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Abstract: In the present paper, we consider a subclass of starlike functions G3/2 defined by the ratio
of analytic representations of convex and starlike functions. The main aim is to determine the bounds
of Fekete–Szegö-type inequalities and Hankel determinants for functions in this class. It is proved
that max{|H3,1( f )| : f ∈ G3/2} is equal to 1

81 . The bounds for f ∈ G3/2 are sharp.
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1. Introduction and Definitions

Let A denote the normalized analytic functions defined in the open unit disc D =
{z ∈ C : |z| < 1} with the series expansion of the form

f (z) = z +
∞

∑
k=2

akzk, z ∈ D. (1)

Let S ⊆ A be the class of univalent functions in D. Suppose that P is the Carathéodory
class (see [1]) of all functions p that are analytic in D with <(p(z)) > 0 and normalized by

p(z) = 1 +
∞

∑
n=1

cnzn, z ∈ D. (2)

A function f ∈ A is said to be in the class S∗ of starlike functions, if, and only if,

< z f ′(z)
f (z)

> 0, z ∈ D. (3)

For the class C of convex functions, the necessary and sufficient condition is

<
(

1 +
z f ′′(z)
f ′(z)

)
> 0, z ∈ D. (4)

It is known that if f ∈ C, then z f ′(z) ∈ S∗—see [2].
Nonlinear functional analysis is an active topic and has its applications in the natural

sciences, economics, and numerical analysis—see, for example, [3–7]. In [8], Silverman
introduced and studied a new subclass of A using the quotient of

(
1 + z f ′′(z)

f ′(z)

)
/ z f ′(z)

f (z) . For
b ∈ (0, 1], the class Gb was defined by

Gb =

 f ∈ A :

∣∣∣∣∣∣
1 + z f ′′(z)

f ′(z)
z f ′(z)

f (z)

− 1

∣∣∣∣∣∣ < b, z ∈ D

. (5)
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In [9], Obradović and Tuneski found that, for f ∈ A, if

<

1 + z f ′′(z)
f ′(z)

z f ′(z)
f (z)

 <
3
2

, z ∈ D, (6)

then f ∈ S∗.
We say g1 is subordinate to g2 in D, written as g1 ≺ g2, if g1(z) = g2(ω(z)) for some

analytic function ω(z) with ω(0) = 0 and |ω(z)| < 1. If g2 in D is univalent, then g1 ≺ g2
is equivalent to

g1(0) = g2(0) and g1(D) ⊂ g2(D). (7)

Using subordination, we can also write

Gb =

 f ∈ A :
1 + z f ′′(z)

f ′(z)
z f ′(z)

f (z)

≺ 1 + bz, z ∈ D

. (8)

In [10], the upper bounds on the initial coefficients and Hankel determinants for f ∈ Gb
were derived. Motivated by the above results, Rǎducanu [11] investigated the class G3/2
defined by

G3/2 :=

 f ∈ A : <

1 + z f ′′(z)
f ′(z)

z f ′(z)
f (z)

 <
3
2

, z ∈ D

. (9)

Clearly, G3/2 is a subclass of starlike functions. With the additional restriction of
f ′′(0) = p for p ∈ [0, 2], Rǎducanu obtained the upper bounds of some initial coefficients
and the difference of moduli of successive coefficients |a3 − a2| and |a4 − a3| for f ∈ G3/2.
For other investigations on the analytic functions associated with the ratio of analytic
representations of convex and starlike functions, we refer to [12–14].

The Hankel determinantHq,n( f ) with q, n ∈ N and a1 = 1 for a function f ∈ S of the
series form (1) was given by Pommerenke [15,16] as

Hq,n( f ) :=

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣. (10)

This is widely used in the theory of Markov processes, of non-stationary signals, in
the Hamburger moment problem, and many other issues in both pure mathematics and
technical applications—see, for example, [17,18]. In recent years, many results on the
upper bounds of Hankel determinant for various subclasses of univalent functions were
obtained—interested readers may refer to [19–25] and the references.

In the present paper, we aim to investigate coefficient problems related to Fekete–
Szegö-type functionals and Hankel determinants for the functions f ∈ G3/2.

2. A Set of Lemmas

To prove our main results, we require the following lemmas.
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Lemma 1 (see [26]). Let p ∈ P be the form of (2). Then,

2c2 = c2
1 + x

(
4− c2

1

)
, (11)

4c3 = c3
1 + 2

(
4− c2

1

)
c1x− c1

(
4− c2

1

)
x2 + 2

(
4− c2

1

)(
1− |x|2

)
δ, (12)

8c4 = c4
1 +

(
4− c2

1

)
x
[
c2

1

(
x2 − 3x + 3

)
+ 4x

]
− 4
(

4− c2
1

)(
1− |x|2

)
[
c1(x− 1)δ + xδ2 −

(
1− |δ|2

)
ρ
]

(13)

for some x, δ, ρ ∈ D := {z ∈ C : |z| ≤ 1}.

Lemma 2 (see [27]). Let µ ∈ C. If p ∈ P is represented as (2), then

|cn+k − µcnck| ≤ 2 max(1, |2µ− 1|). (14)

Lemma 3. For all (c, t) ∈ [0, 2)×
[

1
3 , 1
]
, we have

17(2 + c)2(2− c)t2 + 2(2 + c)
(

23c2 + 116c− 162
)

t + 29c3 − 290c2 + 512 ≥ 0. (15)

Proof. Let

F1(c, t) := 17(2 + c)2(2− c)t2 + 2(2 + c)
(

23c2 + 116c− 162
)

t + 29c3 − 290c2 + 512. (16)

It is noted that

F1(c, t) = (2 + c)F2(c, t) + 29c3 − 290c2 + 512, (17)

where
F2(c, t) = 17

(
4− c2

)
t2 + 2

(
23c2 + 116c− 162

)
t. (18)

Let ĉ0 =
√

7090−58
23 ≈ 1.1392 be the only positive root of the equation 23c2 + 116c−

162 = 0. If c ≥ ĉ0, we have 23c2 + 116c− 162 ≥ 0 and thus F2(c, t) ≥ F2

(
c, 1

3

)
. Then

F1(c, t) ≥ (2 + c)F2

(
c,

1
3

)
+ 29c3 − 290c2 + 512 =: s1(c), c ∈ [ĉ0, 2). (19)

In light of

s1(c) =
2
9

(
191c3 − 836c2 + 244c + 1400

)
(20)

and s′1(c) ≤ 0 on [ĉ0, 2), we get that s1(c) ≥ s1(2) = 16. Hence, we obtain that F1(c, t) ≥ 0
on [ĉ0, 2]× [0, 1].

For c < ĉ0, we note that the symmetric axis of F2 is defined by

t0 =
−23c2 − 116c + 162

17(4− c2)
> 0. (21)

Let ĉ1 =
√

982−29
3 ≈ 0.7790 be the only positive root of the equation 6c2 + 116c− 94 = 0.

If c ≤ ĉ1, we have t0 ≥ 1. Then F2(c, t) ≥ F2(c, 1), which leads to

F1(c, t) ≥ (2 + c)F1(c, 1) + 29c3 − 290c2 + 512 = 2c
(

104 + 29c2
)
≥ 0. (22)



Fractal Fract. 2023, 7, 195 4 of 12

If c ∈ (ĉ1, ĉ0), it is simple to observe that

F1(c, t) ≥ 17(2 + c)2(2− c) · 1
9
+ 2(2 + c)

(
23c2 + 116c− 162

)
· 1 + 29c3 − 290c2 + 512

=
2
9

(
329c3 + 136c2 + 664c− 544

)
> 0

on (ĉ1, ĉ0). Hence, F1(c, t) ≥ 0 for all (c, t) ∈ [0, ĉ0]×
[

1
3 , 1
]
. Therefore, we deduce that

F1(c, t) ≥ 0 on [0, 2)×
[

1
3 , 1
]
. The assertion in Lemma 3 thus follows.

Lemma 4. For all (c, t) ∈ [0, 2)×
[

1
3 , 1
]
, we have

17(1 + c)
(

4− c2
)

t2 +
(

46c3 + 162c2 + 140c− 324
)

t + 29c3 − 145c2 + 256 ≥ 0. (23)

Proof. Define

F3(c, t) := 17(1 + c)
(

4− c2
)

t2 +
(

46c3 + 162c2 + 140c− 324
)

t+ 29c3− 145c2 + 256. (24)

It is observed that

F3(c, t)− F1(c, t) = −17
(

4− c2
)

t2 + 162
(

2− c2
)

t + 145c2 − 256

≥ −17
(

4− c2
)

t + 162
(

2− c2
)

t + 145c2 − 256

= (256− 145c2)(1− t).

For c2 ≤ 256
145 , it is clear that F3(c, t) ≥ F1(c, t) ≥ 0. If c2 > 256

145 , then 46c3 + 162c2 +

140c− 324 > 0 and it follows that F3(c, t) ≥ F3

(
c, 1

3

)
> 0. Hence, we have F3(c, t) ≥ 0 on

[0, 2)×
[

1
3 , 1
]
, which leads to the assertion in Lemma 4.

3. Main Results

For the class of analytic univalent functions, Fekete Szegö studied the maximum value
of |a3 − ζa2| when ζ is real. After that, the upper bound for the functional |a3 − ζa2| were
investigated extensively for various subclasses of univalent functions. For some recent
works, see, for example, [28–31]. We begin by finding the Fekete–Szegö-type inequalities
for f ∈ G3/2.

Theorem 1. Let γ ∈ C. If f ∈ G3/2 is of the form (1), then∣∣∣a3 − γa2
2

∣∣∣ ≤ 1
4

max{1, |3− 4γ|}. (25)

The inequality is sharp.

Proof. Let f ∈ G3/2. Then there exists a function p ∈ P such that

3
z f ′(z)

f (z)
− 2
(

1 +
z f ′′(z)
f ′(z)

)
= p(z)

z f ′(z)
f (z)

, z ∈ D. (26)

Assuming that

p(z) = 1 + c1z + c2z2 + c3z3 + c4z4 + · · · , z ∈ D. (27)
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Using (1), it follows that

z f ′(z)
f (z)

= 1 + a2z +
(

2a3 − a2
2

)
z2 +

(
a3

2 − 3a2a3 + 3a4

)
z3

+
(

4a5 − a4
2 + 4a2

2a3 − 4a2a4 − 2a2
3

)
z4 + · · · (28)

and

1 +
z f ′′(z)
f ′(z)

= 1 + 2a2z +
(

6a3 − 4a2
2

)
z2 +

(
8a3

2 − 18a2a3 + 12a4

)
z3

+
(

20a5 − 16a4
2 + 48a2

2a3 − 32a2a4 − 18a2
3

)
z4 + · · · . (29)

Combining (26)–(29), we obtain

a2 = −1
2

c1, (30)

a3 = −1
8

(
c2 − 2c2

1

)
, (31)

a4 = − 1
144

(
8c3 − 21c1c2 + 18c3

1

)
, (32)

a5 = − 1
1152

(
36c4 − 27c2

2 − 80c1c3 + 138c2
1c2 − 72c4

1

)
. (33)

Employing (30) and (31), we have∣∣∣a3 − γa2
2

∣∣∣ = 1
8

∣∣∣c2 − 2(1− γ)c2
1

∣∣∣. (34)

An application of Lemma 2 leads to the assertion in Theorem 1. The equality can be
attained by the functions f1 and f2 given, respectively, by the equations

3
z f ′(z)

f (z)
− 2
(

1 +
z f ′′(z)
f ′(z)

)
=

1− z
1 + z

· z f ′(z)
f (z)

, z ∈ D, (35)

3
z f ′(z)

f (z)
− 2
(

1 +
z f ′′(z)
f ′(z)

)
=

1− z2

1 + z2 ·
z f ′(z)

f (z)
, z ∈ D. (36)

Using series expansions, f1 and f2 are in the form of

f1(z) = z + z2 +
3
4

z3 +
19
36

z4 +
101
288

z5 + · · · , z ∈ D, (37)

f2(z) = z +
1
4

z3 +
1

32
z5 + · · · , z ∈ D. (38)

The second Hankel determinant is known as the functional H2,2( f ) = a2a4 − a2
3. In

recent years, many results on the upper bounds of second Hankel determinant for certain
subclass of univalent functions were obtained, see [32–35]. Now, we provide the sharp
bound ofH2,2( f ) for f ∈ G3/2.

Theorem 2. If f ∈ G3/2, then

|H2,2( f )| =
∣∣∣a2a4 − a2

3

∣∣∣ ≤ 1
16

. (39)

The bound is sharp.
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Proof. From (30) to (32), we have

H2,2( f ) = a2a4 − a2
3 = − 1

64
c2

2 −
1

96
c2

1c2 +
1

36
c1c3. (40)

Let f ∈ G3/2 and fθ(z) = e−iθ f
(
eiθz
)
, θ ∈ R. We know fθ(z) ∈ G3/2 for all θ ∈ R

and |H2,2( fθ)| = |H2,2( f )|. Since the class G3/2 and the functional |H2,2( f )| are rotation-
invariant, we can assume that a2 of f is real and, thus, c1 := c ∈ [0, 2]. Using (11) and (12)
to express c2 and c3, we obtain

H2,2( f ) = − 5
2304

c4 +
1

1152
c2
(

4− c2
)

x− 1
2304

(
36 + 7c2

)(
4− c2

)
x2

+
1

72
c
(

4− c2
)(

1− |x|2
)

δ.

Let |x| := t. From |δ| ≤ 1, we get

|H2,2( f )| ≤ 5
2304

c4 +
1

1152
c2
(

4− c2
)

t +
1

2304

(
36 + 7c2

)(
4− c2

)
t2

+
1

72
c
(

4− c2
)(

1− t2
)
=: G(c, t) .

As 7c2 − 32c + 36 ≥ 0 on [0, 2], it is noted that

∂G
∂t

=
1

1152

(
4− c2

)[(
7c2 − 32c + 36

)
t + c2

]
≥ 0. (41)

Thus we have G(c, t) ≤ G(c, 1). Putting t = 1 leads to

|H2,2( f )| ≤ 1
16
− 1

576
c4 ≤ 1

16
. (42)

The bound is achieved by the function f2 given by Equation (36).

It is not easy to find the sharp bound of the third Hankel determinant for a certain sub-
class of univalent functions. For instance, Kowalczyk et al. [36] proved that |H3,1( f )| ≤ 4

9
for f ∈ S∗. Before it was solved, there are many works investigated this problem—for
details, we refer to [37,38]. Now, we give the sharp bound ofH3,1( f ) for f ∈ G3/2.

Theorem 3. Suppose that f ∈ G3/2. Then,

|H3,1( f )| ≤ 1
81

. (43)

The result is the best possible.

Proof. From the definition, we know

H3,1( f ) = 2a2a3a4 − a2
4 − a2

2a5 − a3
3 + a3a5. (44)

Let f ∈ G3/2 and fθ(z) = e−iθ f
(
eiθz
)
, θ ∈ R. It is observed that fθ(z) ∈ G3/2 for

all θ ∈ R and |H3,1( fθ)| = |H3,1( f )|. As the class G3/2 and the functional |H3,1( f )| are
invariant under the rotations, we may assume that a2 of f is real and, thus, c1 := c ∈ [0, 2].
Substituting (30)–(33) into (44), we have

H3,1( f ) =
1

82944

(
−81c3

2 + 48cc2c3 + 324c2c4 − 256c2
3 + 18c2c2

2

)
. (45)
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Let b = 4− c2. By applying Lemma 1 and inserting the formulae of c2, c3 and c4 into
(45), we obtain

H3,1( f ) =
1

663552

{
37c6 − 81x3b3 + 648x3b2 + 648c2x2b− 278c4x2b

+ 162c4x3b− 137c2x2b2 − 22c2x3b2 + 34c2x4b2 + 109c4xb

+ 232c3b
(

1− |x|2
)

δ− 648|x|2b2
(

1− |x|2
)

δ2 − 512b2
(

1− |x|2
)2

δ2

− 136cx2b2(1− |x|2)δ− 648c2xb(1− |x|2)δ2 − 280cxb2
(

1− |x|2
)

δ

− 648c3xb(1− |x|2)δ + 648c2b
(

1− |x|2
)(

1− |δ|2
)

ρ

+648xb2
(

1− |x|2
)(

1− |δ|2
)

ρ
}

,

where x, δ, ρ ∈ D. By suitable rearrangements, it is observed thatH3,1( f ) can be written as

H3,1( f ) =
1

663552

[
u1(c, x) + u2(c, x)δ + u3(c, x)δ2 + Φ(c, x, δ)ρ

]
, (46)

where

u1(c, x) = 37c6 +
(

4− c2
)

x
[
34c2

(
4− c2

)
x3 +

(
103c4 − 88c2 + 1296

)
x2

+c2
(

100− 141c2
)

x + 109c4
]
,

u2(c, x) = 8(4− c2)
(

1− |x|2
)

c
[
−17

(
4− c2

)
x2 −

(
46c2 + 140

)
x + 29c2

]
,

u3(c, x) = 8(4− c2)
(

1− |x|2
)[(

4− c2
)(
−17|x|2 − 64

)
− 81c2x

]
,

Φ(c, x, δ) = 648(4− c2)
(

1− |x|2
)(

1− |δ|2
)[(

4− c2
)

x + c2
]
.

Let |x| =: t and |δ| =: y. By observing |ρ| ≤ 1, it follows that

|H3,1( f )| ≤ 1
663552

[
|u1(c, x)|+ |u2(c, x)|y + |u3(c, x)|y2 + |Φ(c, x, δ)|

]
≤ 1

663552
[Γ(c, t, y)], (47)

where
Γ(c, t, y) = σ1(c, t) + σ2(c, t)y + σ3(c, t)y2 + σ4(c, t)

(
1− y2

)
, (48)

with

σ1(c, t) = 37c6 + (4− c2)
[
34c2

(
4− c2

)
t4 +

(
103c4 − 88c2 + 1296

)
t3

+c2
(

100 + 141c2
)

t2 + 109c4t
]
,

σ2(c, t) = 8(4− c2)
(

1− t2
)

c
[
17
(

4− c2
)

t2 +
(

46c2 + 140
)

t + 29c2
]
,

σ3(c, t) = 8(4− c2)
(

1− t2
)[(

4− c2
)(

17t2 + 64
)
+ 81c2t

]
,

σ4(c, t) = 648(4− c2)
(

1− t2
)[(

4− c2
)

t + c2
]
.

The inequality (47) comes from the fact that
∣∣uj(c, x)

∣∣ ≤ σj(c, t) for j = 1, 2, 3 and

|Φ(c, x, δ)| ≤ σ4(c, t)
(

1− |δ|2
)

. Here, |u1(c, x)| ≤ σ1(c, t) follows from 4− c2 ≥ 0 and

103c4 − 88c2 + 1296 ≥ 0 on [0, 2].
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Now the problem reduces to find the maximum value of Γ in the closed cuboid
Ω := [0, 2]× [0, 1]× [0, 1]. By noting that Γ(0, 0, 1) = 8192, we have max(c,t,y)∈ΩΓ(c, t, y) ≥
8192. In the following, we show that max(c,t,y)∈Ω Γ(c, t, y) = 8192.

On the face, c = 2, Γ(2, t, y) ≡ 2368. For t = 1, we have

Γ(c, 1, y) = −282c6 + 1128c4 − 704c2 + 5184 =: r1(c). (49)

Since r′1(c) = 0 has two positive roots c̃1 =
√

4
3 −

20
√

141
141 ≈ 0.6007 and c̃2 =√

4
3 + 20

√
141

141 ≈ 1.5185, r1 attains its maximum value about 6100.85 on c = c̃2 for c ∈ [0, 2].
Thus, we may only consider the cases of c < 2 and t < 1.

First we suppose that (c, t, y) ∈ [0, 2)× [0, 1)× (0, 1). By differentiating partially Γ
with respect to y, we obtain

∂Γ
∂y

= σ2(c, t) + 2[σ3(c, t)− σ4(c, t)]y. (50)

Taking ∂Γ
∂y = 0, we obtain

y =
17c
(
4− c2)t2 +

(
46c3 + 140c

)
t + 29c3

2(1− t)[17(4− c2)t + 145c2 − 256]
=: y0. (51)

For y0 ∈ (0, 1), it is possible only if

17(2 + c)2(2− c)t2 + 2(2 + c)
(

23c2 + 116c− 162
)

t + 29c3 − 290c2 + 512 < 0 (52)

and

c2 >
4(64− 17t)
145− 17t

. (53)

Now we have to obtain the solutions that satisfy both inequalities (52) and (53) for
the existence of critical points with y ∈ (0, 1). From Lemma 3, we know (52) is impossible
to hold for t ∈

[
1
3 , 1
]
.

Let
(
c̃, t̃, ỹ

)
be a critical point of Γ lies in [0, 2)× [0, 1)× (0, 1). From the above discus-

sions, we know t̃ < 1
3 . Assume that g(t) = 4(64−17t)

145−17t . As g′(t) < 0 in [0, 1], g(t) is decreasing

over [0, 1]. Hence, c̃2 ≥ 350
209 . Under the conditions that t ∈

[
0, 1

3

)
, c ∈

(√
350
209 , 2

)
and

y ∈ (0, 1), we find that

σ1(c, t) ≤ σ1

(
c,

1
3

)
=: τ1(c) (54)

and

σj(c, x) ≤ 9
8

σj

(
c,

1
3

)
=: τj(c), j = 2, 3, 4. (55)

Therefore, we have

Γ(c, t, y) ≤ τ1(c) + τ2(c)y + τ3(c)y2 + τ4(c)
(

1− y2
)
=: Ξ(c, y). (56)

Since ∂Ξ
∂y = τ2(c) + 2[τ3(c)− τ4(c)]y, we have

∂Ξ
∂y
| y=1 = τ2(c) + 2[τ3(c)− τ4(c)] =

16
9
(4− c2)r2(c),
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where r2(c) = 191c3 − 836c2 + 244c + 1400. It is easy to get that r2(c) ≥ 0 for c ∈ [0, 2].
Thus, we have ∂Ξ

∂y | y=1 ≥ 0. As ∂Ξ
∂y | y=0 = τ2(c) ≥ 0 and ∂Ξ

∂y is a continuous linear function
with respect to y, we deduce that

∂Ξ
∂y
≥ min

{
∂Ξ
∂y
| y=0,

∂Ξ
∂y
| y=1

}
≥ 0, y ∈ (0, 1). (57)

Thus,
Ξ(c, y) ≤ Ξ(c, 1) = τ1(c) + τ2(c) + τ3(c) =: r3(c). (58)

By numerical calculation, we know r3 has a maximum value about 7391.58 on c =√
350
209 ≈ 1.2941 for c ∈

(√
350
209 , 2

)
. Therefore, we have Γ(c, t, y) < 8192 on (c, t, y) ∈(√

350
209 , 2

)
×
[
0, 1

3

)
× (0, 1). Hence, Γ

(
c̃, t̃, ỹ

)
< 8192. Thus, any critical point which lies in

Ω with y ∈ (0, 1), has a maximum value less than Γ(0, 0, 1). Then it is sufficient to consider
the face y = 0 and y = 1 of Ω to get the maximum value of Γ.

Since
Γ(c, t, 0) = σ1(c, t) + σ4(c, t) (59)

and
Γ(c, t, 1) = σ1(c, t) + σ2(c, t) + σ3(c, t), (60)

we note that

Γ(c, t, 1)− Γ(c, t, 0) = σ2(c, t) + σ3(c, t)− σ4(c, t)

=: 8
(

4− c2
)(

1− t2
)

Θ(c, t),

where

Θ(c, t) = 17(1 + c)
(

4− c2
)

t2 +
(

46c3 + 162c2 + 140c− 324
)

t + 29c3 − 145c2 + 256. (61)

From Lemma 4, we know Θ(c, t) ≥ 0 on [0, 2)×
[

1
3 , 1
]
; thus, we have

Γ(c, t, 0) ≤ Γ(c, t, 1), (c, t) ∈ [0, 2)×
[

1
3

, 1
)

. (62)

If t < 1
3 , from (54) and (55), we obtain

Γ(c, t, 0) ≤ τ1(c) + τ4(c) =: r4(c). (63)

Since
r4(c) =

2
81

(
−745c6 − 8908c4 + 34592c2 + 147744

)
(64)

has a maximum value about 4376.24 attained on c ≈ 1.2707 and Γ(0, 0, 1) = 8192, we have

Γ(c, t, 0) < Γ(0, 0, 1), (c, t) ∈ [0, 2)×
[

0,
1
3

)
. (65)

Combining (62) and (65), it remains to find the maximum value of Γ on the face of
y = 1.

On the face y = 1, it is noted that

Γ(c, t, 1) = 37c6 +
(

4− c2
)(

λ4t4 + λ3t3 + λ2t2 + λ1t + λ0

)
=: Q(c, t),
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where

λ4 = 34(4− c2)
(

c2 − 4c− 4
)

,

λ3 = 103c4 − 368c3 − 736c2 − 1120c + 1296,

λ2 = 141c4 − 368c3 + 476c2 + 544c− 1504,

λ1 = 109c4 + 368c3 + 648c2 + 1120c,

λ0 = 232c3 − 512c2 + 2048.

In virtue of c2 − 4c− 4 ≤ 0 on [0, 2], we have λ4 ≤ 0 and thus

Q(c, t) ≤ 37c6 +
(

4− c2
)(

λ3t3 + λ2t2 + λ1t + λ0

)
=: W(c, t). (66)

Now we need to find the maximum value of W on [0, 2] × [0, 1]. On the vertices
(0, 0), (2, 0), (0, 1) and (2, 1), we have W(0, 0) = 8192, W(2, 0) = W(2, 1) = 2368 and
W(0, 1) = 7360. On the sides of [0, 2]× [0, 1], if c = 0, we have

W(0, t) = 5184t3 − 6016t2 + 8192 =: r5(t). (67)

Since r′5(t) = 0 has only one positive root t̃1 = 188
243 ≈ 0.7737, we see the maximum

value of r5 is 8192 attained on t = 0. If c = 2, then W(2, t) ≡ 2368 for all t ∈ [0, 1]. It is left
to discuss the case of (c, t) ∈ (0, 2)× (0, 1). Solving the system of equations

∂W
∂t

= (4− c2)
(

3λ3t2 + 2λ2t + λ1

)
= 0 (68)

and
∂W
∂c

= µ3(c)t3 + µ2(c)t2 + µ1(c)t + µ0 = 0, (69)

where

µ3 = −618c5 + 1840c4 + 4592c3 − 1056c2 − 8480c− 4480,

µ2 = −846c5 + 1840c4 + 352c3 − 6048c2 + 6816c + 2176,

µ1 = −654c5 − 1840c4 − 848c3 + 1056c2 + 5184c + 4480,

µ0 = 2c
(

111c4 − 580c3 + 1024c2 + 1392c− 4096
)

,

it is found that all the three critical points lie in (0, 2)× (0, 1) are
(
c1, t1

)
≈ (0.4480, 0.4137),(

c2, t2
)
≈ (1.0708, 0.7129) and

(
c3, t3

)
≈ (0.4973, 0.9759). As W

(
c1, t1

)
≈ 7913.01,

W
(
c2, t2

)
≈ 8167.95 and W

(
c3, t3

)
≈ 7823.08, we see the maximum value of W is less

than 8192 in (0, 2)× (0, 1). In conclusion, we obtain that W(c, t) ≤ 8192 on [0, 2]× [0, 1],
which leads to Γ(c, t, y) ≤ 8192 for all (c, t, y) ∈ [0, 2]× [0, 1]× [0, 1]. Hence, we obtain

|H3,1( f )| ≤ 8192
663552

=
1
81

. (70)

For the sharpness, we consider the function f3 satisfying the equation

3
z f ′(z)

f (z)
− 2
(

1 +
z f ′′(z)
f ′(z)

)
=

1− z3

1 + z3 ·
z f ′(z)

f (z)
, z ∈ D. (71)

The series expansion of f3 is given by

f3(z) = z− 1
2

z2 +
1
4

z3 − 1
72

z4 − 11
144

z5 + · · · , z ∈ D. (72)

This completes the proof Theorem 3.
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4. Conclusions

In this paper, we investigated some coefficient-related problems for the class G3/2,
which is defined by the ratio of analytic representations of convex and starlike functions.
Fekete–Szegö-type inequalities and upper bounds for the second and third Hankel determi-
nant were obtained. The calculation is based on the relationship between the coefficients of
functions in the considered class and the coefficients for the corresponding Carathéodory
class. The results may inspire further investigations on getting more sharp bounds related
with functional such as a3a5 − a2

4, a4 − a2a3 and a5 − a2
3. By making use of the concept of

q-calculus, it is also interesting to investigate a more general class of this type.
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