 2)t2 + (ζ3 + 3ζ)t3 + . . . .

Approximation function
Let w(x) be square integrable function on (0, 1), and we assume it shall be displayed

in terms of the Lucas polynomials, as shows:

w(x) ' wN(x) =
M

∑
i=0

ciLi(x), (2e)

where Li(x) is the Lucas polynomials and ci, i = 0, 1, . . . , M are the unknown coefficients.
The Lucas series (2e) can be expressed as a matrix, as shows:

w(x) ∼= wM(x) = L(x)C, (2f)
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where L(x) = [L0(x) L1(x) . . . LM(x)] is the (M + 1)× (M + 1) matrix of Lucas
polynomials, C = [c0 c1 . . . cM]T is the (M + 1)× 1 unknown coefficients in a vector.

Then, by utilization of the Lucas polynomials Ln(x), specified via (2c), we write
the matrix form L(x), as follows:

L(x) = χ(x)QT , (2g)

where χ(x) = [1 x x2 . . . xM],

If M is odd

Q =



2 0 0 . . . 0

0 1
1 (

1
0) 0 . . . 0

2
1 (

1
1) 0 2

2 (
2
0) . . . 0

0 3
2 (

2
1) 0 . . . 0

...
...

...
. . .

...

(m−1)
(m−1)/2 (

(m−1)/2
(m−1)/2) 0 (m−1)

(m+1)/2 (
(m+1)/2
(m−3)/2) . . . 0

0 (m)
(m+1)/2 (

(m+1)/2
(m−1)/2) 0 . . . m

m (m
0 )



,

if M even

Q =



2 0 0 . . . 0

0 1
1 (

1
0) 0 . . . 0

2
1 (

1
1) 0 2

2 (
2
0) . . . 0

0 3
2 (

2
1) 0 . . . 0

...
...

...
. . .

...

0 (m−1)
m/2 ( m/2

(m−2)/2) 0 . . . 0

m
m/2 (

m/2
m/2) 0 m

(m+2)/2 (
(m+2)/2
(m−2)/2) . . . m

m (m
0 )



.

By the matrix (2f) and (2g), it follows that

wM(x) = χ(x)QTC. (2h)
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The function of two-dimensional continuous w(x, y) shall be expressed using Lucas
polynomials in the following manner:

w(x, y) ' wM(x, y) =
M

∑
k=0

M

∑
m=0

ckmLk(x)Lm(y) =
M

∑
k=0

M

∑
m=0

ckmLkm(x, y) = C L(x, y), (2i)

where C = [c00 c01 c0M cM0 . . . cMM]T is the order vector with an unknown coefficient
for Lucas (M + 1)2× 1 and L(x, y) = [L00(x, y) L0M(x, y) LM0(x, y) . . . LMM(x, y)]
is the square matrix of order (M + 1)2.

Assume that the following Lucas polynomials are to be used to define a three-
dimensional continuous function w(x, y, z):

w(x, y, z) ' wM(x, y, z) =
M

∑
k=0

M

∑
m=0

M

∑
n=0

ckmnLk(x)Lm(y)Lm(z)

=
M

∑
k=0

M

∑
m=0

M

∑
m=0

ckmnLkmn(x, y, z) = CL(x, y, z), (2j)

where C = [c000 c00M c0MM . . . cMMM]T is the order vector with an unknown coeffi-
cient for Lucas (M+ 1)3× 1 and L(x, y, z) = [L000(x, y, z) L00M(x, y, z) L0MM(x, y, z) . . .

LMMM(x, y, z)] is the square matrix of the order (M + 1)3.
Let g(x, y, z) ∈ L2(D) be any function; we must calculate it using a truncated Lucas series:

g(x, y, z) '
M

∑
k=0

M

∑
m=0

M

∑
m=0

gkmnLk(x)Lm(y)Lm(z) =
M

∑
k=0

M

∑
m=0

M

∑
m=0

gkmnLkmn(x, y, z) = LT(x, y, z)G, (2k)

where G is an (M + 1)3 × 1 vector given by G = [g000 g00M g0MM . . . gMMM]T .
Assume k(x, y, z, s, t, r) ∈ L2(D× D). It shall correspondingly expanded with respect

to Lucas polynomials from:

k(x, y, z, s, t, r) ' LT(x, y, z)K L(s, t, r), (2l)

where K is the (M + 1)3 × (M + 1)3 Lucas coefficients.

3. Technique of Solution

In this part, we use the Lucas polynomials technique to solve Equation (1c), which
corresponds to Equation (1a).

Approximating the functions w, g, and H with respect to three-dimensional Lucas
polynomials, as specified in part 2, we find

w(x, y, z) ' LT(x, y, z)C,

g(x, y, z) ' LT(x, y, z)G,

H(x, y, z, s, t, r) ' LT(x, y, z)HL(s, t, r). (3a)

Substituting from (3a) into (1c), we procure

LT(x, y, z)C ' LT(x, y, z)G + λ
∫ 1

0

∫ 1

0

∫ 1

0
LT(x, y, z)HL(s, t, r)LT(s, t, r)C dsdtdr.

Thus,

LT(x, y, z)C = LT(x, y, z)G + λLT(x, y, z)H
∫ 1

0

∫ 1

0

∫ 1

0
L(s, t, r)LT(s, t, r)C dsdtdr. (3b)

By using
L(x, y, z)LT(x, y, z)C = CL(x, y, z), (3c)
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where C = diag(C) is a (M + 1)3 × (M + 1)3 matrix in a diagonal.
It is clear that ∫ 1

0

∫ 1

0

∫ 1

0
L(s, t, r)dsdtdr = B1. (3d)

Substituting from (3c) and (3d) into (3b), we procure

LT(x, y, z)C = LT(x, y, z)G + λLT(x, y, z)HCB1, (3e)

therefore
LT(x, y, z)C = LT(x, y, z)G + λLT(x, y, z)Y,

where Y = HCB1.
By inserting the collocation point

(xi, yj, zk) = (
i

M
,

j
M

,
k
M

), i, j, k = 0, 1, . . . , M, (3f)

we obtain
LT(xi, yj, zk)C = LT(xi, yj, zk)G + λLT(xi, yj, zk)Y. (3g)

By simplifying (3g), we obtain

C = G + λY. (3h)

Next, when resolving the top linear system, we may discover the factor and we procure
the estimated solution.

4. Error Analysis

To generalize Lucas polynomials of the fractional DE, Abd-Elhameed and Youssri
researched the convergence and error analysis in their paper from [16]. This section covers
the equation’s error analysis (1c).

Assume that (C(D), ‖.‖) has the Banach space of every continuous function on D with a
norm of

‖w(x, y, z)‖ = max
(x,y,z)∈D

| w(x, y, z) | . (4a)

Furthermore, we denote the error by

eM(x, y, z) =| wM(x, y, z)− w(x, y, z) |, (4b)

where w and wM are the analytical and approximate solutions of the three-dimensional
integral Equation (1c) severally.

Theorem 1. Suppose that g(x, y, z) in Equation (1c) is bounded ∀(x, y, z) ∈ D and ‖ H(x, y, z, s, t, r)
‖≤ M1 ∀(x, y, z, s, t, r) ∈ D× D. Subsequently, Equation (1c) has a unique solution whenever
0 < α < 1, | λ | M1 = α.

Proof. Let

‖ eM(x, y, z) ‖=‖ wM(x, y, z)− w(x, y, z) ‖= max
(x,y,z)∈D

| wM(x, y, z)− w(x, y, z) |

= max
(x,y,z)∈D

| λ
∫ 1

0

∫ 1

0

∫ 1

0
H(x, y, z, s, t, r)wM(s, t, r)dsdtdr− λ

∫ 1

0

∫ 1

0

∫ 1

0
H(x, y, z, s, t, r)w(s, t, r)dsdtdr |

= max
(x,y,z)∈D

| λ
∫ 1

0

∫ 1

0

∫ 1

0
H(x, y, z, s, t, r)(wM(s, t, r)− w(s, t, r)dsdtdr |
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≤‖ wM(x, y, z)− w(x, y, z) ‖ max
(x,y,z)∈D

| λ
∫ 1

0

∫ 1

0

∫ 1

0
H(x, y, z, s, t, r)dsdtdr | .

Subsequently,

‖ eM(x, y, z) ‖≤‖ eM(x, y, z) ‖ (| λ | M1) ≤ α ‖ eM(x, y, z) ‖,

therefore
(1− α) ‖ eM(x, y, z) ‖≤ 0.

Thus, if 0 < α < 1, we have ‖ eM(x, y, z) ‖−→ 0 as M −→ ∞, and this completes
the proof of the theorem.

For an error estimation of the approximate solution of Equation (1c), we consider

rM(x, y, z) + g(x, y, z) = wM(x, y, z)− λ
∫ 1

0

∫ 1

0

∫ 1

0
H(x, y, z, s, t, r)wM(x, y, z)dsdtdr, (4c)

where rM is the perturbation function.
By deducting equation (4c) from equation (1c) we get

‖rM(x, y, z)‖ ≤‖ eM(x, y, z) ‖ + | λ | M1 ‖ eM(x, y, z) ‖ .

Therefore,
‖rM(x, y, z)‖ ≤ (1+ | λ | M1) ‖ eM(x, y, z) ‖,

then rM(x, y, z) is bounded.

5. Numerical Examples

In this part, four numerical illustrations are introduced to explain the suggested
technique. All computations have been formed by using Maple 18.

Example 1. Let the next three-dimensional FIE of the second type be:

w(x, y, z) = g(x, y, z) + 0.01
∫ 1

0

∫ 1

0

∫ 1

0
(e−(xyz)s2tr2) wp(s, t, r)dsdtdr, (x, y, z) ∈ D, p = 1, 2, (5a)

with the analytical solution w(x, y, z) = x2y2z2.

Case (I) if p = 1, we obtain the following linear integral equation (LIE):

w(x, y, z) = x2y2z2 − 1
10000

e−(xyz) + 0.01
∫ 1

0

∫ 1

0

∫ 1

0
(e−(xyz)s2tr2) w(s, t, r)dsdtdr, (x, y, z) ∈ D. (5b)

Case (II) if p = 2, we obtain the following nonlinear integral equation (NIE):

w(x, y, z) = x2y2z2 − 1
29400

e−(xyz) + 0.01
∫ 1

0

∫ 1

0

∫ 1

0
(e−(xyz)s2tr2) w2(s, t, r)dsdtdr, (x, y, z) ∈ D. (5c)

Implementation Lucas polynomial technique for Equation (5b) with M = 2 and via utilization
of the employment points (3f). We receive a set of 27 linear algebraic equations with an equivalent
number of unknowns. We reverse this scheme and obtain the sum calculated, as follows:

c0,0,0 = −1, c0,0,1 = 0, c0,0,2 = 1, c0,1,0 = 0, c0,1,1 = 0, c0,1,2 = 0, c0,2,0 = 1,

c0,2,1 = 0, c0,2,2 = −1, c1,0,0 = 0, c1,0,1 = 0, c1,0,2 = 0, c1,1,0 = 0, c1,1,1 = 0,

c1,1,2 = 0, c1,2,0 = 0, c1,2,1 = 0, c1,2,2 = 0, c2,0,0 = 1, c2,0,1 = 0, c2,0,2 = −1,

c2,1,0 = 0, c2,1,1 = 0, c2,1,2 = 0, c2,2,0 = −1, a2,2,1 = 0, c2,2,2 = 1

and, we receive the approximate resolution that is the same as the accurate resolution.
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Similarly, applying the Lucas polynomial method for Equation (5c), we obtain the ap-
proximate solution in the form of

w2(x, y, x) = x2y2z2 − 1.011599486× 10−10xyz− 3.102400059× 10−10x2yz2 − 3.102400059× 10−10x2y2z

+1.917200016× 10−10xyz2 + 1.917200016× 10−10xy2z− 3.102400059× 10−10xy2z2 + 1.917200016× 10−10x2yz.

This is a comparison between the exact solution, approximate solution and absolute
error presented in Table 2. Figure 1 represented absolute error of example 1 when z = 0.5.

Table 2. Numerical outcomes of example 1, case II.

(x, y, z) Exact Solution Approximate
Solution Absolute Error

(0, 0, 0) 0 0 0
(0.1, 0.1, 0.1) 0.000001 9.999999471× 10−7 5.295114830× 10−14

(0.2, 0.2, 0.2) 0.000064 0.00006399999982 1.868539870× 10−13

(0.3, 0.3, 0.3) 0.000729 0.0007289999997 3.341722165× 10−13

(0.4, 0.4, 0.4) 0.004096 0.004095999998 1.280713568× 10−12

(0.5, 0.5, 0.5) 0.015625 0.01562499999 5.782493832× 10−12

(0.6, 0.6, 0.6) 0.046656 0.04665599996 1.968260082× 10−11

(0.7, 0.7, 0.7) 0.117649 0.1176490000 5.302805863× 10−11

(0.8, 0.8, 0.8) 0.262144 0.2621439999 1.211866911× 10−10

(0.9, 0.9, 0.9) 0.531441 0.5314409998 2.459639868× 10−10

(1, 1, 1) 1 0.9999999996 4.567199615× 10−10

Figure 1. Absolute error of example 1, M = 2 and z = 0.5.

Example 2. Let the next three-dimensional IE of the second type be [9,10]:

w(x, y, z) = g(x, y, z) + 0.01
∫ 1

0

∫ 1

0

∫ 1

0
(x2srzt2 + x2syrz) wp(s, t, r)dsdtdr, (x, y, z) ∈ D, p = 1, 2, (5d)

with the exact solution w(x, y, z) = x2y2z.
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Comparing Equation (5d) with Equation (1c), we note that

H(x, y, z, s, t, r) = k1(x, y, z, s, t, r) + k2(x, y, z, s, t, r) = x2srzt2 + x2syrz,

k1(x, y, z, s, t, r) =


x2srzt2 (s, t, r) ≤ (x, y, z),

0, (s, t, r) > (x, y, z),

k2(x, y, z, s, t, r) = x2syrz.
Case (I) if p = 1, we obtain the following LIE

w(x, y, z) = x2y2z− 1
6000

x2z− 1
3600

x2yz + 0.01
∫ 1

0

∫ 1

0

∫ 1

0
(x2srzt2 + x2syrz) w(s, t, r)dsdtdr. (5e)

Case (II) if p = 2, we obtain the following NIE

w(x, y, z) = x2y2z− 1
16800

x2z− 1
12000

x2yz + 0.01
∫ 1

0

∫ 1

0

∫ 1

0
(x2srzt2 + x2syrz) w2(s, t, r)dsdtdr. (5f)

Similarly, as in example 1, and applying the Lucas polynomial method for Equation (5e)
with M = 2 via utilization, the employment points are (3f). We receive a set of 27 linear
algebraic equations with an equivalent number of unknowns. We reverse this scheme and
obtain the sum calculated, as follows:

c0,0,0 = 0, c0,0,1 = 1, c0,0,2 = 0, c0,1,0 = 0, c0,1,1 = 0, c0,1,2 = 0, c0,2,0 = 0,

c0,2,1 = −1, c0,2,2 = 0, c1,0,0 = 0, c1,0,1 = 0, c1,0,2 = 0, c1,1,0 = 0, c1,1,1 = 0,

c1,1,2 = 0, c1,2,0 = 0, c1,2,1 = 0, c1,2,2 = 0, c2,0,0 = 0, c2,0,1 = −1, c2,0,2 = 0,

c2,1,0 = 0, c2,1,1 = 0, c2,1,2 = 0, c2,2,0 = 0, a2,2,1 = 1, c2,2,2 = 0,

and we receive the approximate resolution, which is the same as the accurate resolution.
Similarly, when applying the Lucas polynomial method for Equation (5f), we obtain

the approximate solution in the form

w2(x, y, x) = −1.62042× 10−9xyz + 1.80048× 10−9xyz2 + 2.52052× 10−9xy2z− 2.80064× 10−9xy2z2

+2.482404895× 10−9x2yz− 2.80056× 10−9x2yz2 + 4.0008× 10−9x2y2z2 + 0.9999999965x2y2z.

Comparisons between the absolute errors of the presented technique and the Haar wavelet
technique [10] are shown in Table 3. Figure 2 represented the absolute error of example 2 when
z = 0.5.

Table 3. Numerical outcomes of example 2, case II.

(x, y, z) Abs Error of our technique,
M = 2 Abs Error of [10], M = 4 Abs Error of [10], M = 8

(0, 0, 0) 0 0 0
(0.1, 0.1, 0.1) 1.027090710× 10−12 3.513425711× 10−9 8.93185232× 10−10

(0.2, 0.2, 0.2) 4.734244968× 10−12 3.075653759× 10−8 7.81583453× 10−9

(0.3, 0.3, 0.3) 7.843093150× 10−12 1.127441345× 10−7 2.86408818× 10−8

(0.4, 0.4, 0.4) 6.348725880× 10−12 2.884384112× 10−7 7.32523191× 10−8

(0.5, 0.5, 0.5) 7.60305950× 10−13 6.047489575× 10−7 1.53545196× 10−7

(0.6, 0.6, 0.6) 1.066256719× 10−11 1.116532759× 10−6 2.83425621× 10−7

(0.7, 0.7, 0.7) 1.874489071× 10−11 1.886594200× 10−6 4.78810760× 10−7

(0.8, 0.8, 0.8) 2.352410432× 10−11 2.985685054× 10−6 7.57628837× 10−7

(0.9, 0.9, 0.9) 3.444933645× 10−11 4.492504497× 10−6 1.13981913× 10−6

(1, 1, 1) 8.2584895× 10−11 6.493699097× 10−6 1.64733199× 10−6
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Figure 2. Absolute error of example 2, M = 2, z = 0.5

Example 3. Let the next three-dimensional FIE of the second type be:

w(x, y, z) = g(x, y, z) + 0.01
∫ 1

0

∫ 1

0

∫ 1

0
(e−rx2y2st) wp(s, t, r)dsdtdr, (x, y, z) ∈ D, p = 1, 2, (5g)

with analytical solution w(x, y, z) = xye−z.

Case (I) if p = 1 we obtain the following LIE:

w(x, y, z) = xye−z − (
1

1800
y2x2 − 1

1800
e−2x2y2) + 0.01

∫ 1

0

∫ 1

0

∫ 1

0
(e−rx2y2st) w(s, t, r)dsdtdr. (5h)

Case (II) if p = 2, we obtain the following NIE:

w(x, y, z) = xye−z − (
1

4800
x2y2 − 1

4800
x2y2e−3) + 0.01

∫ 1

0

∫ 1

0

∫ 1

0
(e−rx2y2st) w2(s, t, r)dsdtdr. (5i)

Similarly as examples 1 and 2, we obtain the approximate solutions of Equations (5h) and (5i),
respectively, in the forms

w2(x, y, z) = −1.3× 10−16x + 1.2× 10−16y− 0.9417567917xyz + 0.3096362366xyz2 − 9.1× 10−9xy2z

+5.290847763× 10−9xy2z2 − 1.08× 10−8x2yz + 6.616953330× 10−9x2yz2 + 8× 10−9x2y2z− 3.7500021× 10−9x2y2z2

+0.9999999962xy + 4.281458270× 10−9xy2 + 4.571508262× 10−9x2y + 7.348829758× 10−7x2y2 + 4.0× 10−16y2,

and

w2(x, y, z) = −1.28× 10−9xy2z2 + 1.04× 10−9x2yz− 1.28× 10−9x2yz2 + 9.6× 10−10x2y2z− 3.2× 10−10x2y2z2

−0.9417568054xyz + 0.3096362465xyz2 + 1.040000000× 10−9xy2z + 1.000000001xy− 3.96292120× 10−10xy2

−3.96292120× 10−10x2y + 9.724822738× 10−7x2y2.
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Absolute errors of example 3 is shown in Table 4 and Figures 3 and 4.

Table 4. Numeric outcomes of example 3.

(x, y, z) = (2−`, 2−`, 2−`) Abs. Error for Case I, M = 2 Error for Case II, M = 2

` = 1 4.641× 10−8 6.08× 10−8

` = 2 1.9520440× 10−4 3.1952140× 10−4

` = 3 7.221208467× 10−5 7.221218× 10−5

` = 4 1.147130303× 10−5 1.1471321× 10−5

` = 5 1.600822047× 10−6 1.6008264× 10−6

` = 6 2.109874999× 10−7 2.109887× 10−7

Figure 3. Absolute error of example 3, case I, M = 2 and z = 0.5.

Figure 4. Absolute error of example 3 case II, M = 2 and z = 0.5.
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Example 4. Let the next three-dimensional Fredholm integral equation of the second type be:

w(x, y, z) = xyze−x2−y2−z2
+

1
16

(1− e−1)3xyz +
1
2

∫ 1

0

∫ 1

0

∫ 1

0
xyzw(s, t, r)dsdtdr, (5j)

with exact solution w(x, y, z) = xyze−x2−y2−z2
.

The numeric outcomes of example 4 are displayed in Table 5 according to the suggested
procedure, and Figure 5 represented the Absolute error when z = 0.5.

Table 5. Numeric outcomes of example 4.

(x, y, z) = (2−`, 2−`, 2−`) Abs. Error for M = 2

` = 1 9.8458149× 10−5

` = 2 1.957533070× 10−3

` = 3 6.463230447× 10−4

` = 4 1.190393926× 10−4

` = 5 1.772988091× 10−5

` = 6 2.409198170× 10−6

Figure 5. Absolute error of example 4, M = 2 and z = 0.5

6. Conclusions

A numeric technique depending on the Lucas polynomial is proposed in this document
for the approximate solution of 3D-MVFIEK2. As the numeric outcome has demonstrated,
by comparing the present method with other numerical techniques, it is clear that the results
of the Lucas polynomial method are better than the results of the Haar wavelet technique [10],
and the CPT time used for solving the examples is very small when using the Maple program.
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Future Work

We can develop this method for solving the singular 3D-VFIEK2 with some modi-
fications. Moreover, we can use the finite difference method for solving different kinds
of integral equations.
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