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Abstract: Logistic and Gompertz growth equations are the usual choice to model sustainable growth
and immoderate growth causing depletion of resources, respectively. Observing that the logistic
distribution is geo-max-stable and the Gompertz function is proportional to the Gumbel max-stable
distribution, we investigate other models proportional to either geo-max-stable distributions (log-
logistic and backward log-logistic) or to other max-stable distributions (Fréchet or max-Weibull). We
show that the former arise when in the hyper-logistic Blumberg equation, connected to the Beta (p, q)
function, we use fractional exponents p− 1 = 1∓ 1/α and q− 1 = 1± 1/α, and the latter when in
the hyper-Gompertz-Turner equation, the exponents of the logarithmic factor are real and eventually
fractional. The use of a BetaBoop function establishes interesting connections to Probability Theory,
Riemann–Liouville’s fractional integrals, higher-order monotonicity and convexity and generalized
unimodality, and the logistic map paradigm inspires the investigation of the dynamics of the hyper-
logistic and hyper-Gompertz maps.

Keywords: Beta and BetaBoop; extreme and geo-extreme distributions; fractional calculus; generalized
convexity and unimodality; hyper-logistic and hyper-Gompertz growth; nonlinear maps

1. Introduction

Forecasting the size of populations is essential for resource management, either in
demographic studies, for instance, applied to the dynamics of overlapping generations and
the equilibrium needed to preserve social security (de la Croix and Michel [1]; Michel et
Wigniolle [2]), forestry (Yang et al. [3]; Payandeh and Wang [4]), Life Sciences and Medicine
(Laird [5]; Laird et al. [6]; Norton et al. [7]; Bajzer [8]; Waliszewski et al. [9,10]; Waliszewski
and Konarski [11–13]; Molski and Konarski, [14], and many others), and growth modeling
(Tjørve and Tjørve [15], and references therein).

Most natural populations, after an initial period of exponential expansion followed
by an almost linear growth, reach a stable sustainable growth status, for which the lo-
gistic function provides a good fit. There are, however, populations whose expansion is
immoderate, for instance, the growth of cancer tumor cells, or the spread of epidemics,
with the depletion of resources eventually causing ultimate extinction. The most widely
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used mathematical models to depict those frameworks are the Verhulst logistic and the
Gompertz (Gumbel) population dynamics equations.

The main purpose of this review is to bring together different areas of Mathematics to
explore the relevance of some forms of extreme growth. After showing that the widely used
logistic and Gompertz models, sketched below, are connected to geo-max-stable (GMS)
and to max-stable (MS) extreme value (EV) distributions, we use fractional exponents in
the extensions due to Blumberg [16] and to Turner et al. [17,18] to explicit other forms of
extreme growth and the dynamics of their associated hyper-logistic and hyper-Gompertz
maps.

Important issues to achieve that main purpose are briefly stated next. In Section 2, it is
provided an overview of BetaBoop functions,

Gp,q,Φ,Ψ(x) = xp−1(1− x)q−1[− ln(1− x)]Φ−1(− ln x)Ψ−1 I(0,1)(x), (1)

for p, q, Φ, Ψ > 0 such that
∫ 1

0 Gp,q,Φ,Ψ(x)dx < ∞ (see Appendix A). We discuss in detail the
expansion role played by the factors xp−1 and [− ln(1− x)]Φ−1, the compression role played
by the factors (1− x)q−1 and (− ln x)Ψ−1, and the connection of Gp,2,1,1 and of Gp,1,1,2 to
power laws, which are relevant for understanding the connection of hyper-logistic and
hyper-Gompertz differential equations (DEs) to several extreme growth models.

BetaBoop functions and BetaBoop random variables (RVs) were initially introduced in
Brilhante et al. [19], and their relevance in the investigation of forms of extreme growth has
been carried out in Brilhante et al. [20,21] and in Gomes et al. [22].

In Section 3, a description of the unifying role of BetaBoop functions in important issues
of fractional calculus, such as the Riemann–Liouville integral, generalized monotonicity,
convexity and unimodality, and issues in Probability Theory such as the existence of
non-normal/non-Cauchy additive stable laws, is performed. In Section 4, a preliminary
discussion of logistic and of Gompertz growth and of the nonlinear maps arising from the
Verhulst and from the Gompertz DEs, and a brief sketch of Blumberg hyper-logistic and
of Turner hyper-Gompertz growth models is put forward. Section 5 is a brief sketch of
max-stability and of geo-max-stability, highlighting the fact that the classical logistic growth
and the Gompertz growth are closely related to probabilistic EV models. In Section 6, a
general theory of growth with EV contours is discussed. Section 1.3 is a more detailed
description of the review organization, and the introductory paragraph of Section 6 further
highlights the purposes and most relevant topics discussed.

1.1. From Fibonacci Unbound Growth to Verhulst Sustainable Logistic Growth and Gompertz
Extreme Growth

Fibonacci (c. 1170–c. 1250) in his Liber Abaci presented the first mathematical model
for population growth. From rather crude assumptions, his model for the progeny of an
initial couple of rabbits is the sequence of Fibonacci’s numbers {Fn}n∈N starting with {0, 1}
such that Fn+2 = Fn + Fn+1. Using generating functions, it is easy to obtain Binet’s formula

Fn =
(1+
√

5)
n−(1−

√
5)

n

2n
√

5
.

The main drawback of Fibonacci’s model is the fact that the population will ultimately
be infinite (curiously, von Foerster et al. [23] predicted that on Doomsday: Friday, 13
November, A.D. 2026, the human population will become infinite).

Denote by N(t) a population’s size at time t. Imposing some natural regularity

conditions on N(t), namely that d
dt N(t) =

∞

∑
k=1

Ak[N(t)]k, Verhulst [24–26] used the second-

order approximation d
dt N(t) = A1N(t) + A2[N(t)]2, with A1 > 0 and A2 < 0, which can

be rewritten as

Verhulst equation:
d
dt

N(t) = r N(t)
[

1− N(t)
K

]
. (2)
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When modeling natural breeding populations, r > 0 is the Malthusian instantaneous
growth rate parameter, and the carrying capacity K > 0 is the equilibrium limit size of the
population. This logistic Verhulst equation is more realistic to model sustainable growth: as
long as abundant resources allow, there is an initial period of exponential growth, which is
followed by more moderate approximately linear growth. Finally, the limitation of natural
resources (or success of predators or of competing species) enforces very moderate growth,
maintaining the population size and consumption of resources in sustainable equilibrium.

It has been a shock when May [27] published a short note on the very complicated
dynamics of the nonlinear map xn+1 = r xn (1− xn) resulting from the logistic DE by
using Euler’s algorithm to obtain a lattice approximating the difference equation to the
DE in (2). The far-fetched idea of solving a straightforward quadratic equation using the
fixed point method has been the root of explosive theoretical developments in the fields of
self-similarity, fractals, chaos, and inspired far-reaching consequences in the applications of
Mathematics to many scientific fields. Although some skeptics such as Dubois [28] claimed
that “the chaos emerging from the so-called chaos map is [not] due to [...] fundamental biological
properties”, Waliszewski and co-workers and many others insisted on biological examples
of fractals, even within our body, such as the growth of cancer tumors, the lungs’ fractal
geometry, or the fractal circulatory branching network, where blood vessels branch and
branch down to the width of a capillary, see Lorthois and Cassot [29]. Consequently, a
sketch of the dynamics of maps tied to extremal distributions has been considered.

Not all growth is sustainable, and in the Gompertz model (Laird [5]; Laird et al. [6];
Norton et al. [7]; Bajzer [8]; Waliszewski et al. [9,10]; Waliszewski and Konarski [11–13];
Molski and Konarski, [14]; Tjørve and Tjørve [15])

Gompertz DE:
d
dt

N(t) = r N(t)
[
− ln

(
N(t)

K

)]
, (3)

the retroaction factor − ln
(

N(t)
K

)
is weaker than the retroaction factor 1− N(t)

K in the Ver-

hulst equation. In fact, as − ln
(

N(t)
K

)
=

∞

∑
n=1

[
1− N(t)

K

]n

n , we can consider that the Verhulst

model is a first-order approximation of the Gompertz model, partially eliminating modera-
tion exerted by the retroaction factor − ln

(
N(t)

K

)
. As a consequence, population growth is

steeper, and the Gompertz model is appropriate for non-sustainable growth, namely cells
in cancer tumors.

Observe that the normalized Gompertz function is the Gumbel distribution of maxima;
on the other hand, the normalized logistic function is the logistic distribution, the geo-
maxima distribution in geometrically thinned sequences, see Section 5.

Arguably, in evolutionary terms, populations tend to grow as much as resources in
their ecological niches and competition allow, although it is expectable that the stationary
saturation level N(t)

K is attained at different speeds. Our aim is to describe models having
other extremal characteristics, namely finding the exponents in the natural generalizations
of the Verhulst and of the Gompertz Equations (2) and (3), namely in the Blumberg [16]
hyper-logistic model

Blumberg DE:
d
dt

N(t) = r [N(t)]p−1
[

1− N(t)
K

]q−1

, (4)

in the Turner et al. hyper-Gompertz model

Turner DE:
d
dt

N(t) = r [N(t)]p−1
[
− ln

(
N(t)

K

)]Ψ−1

(5)
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and in the modified hyper-Gompertz model considered in Brilhante et al. [20]

modified Turner DE:
d
dt

N(t) = r [1− N(t)]q−1
[
− ln

(
1− N(t)

K

)]Φ−1

, (6)

whose solutions are proportional to EV probability distributions.

In Equations (2)–(6), the factors [N(t)]p−1 and
[
− ln

(
1− N(t)

K

)]Φ−1
intervene in

growth rate expansion, while the retroaction factors [1− N(t)]q−1 and
[
− ln

(
N(t)

K

)]Ψ−1

account for moderation of growth rate due to resource limitations. This will be analyzed
in depth via their connection to the BetaBoop family of functions defined in (1) and the
expansions in power laws in Section 2.1.

1.2. BetaBoop Functions

The unifying tools in our research is the family of BetaBoop functions in (1) and the
RVs Xp,q,Φ,Ψ _ BetaBoop(p, q, Φ, Ψ) with probability density function (PDF)

fp,q,Φ,Ψ(x) =
Gp,q,Φ,Ψ(x)∫ 1

0 Gp,q,Φ,Ψ(x)dx
(7)

for p, q, Φ, Ψ such that
∫ 1

0 Gp,q,Φ,Ψ(t)dt < ∞, see a sufficient condition in Appendix A.
Why BetaBoop? The immediate reason is that the Beta(p, q) family of PDFs

fp,q(x) = fXp,q,1,1(x) =
1

B(p, q)
xp−1(1− x)q−1I(0,1)(x), p, q > 0, (8)

where B(p, q) =
∫ 1

0 xp−1(1− x)q−1 dx, p, q > 0, is the Beta function or Euler’s integral
of the first kind, which can be expressed in terms of the Gamma function or Euler’s
integral of the second kind, Γ(α) =

∫ ∞
0 xα−1 e−x dx, α > 0, namely B(p, q) = Γ(p) Γ(q)

Γ(p+q) , is
a subfamily of the broader family of BetaBoop PDFs in (7) ( fp,q(x) = fp,q,1,1(x)), and the
ultimate and more serious reason is that we love Betty Boop. As vox populi says, “good
girls go to Heaven, Betty Boop goes everywhere”, so we expect BetaBoops to lead us
everywhere—namely, fractional calculus and generalized monotonicity, convexity and
unimodality in Section 3, the logistic and the Gompertz population models and associated
maps in Section 4; Richards [30], Blumberg [16], and Turner et al. [18] population models,
the hyper-logistic and the hyper-Gompertz maps, and population models connected to
EV and geo-EV laws in Section 6. In fact, the logistic parabola G2,2,1,1(x) is an inspiring
connection between the logistic map and BetaBoop PDFs (in this case, the middle U2:3 order
statistic (OS) of three independent standard Uniform RVs). For general information on the
Gamma and on the Beta functions, see Whittaker and Watson [31] and Erdélyi et al. [32].

1.3. Review Organization

An appropriate starting point is the standard uniform RV, U _ Uniform(0, 1), with
PDF fU(x) = f1,1,1,1(x) = 1 I(0,1)(x). As it models ideal equiprobability, it does not seem
useful for taking decisions on competing risks, and a very naïve view is that it is solely
a simple pedagogical example for illustrating basic concepts on continuous univariate
distributions theory. A deeper insight, however, shows that it is central in Probability
Theory, namely since Borel [33] used the fact that

U d
=

∞

∑
k=1

Xk

2k , where Xk _ Bernoulli
(

1
2

)
, i.e., Xk =

{
0 1

1/2 1/2
,

to provide a rigorous construction of continuous probability, and under very mild con-
ditions, denoting FX, the cumulative distribution function (CDF) of the RV X, FX(X) _
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Uniform(0, 1), and therefore, F←X (U)
d
= X _ FX, where F←X (y) = inf{x : FX(x) ≥ y} is

the generalized inverse function of FX . This has been a landmark for X-random numbers
generation and computational statistics, and as 1−U _ Uniform(0, 1), antithetic random
numbers can be simultaneously generated. When a closed form of the CDF FX does not
exist, as it is the case of the standard Z _ Gaussian(0, 1) RV, useful workarounds as
the Box–Muller algorithm (Box and Muller [34]) transforming a random pair (U1, U2) of
independent standard uniform RVs in a random pair (Z1, Z2) of independent standard
Gaussian RVs are used to construct pseudo-random numbers sequences. Observe also that

if X _ FX and Y _ FY, F←Y [FX(X)]
d
=Y. For thorough information on the Uniform RV,

consult Johnson et al. [35], pp. 276–321.
In Section 2, we present some complementary information on uniform related RVs,

and namely, an overview of the many instances of BetaBoop variables. Further, we show
that the BetaBoop(p, n, 1, 1), n ∈ N, and the BetaBoop(p, 1, 1, 2) RVs are signed mixtures of
positive power RVs, causing an interplay of expansion and contraction in their associated
nonlinear maps, as indicated below.

Section 3 deals with G1,α,1,1 in fractional calculus and in higher-order monotonicity
and convexity (Hadjisavvas et al. [36]), and some consequences in Probability Theory,
namely the definition of generalized unimodality and in refinements of Pólya’s class of
characteristic functions. Further, X1/ξ

1,α,1,1 is the Kumaraswamy RV with positive parameters

ξ and α (Kumaraswamy, [37]), whose CDF is F(x) =


0 x < 0

1− (1− xξ)α 0 ≤ x < 1
1 x ≥ 1

.

Section 4 is a preliminary presentation of two iconic population growth models,
the Verhulst logistic model and the Gompertz model, and of their lattice counterparts,
the logistic map xn+1 = r xn (1 − xn) = r G2,2,1,1(xn) and the Gompertz map xn+1 =
r xn (− ln xn) = r G2,1,1,2(xn). As 1− x is the first-order truncation of − ln x, we can view
the logistic model as a first-order approximation of the Gompertz model. Hyper-logistic
maps xn+1 = r Gp,q,1,1(xn) and hyper-Gompertz maps xn+1 = r Gp,1,1,Ψ(xn) are natural
extensions, and for appropriate values of the parameters, they are connected with Blum-
berg [16] and with Turner et al. [17,18] DE population models, respectively.

Section 5 is a brief sketch of extreme value theory (EVT). Aside from the classical inde-
pendent, identically distributed (IID) framework, we include a brief description of Rachev
and Resnick [38] GMS laws. The logistic model is a GMS law in the geometrically thinned
framework, and the normalized Gompertz model is the Gumbel CDF of maxima of whole
sequences, and the widespread use of those models seems to indicate that dominant species,
or cells, have a tendency to grow as much as resources allow. This is further investigated in
Section 6, in connection with modeling (linear or logarithmic) of the population growth
rate. It is obvious that the Gumbel law dominates the logistic law—as expected when we
recall the retroaction factor in the logistic and in the Gompertz maps. The Gompertz model
is thus quite successful as a model of immoderate growth of cancerous tumor cells.

The goal of Section 6 is to discuss in depth population models, dealing both with
the continuous differential definition and with their recurrence lattice discretization. In
Section 6.1, starting from the Tsoularis and Wallace [39] “generalized logistic” encyclopaedic
description of population models, we focus on the Blumberg [16] and Turner et al. [17,18]
hyper-logistic and hyper-Gompertz models. The logistic paradigm in Section 6.2 serves
as guideline for the presentation of those extensions, and the Schwarzian derivative
(Singer [40]; Guckenheimer [41]) together with Sharkovskii [42] and Li and Yorke [43]
results on period-3 orbits are the basis for the investigation of hyper-logistic and hyper-
Gompertz maps. Further, in Section 6.3, we investigate population models tied to other
extreme and geo-extreme laws. Finally, in Section 6.4, we discuss Dubois’ [28,44] incursive
alternative xn+1 = r xn

1+r xn
to the classical logistic map, and his claim that May’s [27] “simple

mathematical models with very complicated dynamics” result from instabilities of the Euler
algorithm.
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In the final discussion, Section 7, we indicate some open problems deserving research.
Appendix A establishes the existence of Xp,q,Φ,Ψ _ BetaBoop(p, q, Φ, Ψ)when min{p, q}

+max{Φ, Ψ} > 1. Appendix B sketches some details on the geo-EVT connected solutions
for appropriate parameters of Blumberg’s differential population models (4), and Appendix C
analyzes the max-EVT-connected solutions for appropriate parameters of Turner’s differential
population models (5) and the min-EVT-connected solutions for appropriate parameters of
modified Turner’s differential population models (6).

2. From Uniforms to BetaBoops—An Overview

Let U _ Uniform(0, 1) be a standard uniform RV and {Un}n∈N a sequence of IID stan-

dard uniform RVs. Obviously, 1−U d
=U. The PDF of U1/p is fU1/p(x) = p xp−1 I(0,1)(x),

and the PDF of 1− U1/q is f1−U1/q(x) = q (1− x)q−1 I(0,1)(x). In other words, U1/p _

Beta(p, 1) and 1 − U1/q _ Beta(1, q). Observe that if in the above statement p = n,

n ∈ N, then U1/n d
=Un:n, the maximum of independent U1, . . . , Un, and if q = n, then

1−U1/n d
=U1:n, the minimum of independent U1, . . . , Un. More generally, the k-th ascend-

ing OS, Uk:n, of the independent U1, . . . , Un is a Beta(k, n + 1− k) RV (k and n + 1− k are
the ascending and the descending ranks, respectively).

Mellin transforms, MX(s) = E[Xs] =
∫ ∞

0 xs dFX(x), X ≥ 0, are very useful in the
multiplicative algebra of non-negative independent RVs, since if X ≥ 0 and Y ≥ 0 are inde-
pendent, thenMXY(s) =MX(s)MY(s), for general information, see Zolotarev [45]. The
Mellin transform of U _ Uniform(0, 1),MU(s) = E[Us], is

∫ 1
0 xs dx = 1

1+s , <(s) > −1.

As
∫ 1

0 xs (− ln x)n−1

Γ(n) dx = ( 1
1+s )

n, <(s) > −1, we conclude that the PDF of the product of

n independent standard uniform RVs, ∏n
k=1 Uk, is f∏n

k=1 Uk
(x) = (− ln x)n−1

Γ(n) I(0,1)(x). Ob-

serve also that ∏n
k=1 Uk

d
=Xn, where X0 _ Uniform(0, 1) and Xk+1|Xk

_ Uniform(0,Xk),

k = 1, . . . , n− 1, and that 1−∏n
k=1(1−Uk)

d
=Yn, where Y0 _ Uniform(0, 1) and Yk+1|Yk

_

Uniform(Yk, 1), k = 1, . . . , n− 1.
AsMU1/p(s) = p

p+s , <(s) ≥ −p, and

∫ 1

0
xs pn

Γ(n)
xp−1 (− ln x)n−1dx =

(
p

p + s

)n
, <(s) ≥ −p,

the PDF of the product of n independent Beta(p, 1) RVs is

f
∏n

k=1 U1/p
k

(x) =
pn

Γ(n)
xp−1 (− ln x)n−1 I(0,1)(x).

More generally, f (x) = pΨ

Γ(Ψ)
xp−1 (− ln x)Ψ−1 I(0,1)(x), p, Ψ > 0, is a PDF.

Hence, a huge family of important random models may be defined starting from a
sequence of n IID standard Uniform(0, 1) RVs, U1, U2, · · · , Un, as exemplified below, where
as usual, Uk:n denotes the k-th ascending OS:

n

∏
k=1

Uk︸ ︷︷ ︸
(− ln x)n−1

Γ(n) I(0,1)(x)

≺ U1:n︸︷︷︸
n(1−x)n−1 I(0,1)(x)

≺ Uk:n︸︷︷︸
xk−1(1−x)n−k

B(k,n+1−k) I(0,1)(x)

≺ Un:n︸︷︷︸
nxn−1 I(0,1)(x)

≺ 1−
n

∏
k=1

(1−Uk)︸ ︷︷ ︸
[−ln(1−x)]n−1

Γ(n) I(0,1)(x)

.

Any of the PDFs in the underbrackets is readily extended considering non-integer
positive exponents. Thus, whenever the BetaBoop function Gp,q,Φ,Ψ(x), in (1), is integrable—
a sufficient condition is 1 < min{Φ, Ψ} + min{p, q}, see Appendix A, fp,q,Φ,Ψ(x) =

Gp,q,Φ,Ψ(x)∫ 1
0 Gp,q,Φ,Ψ(x)dx

, in (7), is a PDF of a Xp,q,Φ,Ψ _ BetaBoop(p, q, Φ, Ψ) RV.
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So, the PDFs of products and of OSs of IID standard uniforms in the above inequali-
ties underbrackets are the PDFs of, respectively, BetaBoop(1, 1, 1, n), BetaBoop(1, n, 1, 1),
BetaBoop(k, n + 1− k, 1, 1), BetaBoop(n, 1, 1, 1), and BetaBoop(1, 1, n, 1), and the corre-
sponding positive exponents extensions are:

1.
{

f1,1,1,Ψ(x) = 1
Γ(Ψ)

(− ln x)Ψ−1 I(0,1)(x), Ψ > 0
}

, generalized logarithmic PDFs, the
p = 1 subfamily of power-logarithmic PDFs,{

fp,1,1,Ψ(x) =
pΨ

Γ(Ψ)
xp−1(− ln x)Ψ−1 I(0,1)(x), p, Ψ > 0

}
;

2.
{

f1,q,1,1(x) = q (1− x)q−1 I(0,1)(x), q > 0
}

, the subfamily of Beta(1, q) PDFs;

3.
{

fp,q,1,1(x) = 1
B(p,q) xp−1(1− x)q−1 I(0,1)(x), p, q > 0

}
, the Beta(p, q) PDFs;

4.
{

fp,1,1,1(x) = p xp−1 I(0,1)(x), p > 0
}

, the positive power PDFs, the subfamily of
Beta(p, 1) PDFs;

5.
{

f1,1,Φ,1(x) = 1
Γ(Φ) [− ln(1− x)]Φ−1 I(0,1)(x), Φ > 0

}
, reverted generalized logarith-

mic PDFs, the q = 1 subfamily of{
f1,q,Φ,1(x) =

qΦ

Γ(Φ)
(1− x)q−1 [− ln(1− x)]Φ−1 I(0,1)(x), q, Φ > 0

}
.

It is obvious that the factors xp−1 (= Gp,1,1,1(x)) and [− ln(1− x)]Φ−1 (= G1,1,Φ,1(x))
are left-skewed, with xp−1 dominating [− ln(1− x)]Φ−1, while the factors (1− x)q−1

(= G1,q,1,1(x)) and (− ln x)Ψ−1 (= (G1,1,1,Ψ(x)) are right-skewed, with (1− x)q−1 dominat-
ing (− ln x)Ψ−1. In Figure 1, we plot some BetaBoop PDFs, where we observe symmetries
with respect to x = 1

2 due to fp,q,Φ,Ψ(x) = fq,p,Ψ,Φ(1− x).

(a) p + Φ = q + Ψ (b) p + Φ 6= q + Ψ

Figure 1. BetaBoop densities.

2.1. BetaBoop (p, q, 1, 1), BetaBoop(2, 1, 1, 2) and Power Laws

The BetaBoop(2, 2, 1, 1) PDF

f2,2,1,1,(x)=6 x (1− x) I(0,1)(x)=3× 2 x I(0,1)(x)︸ ︷︷ ︸
Beta(2,1)

−2× 3 x2 I(0,1)(x)︸ ︷︷ ︸
Beta(3,1)

is a signed mixture of the Beta(2, 1), with weight 3, and the Beta(3, 1), with weight −2.
Similar results hold for Beta(p, n) RVs:

fp,n,1,1(x) =
n−1

∑
j=0

(−1)j
(

n− 1
j

)
Γ(p + n)

(p + j)(n− 1)!Γ(p)
(p + j) xp+j−1 I(0,1)(x)︸ ︷︷ ︸

Beta(p+j,1)

.
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So, the BetaBoop(p, q, 1, 1) PDF is a signed mixture of power laws with natural expo-
nents, each positive term contributing to the expansion being followed by a negative term
moderating growth.

On the other hand, observe that the BetaBoop(2, 1, 1, 2) PDF can be written as

f2,1,1,2(x) = 4 x (− ln x) I(0,1)(x) = 4 x
∞

∑
k=1

(1− x)k

k
I(0,1)(x) =

=
∞

∑
k=1

4
k (k + 1) (k + 2)︸ ︷︷ ︸

wk

1
B(2, k + 1)

x (1− x)k I(0,1)(x)︸ ︷︷ ︸
Beta(2,k+1)

,

and, therefore, the BetaBoop(2, 1, 1, 2) is a mixture of BetaBoop(2, k + 1, 1, 1) with weights
wk =

4
k (k+1) (k+2) . Therefore,

f2,1,1,2(x) =
∞

∑
k=1

4
k (k + 1) (k + 2)

1
B(2, k + 1)

x
k

∑
j=0

(−1)j
(

k
j

)
xj I(0,1)(x) =

=
∞

∑
k=1

k

∑
j=0

(−1)j 4
k (j + 2)

(
k
j

)
︸ ︷︷ ︸

w∗k

(j + 2) xj+1 I(0,1)(x)︸ ︷︷ ︸
Beta(j+2,1)

.

So, the BetaBoop(2, 1, 1, 2) PDF is a mixture of power laws with natural exponents,
positive weights contributing to expansion and negative weights moderating growth;
similarly, the BetaBoop(p, 1, 1, 2) PDF can be re-expressed as a mixture of power laws,

fp,1,1,2(x) =
∞

∑
k=1

k

∑
j=0

(−1)j p2

k (p + j)

(
k
j

)
(p + j) xp+j−1 I(0,1)(x)︸ ︷︷ ︸

Beta(p+j,1)

.

This is indeed relevant for understanding the role of the expansion/contraction effects
of the couple of factors in the BetaBoop-connected population growth models that we shall
investigate in Section 6 as extensions of the Verhulst population growth model.

Power laws are at the root of scaling and self-similarity, and hence intervene in many
areas of the theory of fractals and chaotic dynamics, as explained in detail by Schroeder [46],
ch. 12. Karamata’s [47] regular variation theory, a useful tool in many branches of Mathe-
matics (Bingham et al. [48]), essentially uses properties of power laws.

Feller [49] observed that Doeblin’s [50] and Gnedenko’s [51,52] theory of the do-
mains of attraction of the additive stable laws could be simply rephrased in Karamata’s
framework. Since then, slow variation and regular variation became the election tool for
characterizing domains of attraction of stable limit laws, namely in de Haan [53] for a
complete characterization of domains of attraction for stable EV laws, in Bingham [54] for a
solution of a more general problem of domains of attraction of generalized convolution
algebras, and in Kozubowski and Rachev [55] for a characterization of geometric-stable
domains of attraction. As far as we are aware, no one pointed out that weak convergence of
types problems in Probability Theory are connected to the renormalization group theory in
Mathematical Physics, see Stanley [56], and that the appropriateness of the regular variation
theory to deal with domains of attraction is a side-effect of the self-similarity resulting from
power laws and scaling.

The fact that logistic and hyper-logistic maps and Gompertz and hyper-Gompertz
maps are signed measures of power laws is obviously connected to the various forms
of equilibrium appropriate to describe diverse population dynamics, from extinction,
stagnation, sustainable growth, to the various forms of extreme growth that we shall
discuss later.
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3. BetaBoop(1,q,1,1), Fractional Calculus, Generalized Monotonicity and Convexity,
and Applications in Probability Theory
3.1. Fractional Calculus and Some Applications in Probability Theory

The function G1,α,1,1 plays an important role in fractional calculus, namely in the
Riemann–Liouville fractional integral. Starting from the Cauchy’s iterated integral (Gour-
sat [57]), using G1,n,1,1(t) = (1− t)n−1 I(0,1)(t),

In
x0
[ f (x)] =

∫ x

x0

∫ tn

x0

· · ·
∫ t2

x0

f (t1)dt1 dt2 . . . dtn =

=
∫ x

x0

f (t)
(x− t)n−1

(n− 1)!
dt =

xn

Γ(n)

∫ 1

x0
x

(1− t)n−1 f (tx)dt.

Replacing the integer index n by α > 0, we obtain

Iα
x0
[ f (x)] =

∫ x

x0

(x− t)α−1

Γ(α)
f (t)dt =

xα

Γ(α)

∫ 1

x0
x

(1− t)α−1 f (tx)dt,

a suitable generalization of the integral operator to non-integer order, since

1. Iα
x0
[ f (x) + g(x)] = Iα

x0
[ f (x)] + Iα

x0
[g(x)];

2. Iα+β
x0 [ f (x)] = Iα

x0

[
Iβ
x0 [ f (x)]

]
;

3. lim
α↓0

Iα
x0
[ f (x)] = f (x).

From now on, we consider x0 = 0, and we shall write simply

Iα[ f (z)] =
zα

Γ(α)

∫ 1

0
(1− t)α−1 f (tz)dt =

zα

Γ(α)

∫ 1

0
G1,α,1,1(t) f (tz)dt,

which is generally called the Riemann–Liouville fractional integral, although none of them
used exactly this form for the fractional integral operator, see Ross [58] and Liouville [59],
and interesting points of view on the history of fractional integrals in Dugowson [60].

The non-integer differential operator of order α is defined by

Dα[ f (x)] = I−α[ f (x)] =
dn

dxn In−α[ f (x)],

where n is any integer greater than α.
The definition of integrals and derivatives of non-integer order may be made in several

ways, each of them having its own drawbacks, see, for instance, the use of the Prabhakar
fractional integral and of the Liouville–Caputo fractional derivative in Area and Nieto [61].
For an excellent review of the existing definitions and of their limitations, see Lavoie
et al. [62] and Luchko [63].

Fractional Calculus is a useful tool in several areas of Probability Theory (Pestana [64];
Gomes and Pestana [65]). The Riemann–Liouville integral played an important role in the
theory of the addition of independent RVs. Lévy [66] used the Riemann–Liouville integral
to establish the existence of non-normal additive stable laws, i.e., additive stable laws with
characteristic exponent α ∈ (0, 2). Feller [67] used the extension of M. Riesz’ potentials and
the Riemann–Liouville integral to obtain an asymptotic series for the stable distribution
functions, see also Wintner [68]. Wolfe [69] contains an overview of theory and applications
of fractional moments.

Some useful references on Fractional Calculus: Oldham and Spanier [70], Samko
et al. [71], Daftardar-Gejji [72], Katugampola [73], Herrmann [74], and Luchko [63].
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3.2. Higher-Order Monotone Functions, Generalized Convexity, and Applications in
Probability Theory

Denote Mn the class of functions f ≥ 0 and bounded with support A ⊆ [0, ∞]; f is
monotone of order n, n = 0, 1, . . . ∈ [0, ∞] if f ∈ Cn(A) and its derivative of order n, f (n) is
monotone.

The boundedness of f implies that f (n)(x) −→
x→∞

0, and hence, f (n) is either non-negative
and non-increasing or non-positive and non-decreasing. M0 is the class of monotone and
bounded non-negative functions, and obviously, Mn ⊂ Mn−1. Functions f with support
A ∈ [−∞, 0] are monotone of order n if f (−x) is monotone of order n.

If f ∈ Mn, then
∣∣∣ f (n)∣∣∣ is non-negative and non-increasing and (−1)k f (k) is non-

negative, non-increasing and convex for k = 0, 1, . . . , n− 1. Therefore, M∞ is the class of
Bernstein [75] completely monotone functions, i.e., Laplace transforms of a bounded and
right-continuous non-decreasing function (Feller [76], ch. XIII).

Denote Dn, n ≥ 1, the class of CDFs F such that F′(x) I[0,∞](x) and F′(x) I[−∞,0](x)
are monotone of order n− 1. The extreme points of the convex set Dn are the degenerate
distributions at −∞, at 0 and at ∞, and the non-degenerate extreme points are Fn,a defined
by

F′n,a(x) =
n
|a|n (|a| − x sign(x))n−1 I(min(0,a),max(0,a))(x), a ∈ R\{0},

for details, see Pestana and Mendonça [77].
From the Choquet extreme point integral representation theory (Choquet [78]; Phelps [79]),

f ∈ Mn ⇐⇒ f (x) =
∫ 1/x

0
(1− xt)n dG(t), x > 0 , (9)

with G bounded below and non-decreasing, and consequently,

FY ∈ Dn ⇐⇒ Y d
=(1−U1/n)Yn,

with U _ Uniform(0, 1) and Yn and 1−U1/n independent RVs.
For simplicity, assume that G(0) = 0. From (9),

xn f
(

1
x

)
=
∫ x

0
(x− t)n dG(t) =⇒ dn

dxn

[
xn f

(
1
x

)]
= n! G(x).

On the other hand, if we assume that dn

dxn

[
xn f

(
1
x

)]
is non-negative and non-decreasing,

defining G(x) = 1
n!

dn

dxn

[
xn f

(
1
x

)]
I(0,∞)(x), then h(x) =

∫ 1/x
0 (1− xt)ndG(t) ∈ Mn and

1
n!

dn

dxn

[
xn h

(
1
x

)]
= 1

n!
dn

dxn

[
xn f

(
1
x

)]
implying that xn h

(
1
x

)
= xn f

(
1
x

)
+ ∑n

k=0 αk xk.
Thus, assuming that lim

x→∞
f (x) < ∞ and lim

x→∞
h(x) < ∞, we conclude that h ≡ f .

So, f with support A ⊆ (0, ∞) is monotone of order n iff 0 ≤ lim
x→∞

f (x) < ∞ and

dn

dxn

[
xn f

(
1
x

)]
is bounded below and non-decreasing in (0, ∞).

All this can almost trivially be extended using fractional ν instead of n: A function f is
said to be monotone of order ν, ν > 0, iff 0 ≤ lim

x→∞
f (x) < ∞ and the fractional derivative

I−ν
[

xν f
(

1
x

)]
is bounded below and non-decreasing.

Equivalently, f ∈ Mν iff f (x) =
∫ 1/x

0 (1 − xt)ν dG(t) with G bounded below and
non-decreasing in (0, ∞).

Defining the class of fractional unimodal distributions Dν in analogy with Dn,

FY ∈ Dν, ν = 1, 2, ... ⇐⇒ Y d
= (1−U1/ν)Yν,

where U _ Uniform(0, 1) and Yν and 1−U1/ν are independent.
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Additional details can be found in Pestana and Mendonça [77]. Further, observe that
if 0 < ν < µ, then Mµ ⊂ Mν and Dµ ⊂ Dν, since simple algebra with Mellin transforms

Γ(1 + s) Γ(1 + µ)

Γ(1) Γ(1 + µ + s)
=

Γ(1 + s) Γ(1 + ν)

Γ(1) Γ(1 + ν + s)
Γ(1 + ν + s) Γ(1 + µ)

Γ(1 + ν) Γ(1 + µ + s)

shows that 1−U1/µ = (1−U1/ν) X1+ν,µ−ν,1,1.
The classical result on unimodality—the RV X is unimodal with mode at 0 iff X = UY

with U and Y independent (Khinchine [80])—is the special case ν = 1 of the above
generalized unimodality Y = (1−U1/ν)Yν, using 1−U1/ν _ BetaBoop(1, ν, 1, 1) (Pes-
tana [64,81]). As X1,ν,1,1 has a mode at 0, generalized unimodality is a natural exten-
sion of unimodality. Compare with the Olshen and Savage [82] star-shaped unimodality
X = U1/αY using Xα,1,1,1 with a mode at 1.

The function G1,q,1,1 has been used by Pestana [64] and Pestana and Mendonça [77] to
investigate higher-order monotone functions in Probability Theory, and also on refinements
of Pólya’s characteristic functions (Pestana [83]), namely Sakovic̆ [84] concave characteristic
functions.

Further information on convexity: Roberts and Varberg [85] is a good read, and is
the source for the following quotation of Jensen: “It seems to me that the notion of convex
function is just as fundamental as positive function or increasing function. If I am not mistaken
in this, the notion ought to find its place in elementary expositions of the theory of real functions.”
Hadjisavvas et al. [36] cover a broad diversity of topics, and Vivas and Hernández’s [86]
preprint presents recent developments. For advanced recent work, consult Sitthiwirattham
et al. [87], Sahoo et al. [88], and references therein.

3.3. Fractional Powers of BetaBoop Random Variables

Observe also in what concerns fractional powers of X1,α,1,1 _ BetaBoop(1, α, 1, 1), that the

PDF of Kξ,α = X1/ξ
1,α,1,1, α, ξ > 0, is fKξ,α(x) = ξ α xξ−1(1− xξ

)α−1 I(0,1)(x). So, X1/ξ
1,α,1,1 is the

Kumaraswamy RV with parameters ξ and α (Kumaraswamy, [37]; Jones, [89]). Obviously,
the PDFs of Kumaraswamy’s generalized RVs X1/ξ

p,q,1,1 or even X1/ξ
p,q,Φ,Ψ are readily obtained:

Let Y = X1/ξ
p,q,Φ,Ψ, with p, q, Φ, Ψ, ξ > 0. The PDF of Y is given by

fY(y) = fp,q,Φ,Ψ(yξ) ξ yξ−1 I(0,1)(y) .

Therefore,

fY(y) = C ξΨ yξ p−1
(

1− yξ
)q−1[

− ln
(

1− yξ
)]Φ−1

(− ln y)Ψ−1 I(0,1)(y) ,

where C =
1∫ 1

0 Gp,q,Φ,Ψ(x)dx
.

It is worth noticing that X1/ξ
p,1,1,Ψ

d
= Xpξ,1,1,Ψ, and in particular, X1/ξ

p,1,1,1
d
= Xpξ,1,1,1 and

X1/ξ
1,1,1,Ψ

d
= Xξ,1,1,Ψ.

4. Logistic Growth, Gompertz Growth, and Extensions of the Logistic Map

As implied in the observation on f2,2,1,1 = fU2:3 and the logistic map, there is a strong
connection tying r G2,2,1,1 : (0, 1] → (0, 1], r ∈ (0, 4], to the Verhulst population growth
model defined in Equation (2)

d
dt

N(t) = r N(t)
[

1− N(t)
K

]
,
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with logistic solution N(t) = K
1+ K−N(0)

N(0) e−rt
(K is the saturation level or carrying capacity, r is

the intrinsic growth rate, and in the Verhulst model, the relative growth
d
dt N(t)

N(t) decreases lin-
early with the population size, which will ultimately reach the carrying capacity K). Tjørve
and Tjørve [90] provide a thorough discussion of the logistic model as a member of the
Richards [30] family of growth models, with a useful overview of parameter interpretation.

The quadratic logistic map

xn+1 = r xn (1− xn), r ∈ (0, 4] , (10)

is the classical discrete version obtained from the Verhulst differential population growth
model d

dt α(t) = r α(t) [1− α(t)], r ∈ (0, 4], α(t) = N(t)
K ∈ [0, 1], by using Euler’s algorithm

(for simplicity, we use the same r, but this is a shortcut for: “α(t + ∆t) = α(t) + ∆t [r α(t)−
rα2(t)], where the time step ∆t may be taken equal to 1 in rescaling the growth rate r, see
Equations (21) and (22) in Section 6.2”). It plays a prominent role in what concerns Chaos
Theory since the publication of the pathbreaking analysis of May [27], interesting overviews
are given in Schroeder [46], ch. XII, or in Peitgen et al. [91], ch. 10–11.

Observe that for x ∈ (0, 1), we have d
dx ∑∞

k=1
xk

k = 1
1−x and d

dx ∑∞
k=1

(1−x)k

k = − 1
x ,

so − ln(1 − x) = ∑∞
k=1

xk

k and − ln x = ∑∞
k=1

(1−x)k

k . So, we may regard the logistic
map xn+1 = r xn (1− xn) as a first-order approximation of the “Gompertz map” xn+1 =
r xn (− ln xn) (or of the map xn+1 = r (1− xn)(− ln(1− xn)), or even of xn+1 = r (− ln(1−
xn)) (− ln xn)).

The Gompertz map r G2,1,1,2 : (0, 1] → (0, 1], r ∈ (0, e] is the lattice version xn+1 =
r xn (− ln xn) of the DE d

dt α(t) = r α(t) [− ln(α(t))] (Laird [5]; Laird et al. [6]; Waliszewski

and Konarski [12,13]), obtained using the saturation level α(t) = N(t)
K in the Gompertz

population model defined in Equation (3)

d
dt

N(t) = r N(t)
[
− ln

(
N(t)

K

)]
=⇒ N(t) = K exp(−e−rt+C),

where eC = − ln N(0)
K , proportional to the Gumbel CDF with location and scale parameters

−C/r and 1/r, respectively, see details in Appendix B. Tjørve and Tjørve [15] have a
coordinated presentation of useful reparameterizations of the Gompertz model in growth
modeling.

Blumberg [16] introduced a hyper-logistic growth function, solution of the modified

Verhulst DE, d
dt N(t) = r [N(t)]α

[
1− N(t)

K

]γ
, which we reparameterize as Equation (4)

d
dt

N(t) = r [N(t)]p−1
[

1− N(t)
K

]q−1

,

for direct association with the BetaBoop functions.

The corresponding r Gp,q,1,1 : (0, 1] → (0, 1], r ∈
(

0,
(

p−1
p+q−2

)1−p( q−1
p+q−2

)1−q
)

,

hyper-logistic maps or Beta(p, q) maps xn+1 = r xp−1
n (1− xn)q−1 have been investigated

by Aleixo et al. [92–94], Brilhante et al. [19–21], Rocha and Aleixo [95], and Gomes et al. [22].

Further, the hyper-Gompertz map r Gp,1,1,Ψ : (0, 1] → (0, 1], r ∈
(

0,
(

p−1
Ψ−1 e

)Ψ−1
)

,

p, Ψ > 1, xn+1 = r xp−1
n (− ln xn)

Ψ−1 (Waliszewski and Konarski [12,13]; Pestana et al. [96];
Rocha and Aleixo [97]) is connected to the Turner et al. [17,18] hyper-Gompertz gener-
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alized ecological growth model d
dt N(t) = r N(t)

[
− ln N(t)

K

]γ
, r > 0, γ 6= 1, which we

reparameterize as Equation (5),

d
dt

N(t) = r [N(t)]p−1
[
− ln

(
N(t)

K

)]Ψ−1

.

The discussion of the Blumberg [16], Turner et al. [17,18] and other population growth
models and their associated maps is postponed to Section 6.

5. Stable and Geo-Stable EV Distributions
5.1. Extremes of IID Sequences

Let {Xn}∞
n=1 be a sequence of IID RVs. For any n ∈ N, FXn:n(x) = Fn

X(x), with degen-
erate limit when n → ∞. Non-degenerate limit EV laws are obtained in the context of
Khinchine-type limits of classes, when there exist attraction coefficients an > 0, bn ∈ R such
that

FXn:n−bn
an

(x) = Fn
X(an x + bn) −→n→∞

G(x) non degenerate,

and we say that FX is in the domain of attraction of the MS CDF G.
The possible non-degenerate limit distributions G satisfy the max-stability equation

G(aθ x + bθ) = G
1
θ (x). (11)

When bθ , the shift parameter, is zero, then G(aθ x) = G
1
θ (x) (strict max-stability

equation) and we say that the CDF G is a strict MS distribution.
Fréchet [98] obtained a first solution of the aforementioned strict max-stability equa-

tion, given by Gξ(x) = exp
(
− x−1/ξ

)
I[0,∞)(x), ξ > 0, rightly called Fréchet CDF. Fisher

and Tippet [99] have shown that CDFs G of the type

G(x) ≡ Gξ(x) = exp
[
−(1 + ξx)−1/ξ

]
I{x: 1+ξx>0}(x), ξ ∈ R, (12)

which, when ξ → 0, converges to the Gumbel distribution, G0(x) = exp(−e−x) for real x,
satisfy the functional max-stability Equation (11), and Gnedenko [52] has shown that the
general extreme value (GEV) distributions in (12) are the unique MS laws.

Expression (12) is known as von Mises–Jenkinson GEV family of distributions. It is
sometimes more convenient to split it into three separate branches:

Fréchet-α distributions: for ξ > 0, and using α = 1
ξ ,

Φα(x) = exp
(
−x−α

)
I[0,∞)(x); (13)

Gumbel distribution: for ξ = 0,

Λ(x) = exp
(
−e−x) IR(x); (14)

max-Weibull-α distributions: for ξ < 0 and using α = − 1
ξ ,

Ψα(x) =
{

exp[−(−x)α] x < 0
1 x ≥ 0

. (15)

As min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}, we obviously have Fmin{X1,...,Xn}(x) =
1− Fmax{X1,...,Xn}(−x), and so, in what concerns min-stability, we get:

min-Fréchet-α distributions: Φ∗α(x) =
{

1− exp[−(−x)−α] x < 0
1 x ≥ 0

;

min-Gumbel distribution: Λ∗(x) = 1− exp(−ex) IR(x);
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Weibull-α distributions: Ψ∗α(x) = [1− exp(−xα)] I[0,∞)(x).

Classical EVT deals essentially with the identification of the extreme stable laws
and the characterization of the domains of attraction of the Fréchet and Weibull-types
achieved by Gnedenko [52], and of the Gumbel-type due to de Haan [53]. For more on EV
distributions, see Johnson et al. [35], pp. 1–112. See also the recent overviews by Davison
and Huser [100] and by Gomes and Guillou [101].

5.2. Extremes of Geometrically Thinned Sequences

If X1, X2, . . . , Xn, . . . are independent replicas of X, with CDF FX, and N _ Geometric(θ)
independent of the Xk’s, the CDF of Y = max{X1, . . . , XN} is

∞

∑
k=1

Fk
X(x) θ (1− θ)k−1 =

θ FX(x)
1− (1− θ) FX(x)

. (16)

From (16), we say that Y is a GMS RV (or that FY is a GMS CDF) if for all θ ∈ (0, 1)
there exist aθ > 0 and bθ ∈ R such that

FY(aθ x + bθ) =
θ FY(x)

1− (1− θ) FY(x)
. (17)

In other words, an RV X is GMS iff it shares the same Khinchine’s type with the
geometric randomly stopped maxima of independent replicas of itself.

The core theory of max-geo-stability has been developed by Rachev and Resnick [38],
and results on thinned sequences with count random subordinator are due to Rényi [102],
to Kovalenko [103] and, in all generality, to Kozubowski [104], see also Gnedenko and
Korolev [105] for a thorough discussion.

Let us define G(x) = e1−1/FY(x), x > αFY , where αF = inf{x : F(x) > 0} is the
left-endpoint of F, and rewrite (17) as

1
1− ln(G(aθ x + bθ))

=

θ
1−ln(G(x))

1−(1−θ) 1
1−ln(G(x))

⇐⇒ 1
1− ln(G(aθ x + bθ))

=
1

1− ln(G(x))
θ

. (18)

Then, (17) is equivalent to the max-stability Equation (11), G(aθ x + bθ) = G
1
θ (x), i.e.,

G is an MS distribution.
Hence, the GMS CDFs, gGξ(x) = 1

1−ln Gξ (x) , x > αF, are given by

gGξ(x) ≡ Fξ(x) =
1

1− ln Gξ(x)
=

1
1 + (1 + ξx)−1/ξ

, 1 + ξx > 0 . (19)

The GMS CDFs in (19), using α = 1
|ξ| , can thus be written as one of the following types:

Log-logistic distributions, whose natural logarithm follows the logistic distribution,
from the classical MS Fréchet-α distribution,

gΦα(x) =
1

1 + x−α
I[0,∞)(x), α > 0 ;

Logistic distribution, from the classical MS Gumbel distribution,

gΛ(x) =
1

1 + e−x IR(x) ;
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Backward log-logistic distributions, from the MS max-Weibull-α distribution,

gΨα(x) =


1

1 + (−x)α x < 0

1 x ≥ 0
, α > 0 .

The characterization of the domains of attraction of GMS laws are similar to the
characterization of the domains of attraction of the classical maxima EV laws, a consequence
of tail equivalence results from Resnick [106,107], see also Cline [108].

Obviously, the maximum of a geometrically thinned sequence is necessarily stochas-
tically smaller than the maximum of the full sequence, for the same parent population.
Therefore, GMS laws are stochastically smaller than the corresponding classical EV laws,
as can be seen in Figure 2.

0
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0.6
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g!0.5(x)
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f0 (x)

f0 (x)
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f1(x)

Figure 2. PDFs gξ(x) = dGξ(x)/dx, for ξ = −0.5, 0, 1, together with the normal PDF, ϕ(x) =

exp(−x2/2)/
√

2Φ, x ∈ R, and the GMS PDFs fξ(x) = dFξ(x)/dx, ξ = 0, 1, with Gξ and Fξ given
in (12) and (19), respectively.

Noticing again that min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}, similar results exist
for min-geo-stability. The min-geo-stable laws are gG∗ξ (x) = 1− gGξ(−x), with gGξ given
in (19). We thus get gΦ∗α = gΨα, gΛ∗ = gΛ and gΨ∗α = gΦα; and obviously, min-geo-stable
laws are stochastically greater than the corresponding classical minimum EV laws, in what
regards stochastic ordering.

5.3. Verhulst Growth and Thinned Maxima, Gompertz Growth, and Maxima of IID Sequences

In particular, in what concerns population growth models (2) and (3), we can now
state that the logistic and the Gumbel solutions are both EV models, respectively, in the
thinned IID framework and in the full IID framework. In f2,1,1,2, the expansion factor x
dominates the retroaction − ln x and the PDF is skewed to the right, while the symmetry
of f2,2,1,1 implies perfect equilibrium of the expansion factor x and the retroaction factor
(1− x). Therefore, P[X2,2,1,1 > x] > P[X2,1,1,2 > x] for all x ∈ (0, 1), and this implies
that the Gompertz model stochastically dominates the Verhulst model—as stated before,
gΛ � Λ. Looking at Figure 3, it is obvious that the retroaction factor − ln x in f2,1,1,2 exerts
a weaker control than the retroaction factor 1− x in f2,2,1,1, on the growth of the population.
This explains the success of the Gompertz (Gumbel) model in cancerous tumor growth
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(Laird [5]; Laird et al. [6]; Bajzer et al. [109]; Waliszewski et al. [9,10]; Waliszewski and
Konarski [12]).

(a) (b)

Figure 3. PDFs and CDFs of X2,2,1,1 and X2,1,1,2. (a) f2,2,1,1 and f2,1,1,2 densities. (b) X2,2,1,1 and X2,1,1,2

distribution functions.

Further, Mejzler [110–112] characterized the class M of limit laws of maxima of
non-identically distributed independent RVs, similar to Khinchine’s self-decomposable
L-class in the asymptotic additive theory, in terms of log-concavity. Graça Martins and
Pestana [113] investigated EVT self-decomposable distributions of Mejzler’s class using an
idea of Urbanik [114] on refinements of Khinchine’s L class of additive self-decomposable
characteristic functions. In this framework,Mr is the class of CDFs F(x) = exp(−K(x))
with K monotone of order r—thus, M∞ is the class of CDFs F(x) = exp(−K(x)) with K
completely monotone, and so a Laplace transform of a non-decreasing function. Observe
that e−x, x−α, and (−x)α are completely monotone, and therefore,M∞ is a natural but
non-trivial extension of EV models.

6. Population Growth Models and New Routes to Chaos

The logistic (2) and the Gompertz (3) population growth models, and their Blumberg
hyper-logistic and hyper-Gompertz–Turner extensions are special cases of the Tsoularis
and Wallace [39] generalized logistic equation (Section 6.1). The basics on the association
of the logistic map to the Verhulst DE in Section 6.2 suggest the association of generalized
logistic maps to investigate the dynamics of generalized logistic population growth; the
Schwarzian derivative is used to investigate the dynamics of the hyper-logistic and of the
hyper-Gompertz maps. In Section 6.3, we investigate population models’ connection to EV
laws. In Section 6.4, we consider incursive maps and Dubois’ [28,44] denial that chaotic
complicated dynamics arises from the simple discrete version of the Verhulst equation.

6.1. Generalized Logistic Population Models

Tsoularis and Wallace [39], p. 22, defined a generalized logistic population model N(t)

d
dt

N(t) = r [N(t)]α
[

1−
(

N(t)
K

)β
]γ

, α, β, γ > 0. (20)

Special cases relevant in our framework are:

1. γ = 1, the model d
dt N(t) = r [N(t)]α

[
1−

(
N(t)

K

)β
]

, investigated by Richards [30],

with solution N(t) = K
{

1−
[

1−
(

K
N0

)β
]

e−βrt
}−1/β

, where N0 = N(0), i.e., the

initial population size. The special case α = β = γ = 1 is the Verhulst logistic model,
and the special case α = 1 and γ = 0 is the Malthus exponential growth model.

2. β = 1, d
dt N(t) = r [N(t)]α

[
1− N(t)

K

]γ
, Blumberg [16] hyper-logistic DE, in (4), whose

dynamics has been investigated by Aleixo et al. [92–94] and Rocha and Aleixo [95].
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3. α = 1 + β(1− γ), the model d
dt N(t) = r [N(t)]1+β(1−γ)

[
1−

(
N(t)

K

)β
]γ

, α, β, γ > 0,

extensively studied by Turner et al. [17,18] under the name generic growth function,
with solution

N(t) = K

1 +

β(γ− 1)Kβ(1−γ)rt +

[(
K
N0

)β

− 1

]1−γ
1/(1−γ


−1/β

.

The case d
dt N(t) = r [N(t)]β−1

[
1−

(
N(t)

K

)β
] 2

β

(i.e., 1 + β(1− γ) = β− 1, β > 1) is

tied to the PDF of the Kβ,1+ 2
β

Kumaraswamy RV.

4. If β ↓ 0, the model d
dt N(t) = r [N(t)]α

[
− ln

(
N(t)

K

)]γ
(for α = γ = 1, this is the

Gompertz model). If α = 1, this hyper-Gompertz DE has the solution

N(t) = K exp

−
[
(γ− 1) r t +

[
− ln

(
N0

K

)]1−γ
] 1

1−γ

.

For α = γ = 1, this is the Gompertz model.

6.2. The Logistic Paradigm and Extensions

May [27] pathbreaking investigation of the surprising very complicated dynamics
of the rather simple logistic map connected to the Verhulst population growth model
originated a renewal of interest on population growth equilibrium, see the outstanding
overview of growth models in Tsoularis and Wallace [39] and references therein.

6.2.1. Logistic Growth

Consider a population of size N(t), and let R(t) be the amount of resources at time
t. It is sensible to consider that the amount of resources available decreases with the
population growth, the simplest model being that R(t) decreases at constant rate with
respect to the population size derivative, d

dt R(t) = −ξ d
dt N(t), where ξ is the amount of

resources consumed to produce a new population unit. Solving R(t) in terms of N(t)
yields R(t) = ξ[K − N(t)] = R(0) − ξ N(t), where K = R(0)

ξ is the carrying capacity,
the overpopulation size that consumes all the resources.

On the other hand, it is natural to assume that the population growth rate
d
dt N(t)
N(t) is

proportional to the availability of nutrients, i.e.,
d
dt N(t)
N(t) = K R(t), and hence, d

dt N(t) =

K R(0)N(t)
(

1− N(t)
R(0)/ξ

)
, which we shall rewrite in the traditional Verhulst form in (2):

d
dt

N(t) = r N(t)
(

1− N(t)
K

)
=⇒ N(t) =

K N(0)
N(0) + (K− N(0)) e−rt .

It is sometimes more convenient to rewrite (2) in terms of the rate α(t) = N(t)
K ∈ [0, 1],

d
dt

α(t) = r α(t)(1− α(t)) , (21)

and for lattice observations of the populations size, using α(n) = 1+ρ
ρ xn, r = 1 + ρ, to ap-

proximate (21) with the difference equation

xn+1 = r xn(1− xn), n = 0, 1, . . . , (22)
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known as the logistic map. As pointed out before, the logistic parabola G2,2,1,1(x) =
x (1− x) I(0,1)(x) is proportional to the PDF fU2:3(x) = 6 x (1− x) I(0,1)(x) of the middle
OS U2:3 of n = 3 IID standard uniform RVs.

It is obvious that the steady state xn+1 = xn is attained either at the root xn = 0 or at
the root xn = 1− 1

r . It seems far-fetched to use the fixed point method and the iterative
expression (22) to solve x = f (x) = rx(1− x), namely because whenever r /∈ (1, 3), we
have that

∣∣∣ f ′(1− 1
r

)∣∣∣ ≥ 1, and hence, numerical instabilities are observed outside the
range (1, 3). As the condition xn ∈ [0, 1], n = 1, 2, . . . , is fulfilled for r ∈ (0, 4], for r ∈ [3, 4],
we observe that as r increases, there are first periodic oscillations in the sequence of
iterates (Feigenbaum bifurcations), and then, for r > 1 +

√
5, chaos. For details, consult

Schroeder [46], ch. XII, or Peitgen et al. [91], ch. 10–11.

6.2.2. Gompertz and Hyper-Logistic Growth

The assumption on the decrease of resources can be modified, for instance, assuming
a logarithmic or polynomial decrease rate of resources.

If instead of d
dt R(t) = −ξ d

dt N(t), we assume now that R(t) decreases at constant

rate with the intrinsic growth rate of the population, d
dt R(t) = −ξ

d
dt N(t)
N(t)

, whose solution

is R(t) = −ξ ln(N(t)) + c = −ξ ln
[

N(t)
M

]
since at overpopulation M, all resources are

consumed. Hence, in terms of the rate α(t) = N(t)
K ∈ [0, 1],

d
dt

α(t) = ξ α(t)[− ln(α(t))] =⇒ α(t) = e−e−ξt
,

the Gompertz (or Gumbel) CDF, see Section 4, and below a discussion of the Gompertz
map.

With polynomial decreasing resources

d
dt

R(t) = −ξ [K− N(t)]γ−1 d
dt

N(t) =⇒ R(t) =
ξ

γ
[K− N(t)]γ

(obviously, the case K = 1 is what we assumed for the logistic model) and in terms of the
rate α(t) = N(t)

K ∈ [0, 1], we obtain the hyper-logistic population dynamics model

d
dt

α(t) = K
ξKγ

γ
α(t)[1− α(t)]γ,

a Blumberg equation, see case 2 associated with (20).

6.2.3. The Logistic Map with Random Reproducing Rate

Rewriting (22) as

xn+1 = 4 r∗ xn (1− xn), n = 0, 1, . . . , r∗ ∈ (0, 1],

the parameter r∗ reflecting the population reproduction rate; in many situations, it makes
sense to consider that, instead of a parameter, the reproduction rate is a random vari-
able R with support (0, 1). For instance, contrarily to intuition, reproduction rate can
increase with population density (Allee effect, see Stephens et al. [115], Berec et al. [116],
Kramer et al. [117] and Aleixo et al. [92,94]).

The family of PDFs of Beta RVs, X _ Beta(p, q), in (8), provides a huge diversity of
shapes, and has the advantage of staying within the family of Blumberg hyper-logistic
population models. We shall therefore consider the system

xn+1 = 4 R xn (1− xn), n = 0, 1, . . . , R _ Beta(p, q).
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A judicious choice of parameters so that the mode p+1
p+q−2 matches the empirical mode

can be a useful model. Alternatively, previous empiric information on the central location
and on the dispersion of R can serve as a guideline to choose the range of the parameters p
and q.

6.2.4. Schwarzian Derivative of Hyper-Logistic and Hyper-Gompertz Maps

The orbit of any point x ∈ R, i.e., its behavior under iteration of f , is given by the
sequence x, f (x), f ( f (x)), f ( f ( f (x))), .... We denote the points in the orbit x, f (x), f ◦2(x),
f ◦3(x), .... If f (p) = p, implying that f ◦n(p) = p, we say that p is a fixed point for f , and q
is a periodic point of period n for f if f ◦n(q) = q. This is the prime period of q if it is the
least positive integer n for which f ◦n(q) = q.

The Schwarzian derivative of a smooth interval map f : (0, 1)→ [0, 1], f ∈ C3 is
defined as

S( f (x)) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

.

Singer [40] established its relevance in one-dimensional dynamics showing that the negative
Schwarzian derivative of the map f : I → I implies that for every stable periodic point x of
period n, there exists an i < n and a critical point c or endpoint of I such that y ∈ [c, f ◦i(x)]
implies f ◦kn(y)→ f ◦i(x) as k→ ∞.

Further, consider the Sharkovskii total ordering (but not well-ordering) of the positive
integers

3 ≺ 5 ≺ 7 ≺ 9 ≺ . . . ≺ (2n + 1) · 20 ≺ . . .
3 · 2 ≺ 5 · 2 ≺ 7 · 2 ≺ 9 · 2 ≺ . . . ≺ (2n + 1) · 21 ≺ . . .
3 · 22 ≺ 5 · 22 ≺ 7 · 22 ≺ 9 · 22 ≺ . . . ≺ (2n + 1) · 22 ≺ . . .
3 · 23 ≺ 5 · 23 ≺ 7 · 23 ≺ 9 · 23 ≺ . . . ≺ (2n + 1) · 23 ≺ . . .

...
. . . ≺ 2n ≺ . . . ≺ 24 ≺ 23 ≺ 22 ≺ 2 ≺ 1

used by Sharkovskii [42] to prove that the existence of period p = 3 implies the existence of
any other period length. However, most of those orbits are unstable, as Schroeder [46], pp.
285–286, poetically states, “they are the ‘ghosts’ of orbits that were stable for smaller r values”.
Further, Li and Yorke [43] proved that period p = 3 implies chaos: the existence of a
period-3 cycle implies the existence of an uncountable infinitude of chaotic points that
never map to any cycle. For further information on wandering intervals and sensitivity
on initial conditions, consult Harrison [118], and for general information on Schwarzian
derivatives, see Cooper [119] and Devaney [120] (ch. 11).

Below, we establish that the hyper-logistic and hyper-Gompertz maps verify Singer [40]
and Guckenheimer [41] assumptions, implying thus the nonexistence of wandering inter-
vals. From Sharkovskii [42] and Li and Yorke [43] results, they share with the logistic map
instabilities, bifurcations, and chaos when, for the fixed point x∗, r increases beyond the val-
ues for which | f ′(x∗)| < 1. For thorough information on the dynamics of one-dimensional
maps, consult Sharkovsky et al. [121].

6.2.5. Hyper-Logistic Maps

In what concerns the family of unimodal maps

r Gp,q,1,1(x) = r xp−1 (1− x)q−1 : (0, 1)→ (0, 1),

with r ∈
(

0,
(

p−1
p+q−2

)1−p ( q−1
p+q−2

)1−q
)

and p, q > 1,

G′p,q,1,1(x) = 0 for x = c =
p− 1

p + q− 2
, G′′p,q,1,1(c) < 0
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and (
p− 1

p + q− 2

)1−p( q− 1
p + q− 2

)1−q
Gp,q,1,1(c) = 1.

The Schwarzian derivatives are

S
(
Gp,q,1,1(x)

)
=

A
2x2(x− 1)2[1 + p(x− 1) + (q− 2)x]2

,

where

A = −p4(x− 1)4 − 4p3(x− 1)3[1 + (q− 2)x]−
− (q2 − 3q + 2)x2[6 + 4(q− 3)x + (q2 − 5q + 6)x2]−
− p2(x− 1)2[5 + (12q− 22)x + (6q2 − 24q + 23)x2]−

− 2p(x− 1)[1 + (4q− 7)x + (6q2 − 23q + 20)x2 + (2q3 − 12q2 + 23q− 14)x3].

See Figures 4 and 5, and a sample of orbits and of bifurcations in Figures 6 and 7.

(a) (p, q, Φ, Ψ) = (2.5, 2.5, 1, 1) (b) (p, q, Φ, Ψ) = (2.5, 3.5, 1, 1) (c) (p, q, Φ, Ψ) = (3.5, 2.5, 1, 1)

Figure 4. Schwarzian derivatives of r Gp,q,1,1(x) = rxp−1(1− x)q−1.

(a) p = 2.3 (b) p = 3.5 (c) q = 2.5 (d) q = 3.5

Figure 5. Schwarzian derivatives of r Gp,q,1,1(x) = r xp−1(1− x)q−1.

(a) 7.1 G2.5,2.5,1,1 (b) 8 G2.5,3.5,1,1 (c) 10.9 G3.5,2.5,1,1

Figure 6. Hyper-logistic orbits.
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(a) r G2.5,2.5,1,1 (b) r G2.5,3.5,1,1 (c) r G3.5,2.5,1,1

Figure 7. Hyper-logistic bifurcation diagrams.

6.2.6. Hyper−Gompertz Maps

In what concerns the family of unimodal maps

r Gp,1,1,Ψ(x) = r xp−1 (− ln x)Ψ−1 : (0, 1)→ (0, 1),

with r ∈
(

0, ( p−1
Ψ−1 e)Ψ−1

)
and p, q > 1,

G′p,1,1,Ψ(x) = 0 for x = c = e−
Ψ−1
p−1 , G′′p,1,1,Ψ(c) < 0

and (
p− 1
Ψ− 1

e
)Ψ−1

Gp,1,1,Ψ(c) = 1.

The Schwarzian derivatives are

S(Gp,1,1,Ψ(x)) =
B

2x2(ln x)2[Ψ− 1 + (p− 1) ln x]2
,

where

B = −
[
Ψ(Ψ− 1)2(Ψ− 2) + 4(p− 1)Ψ(Ψ2 − 3Ψ + 2) ln x+

+ (6p2 − 12p + 5)(Ψ− 1)2(ln x)2 + (4p3 − 12p2 + 10p− 2)(Ψ− 1)(ln x)3+

+ p(p− 1)2(p− 2)(ln x)4
]
.

See Figures 8 and 9, and some orbits and bifurcations in Figures 10 and 11.

(a) (p, q, Φ, Ψ) = (2.5, 1, 1, 2.5) (b) (p, q, Φ, Ψ) = (2.5, 1, 1, 3.5) (c) (p, q, Φ, Ψ) = (3.5, 1, 1, 2.5)

Figure 8. Schwarzian derivatives of r Gp,1,1,Ψ(x) = rxp−1(− ln x)Ψ−1.
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(a) p = 2.5 (b) p = 3.5 (c) Ψ = 2.5 (d) Ψ = 3.5

Figure 9. Schwarzian derivatives of r Gp,1,1,Ψ(x) = r xp−1(− ln x)Ψ−1.

(a) 3.1 G2.5,1,1,2.5 (b) 4.1 G2.5,1,1,3.5 (c) 7 G3.5,1,1,2.5

Figure 10. Hyper-Gompertz orbits.

(a) r G2.5,1,1,2.5 (b) r G2.5,1,1,3.5 (c) r G3.5,1,1,2.5

Figure 11. Hyper-Gompertz bifurcation diagrams.

6.3. Population Growth Models and EV Distributions

Rewriting N(t) = K
1+e−rt−C , where e−C = K−N(0)

N(0) , the solution of the basic Verhulst
population growth DE in (2) is proportional to the GMS logistic CDF with location −C/r
and scale 1/r.

The solution N(t) = K exp(−e−rt+C) of the Gompertz DE in (3) is proportional to the
Gumbel CDF in the classical IID framework, with location and scale parameters −C/r and
1/r, respectively.

Further, the solution N(t) = K
1+t−rr I[0,∞)(x) of d

dt N(t) =
r
t

N(t)
[
1− N(t)

K

]
is propor-

tional to the log-logistic CDF, also a stable distribution of maxima of geometrically thinned
IID RVs.

On the other hand, d
dt Nν(t) = r xνNν(t)

[
− ln Nν(t)

K

]
, r > 0, has solution Nν(t) =

exp
(

e−
r xν+1

ν+1 +C
)

, C constant. Hence, letting ν→ −1 with C = r
ν+1 and using L’Hôpital’s

rule, we get lim
ν→−1

−r
xν+1 − 1

ν + 1
= −r ln x and we obtain the solution

N−1(t) = exp(−x−1) I[0,∞)(x), the Fréchet-1 distribution of maxima in the IID classical
Fréchet [98] and Fisher and Tippett [99] setting.
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Three equations modeling three patterns of extremes: sustainable logistic growth with the
Verhulst model (2), moderate EVT Gumbel growth with the Gompertz model (3), and heavy

tailed EVT Fréchet-1 growth with the above lim
ν→−1

d
dt

Nν(t) = r xνNν(t)
[
− ln

Nν(t)
K

]
, r > 0,

model. The EVT Weibull model has also been used to fit population growth, namely in
forests (Yang et al. [3]; Payandeh and Wang [4]).

We can speculate that evolution and adaptation, together with the need to preserve
ecological equilibrium frameworks, are at the source of sustainable logistic growth in most
natural populations, while viral spread or cancer tumor cell growth tends to overpass the
availability of resources.

On the other hand, in adverse situations such as extreme climate, spread of epidemics
or catastrophic circumstances such as the periodic “el Niño”, populations can decrease
to minima compatible with collective species survival. Observe that in subfigures (c) of
Figure 6 and Figure 10, there is a fixed point to the left of the mode of that unimodal map.
Observe also that the solution of

d
dt

N(t) = r
[

1− N(t)
K

] [
− ln

(
1− N(t)

K

)]
is proportional to a min-Gumbel CDF. Figure 12 exhibits the pattern of bifurcations and
ultimate chaos of the non-linear maps xn+1 = r xn(− ln xn) and xn+1 = r (1− xn) [− ln(1−
xn)].

(a) xn+1 = r xn(− ln xn) (b) xn+1 = r (1− xn)[− ln(1− xn)]

Figure 12. Bifurcation diagrams for the Gompertz map xn+1 = r xn(− ln xn) (Gumbel) and for the
modified Gompertz map xn+1 = r (1− xn)[− ln(1− xn)] (min-Gumbel).

In what follows, we examine geo-extreme solutions of the Blumberg [16] hyper-logistic
model, and EVT solutions of the Turner et al. [17,18] hyper-Gompertz model.

It is curious to observe that the special case p = q = 2 of the Blumberg model corre-
sponds to the Verhulst Equation (2) with logistic solution, and the special case p = Ψ = 2
in the Turner equation is the Gompertz Equation (3) with the solution proportional to the
Gumbel CDF —in other words, the limiting case ξ → 0 in the general GMS distribution (19)
and in the GEV (12), respectively.

Below, we indicate that in order to obtain the other GMS solutions via the Blumberg
equation, we must consider fractional exponents p− 1 = 1± 1

α and q− 1 = 1∓ 1
α , and that

the other EVT-connected solutions via the Turner equation are obtained with p = 1 and
2 6= Ψ ∈ R.
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6.3.1. Blumberg Equation and Geo-Extreme Models

The solutions of the Blumberg Equation (4), d
dt N(t) = r [N(t)]p−1

[
1− N(t)

K

]q−1
, for

any choice of parameters p, q > 0 such that p + q = 4 is a geo-stable EV distribution. More
precisely, using fractional exponents p− 1 = 1− 1

α and q− 1 = 1 + 1
α ,

dN(t)
dt

= r [N(t)]1−
1
α

[
1− N(t)

K

]1+ 1
α

:

• When α > 0, we get a solution that is proportional to the log-logistic CDF with shape
parameter α, location parameter − C

r K−1/α , and scale parameter α
r K−1/α ;

• When α < 0, we get a solution that is proportional to the backward log-logistic CDF
with shape parameter −α, location parameter − C

r K−1/α , and scale parameter − α
r K−1/α ;

• When 1
α → 0, the solution of the Verhulst equation is proportional to the logistic CDF.

Figure 13 exhibits the pattern of bifurcations and ultimate chaos of the non-linear

map xn+1 = r x1− 1
2

n (1− xn)
1+ 1

2 , and the animation in Supplementary materials shows the
corresponding evolution of different initial conditions as a function of r.

Figure 13. Bifurcation diagram for the Blumberg map xn+1 = r x1− 1
2

n (1− xn)
1+ 1

2 (log-logistic-2), see
Figure S1 in Supplementary materials.

For mathematical details, see Appendix B.

6.3.2. Turner Equation and EV Models

• For p = 2 and Ψ = 2 + 1
α , in (5), the solution of

d
dt

N(t) = r N(t)
[
− ln

(
N(t)

K

)]1+ 1
α

is proportional to the EV Fréchet CDF, in (13), or to the max-Weibull CDF, in (15),
when α > 0 or α < 0, respectively;

• When 1
α → 0—in other words, when we have the Gompertz Equation (3)—the solution

is proportional to the Gumbel CDF, in (14).

On the other hand, the modified Turner equation

dN(t)
dt

= r
[
1− N(t)

K

][
− ln

(
1− N(t)

K

)]1+ 1
α ,
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i.e., q = 2 and Φ = 2 + 1
α , has the solution

N(t) = K

{
1− exp

[
−
(
− t− KC/r

Kα/r

)−α
]}

.

Therefore,

• When α > 0, the solution is proportional to the min-Fréchet CDF with shape parameter
α, location parameter KC/r, and scale parameter Kα/r;

• When α < 0, the solution is proportional to the Weibull CDF with shape parameter
−α, location parameter KC/r, and scale parameter −Kα/r.
Figure 14 exhibits the pattern of bifurcations and ultimate chaos of the Turner map
xn+1 = r xn(− ln xn)

1+ 1
2 (see also the animation in Supplementary materials showing

the corresponding evolution of different initial conditions as a function of r) and of
the modified Turner map xn+1 = r (1− xn)[− ln(1− xn)]

1+ 1
2 .

(a) xn+1 = r xn(− ln xn)
1+ 1

2 (b) xn+1 = r (1− xn)[− ln(1− xn)]
1+ 1

2

Figure 14. Bifurcation diagrams for the Turner map xn+1 = r xn(− ln xn)
1+ 1

2 (Fréchet-2, see Figure
S2 in Supplementary materials) and for the modified Turner map xn+1 = r (1− xn)[− ln(1− xn)]

1+ 1
2

(Weibull-2).

For mathematical details, see Appendix C.

6.4. Chaos, Indeed?

Dubois [28,44] claimed that the logistic map (10) is not the correct discrete equivalent
to the Verhulst logistic DE in (2). His incursive equation

xn+1 = r xn (1− xn+1)

can be transformed into

xn+1 = r xn

(
1− r xn

1 + r xn

)
=

r xn

1 + r xn
,

which has a stable solution

xn =
rn xo

1 + (rn−1)
1− 1

r

(23)

for any value of r, since

∣∣∣∣∣ r
(1 + r xn)2

∣∣∣∣∣ < 1.

Thus, (23) is the discrete equivalent to the continuous logistic Verhulst population
model, and Dubois [28] concluded that “the chaos emerging from the so-called chaos map is due
to instabilities of the Euler algorithm and not from fundamental biological properties of the logistic
differential equation”.
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An investigation of a similar incursive discrete approximation to the Gompertz DE,
whose solution is the Gompertz curve, i.e., the Gumbel distribution, when properly nor-
malized, is less satisfactory, since the incursive solution we get approximates a Fréchet-1
distribution instead of the Gumbel distribution.

In fact, consider that the retroaction acts at n + 1, obtaining the difference equation
xn+1 = r xn (− ln xn+1), with the same stationary solutions of the Gompertz map xn+1 =
r xn (− ln xn+1)—but without bifurcation and ultimate chaos. From xn+1 = r xn (− ln xn+1),
we obtain a solution fr(x) = rx W

(
1
rx

)
, where W is Lambert’s Logarithmic Product func-

tion, taking real values for x > −0.5.
Figure 15a shows that cx W

(
1
cx

)
I[0,∞)(x) is a CDF, which is log-concave, and therefore,

it is a Mejzler self-decomposable non-stable EV law.
Observe, however, that it is not a good approximation to the Gumbel distribution in

[0, ∞]. In the graph, c = 2 and the Gumbel distribution is such that the lines meet at the
0.9 quantile, which means that the scale parameter is 0.52688. Although the solution of the
Gompertz DE is proportional to the Gumbel distribution, this non-chaotic solution of its
discrete counterpart incursive difference equation is patently a rather poor approximation,
even for quite large values.

On the other hand, this Logarithmic Product law is in the domain of attraction of the
Fréchet distribution with shape parameter 1, whatever the value c > 0, since

lim
x→∞

1− ctx W(1/(ctx))
1− cx W(1/(cx))

= t−1.

In Figure 15b, the comparison of the CDF 2x W
(

1
2x

)
I[0,∞)(x) and the Fréchet distribution

e−
0.44995

x I(0,∞)(x) (with the scale parameter chosen so that the lines cross at the common 0.9
quantile) shows that this approximation is quite good.
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(a) (b)

Figure 15. The 2x W
(

1
2x

)
I[0,∞)(x) solution of the incursive Gompertz map. (a) Solid 2x W

(
1

2x

)
I[0,∞)(x) approximation to dashed e−e−0.52688 x

. (b) Solid 2x W
(

1
2x

)
I[0,∞)(x) approximation to dashed

e−
0.44995

x I[0,∞)(x).

7. Conclusions and Open Problems

Hamlet, who suffered from May–Dubois split personality, annoyed everyone with
his “Chaos or no chaos, that’s the question!”, causing poor Ophelia to die of acute boredom
cursing Hamlet and the heralds of Doomsday (Foerster et al. [23]). Although we recognize
that Dubois [28] presents strong arguments—namely that his incursive solution agrees with
the logistic solution of Verhulst’s DE in (2)—the fact that following his methodology with
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the Gompertz-map the incursive recurrence solution is Fréchet-1, while the solution of the
DE in (3) is Gumbel, is indeed a weak point and does not contribute to substantiate Dubois’
claims.

On the other hand, in biology, there are so many instances of the tendency of immoder-
ate growth, from virus and tumor cells to dominant species or human overpopulation, that
instabilities and ultimate chaos seem to be the ubiquitous biological result of such selfish
framework (in here, the term “selfish” is used in a loose sense, as in Dawkin’s [122], The
Selfish Gene, voted as the most influential science book of all times). Therefore, although we
consider Dubois [28] a challenging paper deserving high credit, May’s [27] pathbreaking
absurd idea of using the fixed point method to solve a trivial second-order equation has a
scientific descent that fully illustrates Einstein’s quote “If at first the idea is not absurd, then
there is no hope for it”.

Nonetheless, an interesting open problem is to investigate further incursive recurrence
solutions of other nonlinear maps, namely whether they are the right way to approximate
the DEs with difference equations.

In addition, a substantial part of this review is to explore EV laws as possible patterns
of population growth. It is worth noticing that the widely used logistic and Gompertz (Gum-
bel) models correspond to the Blumberg [16] p = q = 2 equation and Turner et al. [17,18]
p = Ψ = 2 equation, respectively.

Further, fractional powers p = 2∓ 1
α and q = 2± 1

α in the Blumberg equation lead to
log-logistic and backward log-logistic extreme geo-stable models multiplied by the carrying
capacity K. In what regards the Turner et al. [17,18] equation, p = 2 and Ψ = 2 ± 1

α ,
eventually fractional, lead to the remaining Fréchet-α and min-Weibull-α EV distributions
multiplied by the carrying capacity.

The delimitation of several regions (sudden extinction; stability with symbolic se-
quences CL∞; stability with symbolic sequences CR∞; period doubling; chaotic; Allee effect
caused extinction; differed extinction) exhibited in Figure 1.3 of Aleixo et al. [94] in what
concerns the hyper-logistic maps xn+1 = r xp(1− x), is still a challenging open problem
for the hyper-Gompertz map, namely for the EVT and geo-thinned EVT maps.

In what regards the observation that 1− x is the first-order approximation of − ln x,
implying that the logistic model may be considered a first-order approximation of the
Gompertz model, we might as well say that e−x = 1− x + · · · . Therefore, differential
equation models connected to gamma instead of beta or BetaBoop functions present a new
field of research.

Recent research work on the logistic equation, namely Area and Nieto [61], using
Prabhakar fractional calculus, deserve intense follow-up, namely applying their ideas to
the hyper-logistic and to the hyper-Gompertz maps addressed in the present research work.
For more information on the area and working methodology, consult El-Sayed et al. [123]
and Giusti et al. [124].

Golmankhaneh and Cattani [125] used an analogue of the classical Euler method
in fractal calculus useful for solving fractal DEs or for finding approximate analytical
solutions, studying a fractal logistic equation using fractal derivative instead of the usual
derivative in the Verhulst equation. Golmankhaneh and Fernandez [126] investigated
stable distributions in fractal Cantor sets. It would be interesting to develop EVT and
geo-EVT stability in fractal sets, namely middle-κ Cantor sets, and to characterize domains
of attraction. In what regards extensions of EVT, an explicit description of theM∞ Mejzler
class, namely identification of its extreme points and obtaining a Choquet representation,
would be an interesting development.

So far, we could not find closed results connected to the G1,1,Φ,Ψ function, even for
simple choices of Φ, Ψ 6= 1. On the other hand, it would be interesting to investigate
further the generalized Pareto growth model investigated in Brilhante et al. [21], since the
generalized Pareto distribution is closely tied to the GEV distribution.
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Appendix A

Theorem A1. For p, q, Φ, Ψ > 0, consider

Gp,q,Φ,Ψ(x) = xp−1(1− x)q−1(− ln(1− x))Φ−1(− ln x)Ψ−1 I(0,1)(x),

already defined in (1). If min{p, q}+ min{Φ, Ψ} > 1, then∫ 1

0
Gp,q,Φ,Ψ(x)dx < ∞. (A1)

Proof. Let p, q, Φ, Ψ > 0, suppose that 1 < min{p, q}+min{Φ, Ψ} and consider Gp,q,Φ,Ψ(x)
in (1). By Hölder’s inequality, for a, b ≥ 1 such that

1
a
+

1
b
= 1, (A2)

https://www.mdpi.com/article/10.3390/fractalfract7020194/s1
https://www.mdpi.com/article/10.3390/fractalfract7020194/s1
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we have ∫ 1

0
Gp,q,Φ,Ψ(x)dx =

=
∫ 1

0
xp−1(1− x)q−1[− ln(1− x)]Φ−1(− ln x)Ψ−1dx

≤
{∫ 1

0

[
xp−1(1− x)q−1

]a
dx
} 1

a
{∫ 1

0

[
[− ln(1− x)]Φ−1(− ln x)Ψ−1

]b
dx
} 1

b
. (A3)

In what concerns the first integral in (A3),∫ 1

0

[
xp−1(1− x)q−1

]a
dx, (A4)

we have ∫ 1

0
xa(p−1)(1− x)a(q−1)dx = B(a(p− 1) + 1, a(q− 1) + 1),

as long as a(1− p) < 1 and a(1− q) < 1. We have four cases:

1. If 1 ≤ p, q, then conditions a(1− p) < 1 and a(1− q) < 1 are both verified, since
a ≥ 1.

2. If 0 < p, q < 1, then

a(1− p) < 1∧ a(1− q) < 1 ⇐⇒ a <
1

1−min{p, q} .

3. If 0 < p < 1 and 1 ≤ q, then a(1− p) < 1 and a(1− q) < 1 are verified if

a <
1

1− p
=

1
1−min{p, q} .

4. If 0 < q < 1 and 1 ≤ p, then a(1− p) < 1 and a(1− q) < 1 are verified if

a <
1

1− q
=

1
1−min{p, q} .

Hence, if 0 < p < 1 or 0 < q < 1, then
∫ 1

0

[
xp−1(1− x)q−1

]a
dx < ∞ if

a <
1

1−min{p, q} . (A5)

Notice that
1

1−min{p, q} > 1, if 0 < p < 1 or 0 < q < 1.

Let us now consider the second integral in (A3),∫ 1

0
[− ln(1− x)]b(Φ−1)(− ln x)b(Ψ−1)dx. (A6)

First notice that, for α > 0,∫ 1

0
(− ln x)αdx

x=exp(−y)
=

∫ +∞

0
yα exp(−y)dy = Γ(α + 1)

and that ∫ 1

0
[− ln(1− x)]αdx

y=1−x
=

∫ 1

0
(− ln y)αdx = Γ(α + 1).
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We have ∫ 1

0
[− ln(1− x)]b(Φ−1)(− ln x)b(Ψ−1)dx =

=
∫ 1

e

0
[− ln(1− x)]b(Φ−1)(− ln x)b(Ψ−1)dx (A7)

+
∫ 1− 1

e

1
e

[− ln(1− x)]b(Φ−1)(− ln x)b(Ψ−1)dx

+
∫ 1

1− 1
e

[− ln(1− x)]b(Φ−1)(− ln x)b(Ψ−1)dx, (A8)

and

0 < x <
1
e
⇐⇒ ∞ > − ln x > − ln

1
e
= 1 ⇐⇒ 1 < − ln x (A9)

1− 1
e
< x < 1 ⇐⇒ 1−

(
1− 1

e

)
> 1− x > 0⇐⇒ 1 < − ln(1− x). (A10)

Again, we have four cases to consider:

1. 0 < Φ, Ψ < 1. In this case, from (A9) we get (− ln x)b(Ψ−1) < 1 and, consequently,

∫ 1
e

0
[− ln(1− x)]b(Φ−1)(− ln x)b(Ψ−1)dx ≤

∫ 1
e

0
(− ln(1− x))b(Φ−1)dx

≤
∫ 1

0
(− ln(1− x))b(Φ−1)dx

= Γ(b(Φ− 1) + 1),

if
b(Φ− 1) + 1 > 0 ⇔ b <

1
1−Φ

.

However, from (A2),
1
a
+

1
b
= 1 ⇐⇒ b =

a
a− 1

. (A11)

Hence, when 0 < Φ, Ψ < 1, the integral (A7) is finite if

b <
1

1−Φ
⇐⇒ a

a− 1
<

1
1−Φ

⇐⇒ a− aΦ < a− 1

⇐⇒ a >
1
Φ

. (A12)

Again, for 0 < Φ, Ψ < 1, from (A10), we get (− ln(1− x))b(Φ−1) < 1 and, conse-
quently,∫ 1

1− 1
e

[− ln(1− x)]b(Φ−1)(− ln x)b(Ψ−1)dx ≤
∫ 1

1− 1
e

(− ln x)b(Ψ−1)dx

≤
∫ 1

0
(− ln x)b(Ψ−1)dx

= Γ(b(Ψ− 1) + 1),
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if

b(Ψ− 1) + 1 > 0 ⇐⇒ b(Ψ− 1) > −1⇐⇒ b(1−Ψ) < 1⇐⇒ b <
1

1−Ψ

⇐⇒ a
a− 1

<
1

1−Ψ
⇐⇒ a− aΨ < a− 1⇐⇒ aΨ > 1

⇐⇒ a >
1
Ψ

. (A13)

Hence, when 0 < Φ, Ψ < 1, the integral (A8) is finite if condition (A13) is satisfied.
From (A12) and (A13),

a > max
{

1
Φ

,
1
Ψ

}
=

1
min{Φ, Ψ} .

Finally, ∫ 1− 1
e

1
e

[− ln(1− x)]b(Φ−1)(− ln x)b(Ψ−1)dx

is finite, since [− ln(1− x)]b(Φ−1)(− ln x)b(Ψ−1) is a continuous bounded function in[
1
e , 1− 1

e

]
. We conclude that, when 0 < Φ, Ψ < 1, the integral (A6) is finite if

a >
1

min{Φ, Ψ} . (A14)

If 1 < min{p, q}+ min{Φ, Ψ}, then

1−min{p, q} < min{Φ, Ψ} ⇐⇒ 1
1−min{p, q} >

1
min{Φ, Ψ} ,

and it is possible to find a such that

1 <
1

min{Φ, Ψ} < a <
1

1−min{p, q} ,

which guarantees (A1).
2. For Ψ ≥ 1 or Φ ≥ 1, we will use Hölder’s inequality a second time: let c, d ≥ 1, such

that 1
c +

1
d = 1. Then,

∫ 1

0
[− ln(1− x)]b(Φ−1)(− ln x)b(Ψ−1)dx

≤
{∫ 1

0

[
(− ln(1− x))b(Φ−1)

]c
dx
} 1

c
{∫ 1

0

[
(− ln x)b(Ψ−1)

]d
dx
} 1

d
.

If Φ, Ψ ≥ 1, then ∫ 1

0
[− ln(1− x)]cb(Φ−1)dx = Γ(cb(Φ− 1) + 1) (A15)

and ∫ 1

0
(− ln x)db(Ψ−1)dx = Γ(db(Ψ− 1) + 1) (A16)

and, consequently, we can conclude that, in this case,∫ 1

0
[− ln(1− x)]b(Φ−1)(− ln x)b(Ψ−1)dx < ∞.
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3. If Ψ ≥ 1 and 0 < Φ < 1, then equality (A15) is verified if

cb(Φ− 1) + 1 > 0 ⇐⇒ cb(1−Φ) < 1 ⇐⇒ c <
1

b(1−Φ)
.

However, c ≥ 1 and, from (A11),

1
b(1−Φ)

> 1 ⇐⇒ 1 > b(1−Φ) ⇐⇒ 1 >
a

a− 1
(1−Φ)

⇐⇒ a− 1 > a− aΦ ⇐⇒ 1 < aΦ⇐⇒ 1
Φ

< a

⇐⇒ 1
min{Φ, Ψ} < a.

4. The case Φ ≥ 1 and 0 < Ψ < 1 is similar to the previous case and we conclude that
(A16) is verified if 1

min{Φ,Ψ} < a.

In short, if p, q ≥ 1, the integral (A4) is finite and if Φ, Ψ ≥ 1, the integral (A6) is finite,
which implies (A1). If 0 < p < 1 or 0 < q < 1, the integral (A4) is finite if condition (A5)
is satisfied and, if 0 < Φ < 1 or 0 < Ψ < 1, the integral (A6) is finite if condition (A14) is
satisfied. If 1 < min{p, q}+ min{Φ, Ψ}, then conditions (A6) and (A18) are satisfied and,
consequently, (A1) is satisfied.

We conclude that if p, q, Φ, Ψ > 0 are such that 1 < min{p, q}+ min{Φ, Ψ}, then∫ 1

0
Gp,q,Φ,Ψ(x)dx < ∞.

Appendix B. Blumberg Equation: Exponents Leading to Geo-Extreme Value Models

Appendix B.1. Blumberg Equation with p + q = 4

Rewriting the Blumberg DE in (4),

dN(t)
dt

= r[N(t)]p−1
[

1− N(t)
K

]q−1

,

as
dN(t)

dt
= r [N(t)]γ

[
1− N(t)

K

]θ

, γ, θ ∈ R+\{1} , (A17)

(i.e., p = γ + 1 and q = θ + 1), and hereinafter considering y = N(t)/K, the DE in (A17) is
transformed into y′ = r∗yγ(1− y)θ , with r∗ = r Kγ−1. The solution is

∫ dy
yγ(1− y)θ

=
∫

r∗dt ⇐⇒ y1−γ

1− γ
2F1(1− γ, θ; 2− γ; y) = r∗t + C ,

where 2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n
(c)n

zn

n! , with (x)n = x(x + 1) · · · (x + n− 1), is the hyperge-

ometric function (Whittaker and Watson [31]; Erdélyi et al. [32]) and C ∈ R. When
2− γ = −n, n = 2, 3, . . . , we have 1− γ = −(n + 1), and therefore, the above hypergeo-
metric function diverges. However, if γ 6∈ N (θ > 0), the hypergeometric function does
converge for |y| < 1.



Fractal Fract. 2023, 7, 194 33 of 40

If θ = 2− γ (i.e., p + q = 4), we have 2F1(1− γ, 2− γ; 2− γ, y) = (1− y)γ−1. In this
particular situation, there is a closed form analytical solution for the DE, since

y1−γ

1− γ
(1− y)γ−1 = r∗t + C ⇐⇒

(
y

1− y

)1−γ

= (1− γ)(r∗t + C)⇐⇒

⇐⇒ y =
1

1 + [(1− γ)(r∗t + C)]−1/(1−γ)
⇐⇒ y =

1

1 +
[

t+C/r∗
1/((1−γ)r∗)

]−1/(1−γ)
.

If we consider α = 1
1−γ , we conclude that

dN(t)
dt

= r [N(t)]1−
1
α

[
1− N(t)

K

]1+ 1
α

=⇒ N(t) =
K

1 +

 t +
C

r K−1/α

α

r K−1/α


−α .

Therefore, when α > 0, we get a solution that is proportional to the log-logistic
CDF with shape parameter α, location parameter − C

r K−1/α , and scale parameter α
r K−1/α .

When α < 0, the solution is proportional to the backward log-logistic CDF with shape
parameter −α, location parameter − C

r K−1/α , and scale parameter − α
r K−1/α . The constant C

is determined using the information on N(0), i.e., the initial population size.

Appendix B.2. Verhulst Equation, p = q = 2

The classical Verhulst DE in (2) emerges as special case of the Blumberg DE in (4) when
p = q = 2 and Φ = Ψ = 1, i.e.,

dN(t)
dt

= r N(t)
[

1− N(t)
K

]
.

This DE can be rewritten as y′ = r y(1− y), whose solution is∫ dy
y(1− y)

=
∫

r dt⇐⇒ ln y− ln(1− y) = rt + C ⇐⇒

⇐⇒ ln
(

y
1− y

)
= rt + C ⇐⇒ y =

1
1 + exp(−rt− C)

,

where C ∈ R. Hence, the solution

N(t) =
K

1 + exp(−rt− C)

is now proportional to the logistic CDF with location −C/r and scale 1/r.

Appendix B.3. Pareto Populations

As GEVξ,λ,δ(y) = exp
(
GPξ,λ,δ(y)− 1

)
, where GPξ,λ,δ denotes the CDF of a generalized

Pareto RV, Xξ,λ,δ _ GPareto(ξ, λ, δ) with shape parameter ξ ∈ R, location parameter λ ∈ R,
and scale parameter δ > 0, we have

GPξ,λ,δ(x) =


1− exp

(
−

x− λ

δ

)
ξ = 0

1−
(

1 + ξ
x− λ

δ

)− 1
ξ

ξ 6= 0

, ξ, λ ∈ R, δ > 0,
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whose support has left-endpoint λ if ξ > 0, and is
[
λ, λ− δ

ξ

]
if ξ < 0. It is interesting to

observe that if in (A17), we consider the case γ = 0, i.e., an absent growth factor, the DE

dN(t)
dt

= r
[

1− N(t)
K

]θ

,

which can be rewritten as y′ = r∗(1− y)θ , where r∗ = r/K, has solution

∫ dy
(1− y)θ

=
∫

r dt⇐⇒ (1− y)1−θ

θ − 1
= rt + C ⇐⇒ y = 1− [(θ − 1)(rt + C)]1/(θ−1) ⇐⇒

⇐⇒ y = 1−
[

1 + (1− θ − 1)
(

rt + C− 1
θ−1

)]1/(1−θ)

.

Considering ξ = θ − 1, we get

y = 1−
[

1 + ξ

(
rt + C− 1

ξ

)]−1/ξ

,

and therefore, the solution

N(t) = K

{
1−

[
1 + ξ

(
t− (1/ξ − C)/r

1/r

)]−1/ξ
}

is proportional to the Generalized Pareto CDF with shape parameter ξ, location parameter
(1/ξ − C)/r, and scale parameter 1/r.

Appendix C. Turner’s Equation: Exponents Leading to Extreme Value Models

Appendix C.1. Gompertz Equation and Max-Gumbel Population

The Gompertz DE in (3), i.e., if p = Ψ = 2 and q = Φ = 1 in the corresponding
BetaBoop Gp,q,Φ,Ψ function,

dN(t)
dt

= r N(t)
[
− ln

(
N(t)

K

)]
,

can be rewritten as y′ = ry(− ln y) or, equivalently, as y′ = −r(−y)(− ln y). The solution is∫ 1
(−y)(− ln y)

dy = −
∫

r dt⇐⇒
∫ −1/y
− ln y

dy = −rt + C ⇐⇒ ln(− ln y) = −rt + C

⇐⇒ y = exp(−e−rt+C) ,

with C ∈ R. Hence,
N(t) = K exp(−e−rt+C)

is proportional to the Gumbel CDF with location parameter −C/r and scale parameter 1/r.

Appendix C.2. Turner Equation and Max-GEV Populations

If we consider p = γ + 1 and Ψ = θ + 1 in the Turner DE

dN(t)
dt

= r [N(t)]p−1
[
− ln

(
N(t)

K

)]Ψ−1

,

i.e.,
dN(t)

dt
= r [N(t)]γ

[
− ln

(
N(t)

K

)]θ

, γ, θ ∈ R+\{1} , (A18)
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it can be rewritten as y′ = r∗yγ(− ln y)θ , where r∗ = Kγ−1r. The general solution satisfies
the equation ∫ dy

yγ(− ln y)θ
=
∫

r∗dt⇐⇒
∫ dy

yγ(− ln y)θ
= r∗t + C ⇐⇒

⇐⇒
x=− ln y

−
∫

x−θe−(1−γ)xdx = r∗t + C ⇐⇒

⇐⇒ (1− γ)θ−1Γ(1− θ, (1− γ)x) = r∗t + C ,

i.e.,

(1− γ)θ−1Γ
(

1− θ, (γ− 1) ln
(

N(t)
K

))
= r∗t + C ,

where C ∈ R and Γ(a, z) =
∫ ∞

z ta−1e−tdt, a > 0, is the incomplete gamma function.
Observe that whenever a < 0 in the incomplete gamma function, we can use the other

form of the incomplete gamma function γ(a, z) =
∫ a

0 za−1e−adz = Γ(a)− Γ(a, z), since

in this case, γ(a, z) = za

a 1F1(a, a + 1;−z), where 1F1(a, b; z) =
∞
∑

n=0

(a)n
(b)n

zn

n! is the confluent

hypergeometric function. For thorough information on the incomplete gamma function
and on the confluent hypergeometric function, consult Whittaker and Watson [31] and
Erdélyi et al. [32].

For the special case γ = 1 (p = 2) in (A18), i.e.,

dN(t)
dt

= r N(t)
[
− ln

(
N(t)

K

)]θ

,

the equation can be rewritten as y′ = ry(− ln y)θ = (−r)(−y)(− ln y)θ . The solution is∫ dy
(−y)(− ln y)θ

= −
∫

r dt⇐⇒
∫ −1/y

(− ln y)θ
dy = −rt + C ⇐⇒

⇐⇒ 1
1− θ

(− ln y)1−θ = −rt + C ⇐⇒ (− ln y)1−θ = −(1− θ)(rt− C)⇐⇒

⇐⇒ y = exp
(
−
(
− (1− θ)(rt− C)

)1/(1−θ)
)

.

Using ξ = θ − 1, we have

y = exp
(
−
(
ξ(rt− C)

)−1/ξ
)
⇐⇒ exp

(
−
(
1 + ξ(rt− C− 1

ξ )
)−1/ξ

)
,

i.e.,

N(t) = K exp

(
−
(

1 + ξ

(
t− (C + 1/ξ)/r)

1/r

))−1/ξ
)

,

which is proportional to the GEV CDF with shape parameter ξ, location parameter
(C + 1/ξ)/r, and scale parameter 1/r.

Appendix C.3. Modified Gompertz Equation and Min-Gumbel Population

On the other hand, if we consider the DE associated with the BetaBoop G1,2,2,1 function,
i.e.,

d
dt

N(t) = r
[

1− N(t)
K

] [
− ln

(
1− N(t)

K

)]
, (A19)

similar arguments lead to a min-Gumbel solution as seen below.
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Rewriting (A19) as y′ = r∗(1− y)(− ln(1− y)), where r∗ = r/K, we get the solution∫ dy
(1− y)(− ln(1− y))

=
∫

r∗dt⇐⇒
∫ 1/(1− y)
− ln(1− y)

dy = r∗t + C ⇐⇒

⇐⇒ ln(− ln(1− y)) = r∗t + C ⇐⇒ y = 1− exp
(
−er∗t+C

)
,

where C ∈ R. Thus,
N(t) = K

(
1− exp

(
−ert/K+C

))
is proportional to the min-Gumbel CDF with location parameter −KC/r and scale parame-
ter K/r.

Appendix C.4. Modified Turner Equation and Min-GEV Populations

The more general DE,

dN(t)
dt

= r
[
1− N(t)

K

][
− ln

(
1− N(t)

K

)]γ
, γ ∈ R+\{1}

(i.e., q = 2 and Φ = γ + 1), which can be rewritten as

y′ = r∗(1− y)[− ln(1− y)]γ ⇐⇒ y′ = (−r∗)[−(1− y)][− ln(1− y)]γ ,

with r∗ = r/K, has the solution

∫ − 1
(1−y)

[− ln(1− y)]γ
dy = −

∫
r∗dt⇐⇒

⇐⇒
∫ (
− 1

1− y

)
[− ln(1− y)]−γdy = −r∗t + C ⇐⇒

⇐⇒ [− ln(1− y)]1−γ

γ− 1
= −r∗t + C

⇐⇒ [− ln(1− y)]1−γ = (γ− 1)(−r∗t + C)

⇐⇒ − ln(1− y) = [(γ− 1)(−r∗t + C)]1/(1−γ)

⇐⇒ 1− y = exp{−[(γ− 1)(−r∗t + C)]1/(1−γ)}

⇐⇒ y = 1− exp
{
−[(γ− 1)(−r∗t + C)]1/(1−γ)

}
.

Using α = 1
γ−1 , we have

y = 1− exp

[
−
(
− r∗t− C

α

)−α
]
⇐⇒ y = 1− exp

[
−
(
− t− C/r∗

α/r∗

)−α
]

.

Therefore,

N(t) = K

{
1− exp

[
−
(
− t− KC/r

Kα/r

)−α
]}

,

i.e.,

• When α > 0, the solution is proportional to the min-Fréchet CDF with shape parameter
α, location parameter KC/r, and scale parameter Kα/r;

• When α < 0, the solution is proportional to the Weibull CDF with shape parameter
−α, location parameter KC/r, and scale parameter −Kα/r.
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