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Abstract: A general approach to solving the Dirichlet problem, both for bounded 3D domains and
for their unbounded complements, in terms of the fractional (3D) Poisson equation, is presented.
Lauren Schwartz class solutions are sought for tempered distributions. The solutions found are
represented by a formula that contains the volume Riesz potential and the one-layer potential, the
latter depending on the boundary data. Infinite regularity of fractional harmonic functions, analogous
to the infinite smoothness of the classical harmonic functions, is also proved in the respective domain,
no matter what the boundary conditions are. Other properties of the solutions, that are presumably
of interest to mathematical physics, are also investigated. In particular, an intrinsic decay property,
valid far from the common boundary, is shown.

Keywords: fractional laplacian; Riesz potentials; integral equations; unbounded domains; explicit
solutions; regularity

1. Introduction

The topic of the fractional Laplacian has recently accumulated increasing interest
(e.g., [1], wherein a large number of relevant results were cited [2–5]). As discussed in [1],
the leading motivation was inspired by possible applications. Dealing with such Laplacian
operators (with the appropriate boundary value problem) stems from essential questions
concerning the Brownian motion phenomena. From the accepted view point, Brownian
particle behavior, close to a surface barrier ∂Ω (given a bounded, say 3D, domain Ω) gener-
ally admits some kind of anomalous stage, called subordination (see the explanations and
references in [1]). The particle motion is guided by a Levy process. The well-known Dirich-
let and Neumann problems, for the fractional Laplace (Poisson) equation, are adequate
mathematical models. The progress in the fractional Laplacian topics is due to the results of
many authors (see [1]) over the last two decades. There are, in addition, interesting recent
results in related fields, e.g., [6,7].

However, the Dirichlet problem for the fractional Poisson equation has been rela-
tively weakly explored until now (see [1]). (The same applies for the Neumann problem).
Regarding the Dirichlet problem, several results from the last decade should be noted,
as these built the framework of the contemporary state [2–5,8]. In [2], nonzero Dirichlet
boundary data was imposed on ∂Ω, for the Poisson equation with non-homogeneous
fractional Laplacian. There was a difference with our main result. It was seen from the
observation that the fractional harmonic function u(x) (i.e., (∆)α/2u = 0 in Ω) regarding
the Laplacian, introduced below, was not generally fractionally harmonic, regarding the
non-homogeneous fractional Laplacian. Nonzero (local) boundary data was considered in
[5], but for the well-posedness Dirichlet problem a finite dimensional linear condition was
assumed for the equation and boundary data { f , ϕ}. Similar results were obtained in [3,4],
actually under zero boundary conditions, in the case of stopped α, stable motion, which
were not related to what was found in our study. It is worth mentioning the work of [3,5],
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which represents an important upgrade of the ideas of HŐrmander and early Vishik and
Eskin, based on pseudo-differential operators of fractional degree. Note that, in [8], a
fractional Poisson–Boltzmann equation was analyzed under zero boundary conditions (as
in [4]). Nevertheless, the analysis of the Dirichlet problem in the exterior of bounded, say
3D, domains has not been undertaken up to the present, for the fractional Laplace (and
Poisson) equation. Similar remarks can be made concerning the (infinite) interior regularity
of the fractional harmonic functions (satisfying the equation (−∆)α/2u = 0, for a given do-
main D ⊂ R3. Our interest in the case of unbounded exterior R3 \ (Ω ∪ ∂Ω) of a bounded
domain Ω was inspired by the possibility of anomalous electric potential distributions in
heterogeneous material systems possessing some kind of quasi-vacuum sub-phases. Via
the anomalous behavior of the Brownian motion, we observed, in addition, the generally
realistic process for particles coming from the exterior into the bounded zone. We dealt
here with 3D bounded domains Ω ⊂ R3 and their complements CΩ := R3 \ (Ω ∪ Γ),
with Γ = ∂Ω, the closed (2D) boundary surface of Ω, assumed to be of second order
(C2) regularity.

For the Laplacian degree α/2 (−∆)α/2, assuming 1 < α ≤ 2 and the action (−∆)α/2u
is defined by its Fourier transform |ξ|αû(ξ), for u ∈ S′ = S′(R3), the class of the Schwartz
tempered distributions (e.g., [9]) gives rise to the following: |ξ| is the length of the
vector ξ ∈ R3 and û(ξ) = F[u](ξ) is the Fourier image of u. Concerning the Fourier
transformation, we proceed with the convention φ̂(ξ) =

∫
R3 exp(−i〈x, ξ〉)φ(x)dx and

φ(x) = 1
(2π)3

∫
R3 exp(i〈x, ξ〉)φ̂(x)dx, φ ∈ S = S(R3), the Schwartz class of the fast de-

creasing (infinitely smooth) functions ([9]), 〈x, ξ〉 is the scalar product of the vectors x, ξ.
Thus, we have (−∆)α/2u(x) := F−1[|ξ|αû(ξ)](x), u ∈ S′, x varying in R3, where F−1 is the
inverse map of F (The symbol (−∆)α/2 for the fractional Laplacian is the one introduced
in [1]).

Our approach to the problem of Dirichlet is based on exploring a simple, but effective,
idea to deal with the global Laplacian, i.e., (−∆)α/2u = F−1[|.|αF], on such distributions
u from S′ that the action product (−∆)α/2u coincides on Ω with a prescribed function
(distribution) f , and possesses traces (u|Γ) on Γ (with prescribed values ϕ(x) of u|Γ, x ∈ Γ).
Additionally, we remark that the way we looked for globally-defined solutions (given
a boundary value problem) was first suggested by the 1D case of the Poisson equation

(−∆)α/2u = f , with ∆ =
d2

dx2 , considered in unbounded intervals l0 < x < ∞, l0 ∈ R1.
(some details regarding this case are provided in the Appendix A).

Slightly formalized, the above idea gives rise to the following. Given a function
f (x), x ∈ Ω, say bounded, i.e., f ∈ L∞(Ω), and boundary data ϕ(x), x ∈ Γ for instance
ϕ ∈ L2(Γ), the point is to solve the (extended on R3 ) equation (−∆)α/2u = F0, with
F0 ∈ S′ : F0|Ω = f , by a suitable distribution u ∈ S′, satisfying the condition u|Γ = ϕ
(As seen below, the proper choice for F0 is F0|CΩ = 0). If we assume we have found
u ∈ S′, we could get a globally-existing (i.e., defined on R3 ) solution of the problem under
consideration, reformulated now in the form:

(a) (−∆)α/2u|Ω = f , (u ∈ S′); (b) u|Ω = ϕ. (1)

The above formulation actually gives the shortest illustration to the approach used
here concerning the problem of Dirichlet (for a given bounded domain Ω, i), for the
fractional Poisson equation. We are close now to the key question of existence of a solution
S′, for the Equation (1), for a sufficiently large class of boundary data. As a first accessory

step to that goal, consider the volume-type potential Uβ, f :=
∫

Ω

f (y)dy
|x− y|β

, x ∈ R3, 0 < β,

β = β(α), prompted from the analogy with the conventional case of (1), where α = 2,
β = 1. Following [1]. We call such potentials Riesz (volume) potentials, and, enlarging

the terminology, the functions of the type Vβ,g :=
∫

Γ

g(y)dsy

|x− y|β
, (x ∈ R3) are called surface

(or single layer) Riesz potentials (here g ∈ L2(Γ), by assumption, and dsy is the known
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surface differential element). The right value of β, namely β = 3− α, is, however, directly
shown from the well-known (e.g., [10,11], and also [1]) Fourier transform relation F :

c3,α

|x|3−α
→ 1
|ξ|α , with c3,α =

Γ( 3−α
2 )

2απ3/2Γ( α
2 )

.Taking the precise expression, instead of Uβ, f (x),

we obtain the potential uα, f :=
∫

Ω

c3,α f (y)dy
|x− y|3−α

, (x ∈ R3), which satisfies the Equation (1).

Certainly, uα, f :=
∫
R3

c3,α f 0[ f ](y)dy
|x− y|3−α

=
c3,α

|.|3−α
∗ f 0[ f ], where f 0[ f ](y) = f (y) for y ∈ Ω,

and f 0[ f ](y) = 0, when y ∈ CΩ, U ∗V is the convolution (see [9] for details) of U , V ∈ S′.

Then, (−∆)α/2uα, f =

(
(−∆)α/2 c3,α

|.|3−α

)
∗ f 0[ f ] = δ ∗ f 0 = f 0, here δ = δ(x), (x ∈ R3)

is supported by the point x = 0 Dirac delta function; i.e.,
(
(−∆)α/2uα, f

)
(x) = f 0[ f ](x),

x ∈ R3 (therefore, (−∆)α/2uα, f |Ω = f ). These calculations evidently also remain valid for
the generalized expression of uα, f ,

uα, f :=
∫
D

c3,α f (y)dy
|x− y|3−α

, x ∈ R3, D = Ω or D = CΩ. (2)

From now on we assume the following requirements for the function f (x) are fulfilled
when defined for x ∈ D:

(a) f ∈ L∞(D), D = Ω; (b) f ∈ L∞(D) ∩ L1(D), D = CΩ. (3)

It is not difficult to establish that the given (2) potential uα, f (x) is a continuous function
in D ∪ Γ, and, therefore, the trace ϕα, f (x), x ∈ Γ, ϕα, f := uα, f |Γ is continuous on Γ. Via
the problem of Dirichlet, we find that uα, f is a solution of the equation (−∆)α/2u|D = f ,
with u|Γ = ϕα, f . The next step is to seek solutions in S′ with arbitrarily prescribed data,
as assumed in L2(Γ). In this direction, suppose u ∈ S′ is a solution of the above equation.
Then (−∆)α/2[u− uα, f ] = 0 in Ω ∪ CΩ and, therefore Lα, f (x) := (−∆)α/2[u− uα, f ](x), is
a distribution supported on the surface Γ. We deal here with the case, Lα, f (x) ≡ δΓ[g](x),
x ∈ R3; i.e., we are interested in solutions u ∈ S′ of the equation (−∆)α/2u = f 0[ f ] on
Ω ∪ CΩ, satisfying the condition:

(−∆)α/2[u− uα, f ] = δΓ[g] in S′. (4)

Above δΓ[g] is the supported Γ delta function of Dirac, with a density function
g = g(x) ∈ L2(Γ) (As is known, e.g., [9], the action ( δΓ[g], φ) of δΓ[g] on an arbitrary
φ ∈ S is defined by the next surface integral, (δΓ[g], φ) :=

∫
Γ g(y)φ(y)dsy). The important

partial case f = 0 ( uα, f = 0) concerns these distributions w ∈ S′, solving the equation
below (for g varying in L2(Γ)):

(−∆)α/2w = δΓ[g] in S′. (5)

Solutions such as w are called BF harmonic (basic fractional harmonic) functions in R3, and
the family S′α, f of all solutions u ∈ S′ to (4) (with g varying in L2(Γ)) can be called the GS
(global solutions) family.

Remark 1. (1) Clearly for each two distributions u1, u2 ∈ S′α, f the difference u2 − u1 is a BF
harmonic function.
(2) A possibly larger class of solutions u ∈ S′ to the equation (−∆)α/2u = f 0[ f ] could be expected
in the case Lα, f = δΓ[g0] + ∂nδΓ[g1], where g0, g1 ∈ L2(Γ) and ∂nδΓ[g](x) is the normal to Γ
derivative of δΓ[g] at the point x ∈ Γ.
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It is not difficult to obtain a structural description of the family S′α, f . After using the
Fourier transform in the relation (4), one can directly resolve (4) regarding u− uα, f and
find, in this manner, the next general formula:

u = δΓ[g] ∗
c3,α

|.|3−α
+ uα, f in S′. (6)

The above convolution δΓ[g] ∗
c3,α
|.|3−α evidently introduces the single layer Riesz po-

tential vα,g(x) :=
∫

Γ
c3,αg(y)dy
|x− y|3−α

, (x ∈ R3) which possesses well-defined direct values

ψα,g(x), x ∈ Γ, ψα,g := vα,g|Γ, with ψα,g ∈ L2(Γ). This holds because the integral operator
Bα,Γ[g] := ψα,Γ, g ∈ L2(Γ), has a weak singularity (3− α < 2) and, according to the known
classical theory (e.g., [10,12,13]), the map Bα,Γ : L2(Γ)→ L2(Γ) is a bounded linear opera-
tor. As seen from (6), each solution u ∈ S′α, f has an L2 trace on Γ (for f satisfying (3)). Let

us also check that the term δΓ[g] ∗
c3,α

|.|3−α
is a BF harmonic function:

(
(−∆)α/2δΓ[g] ∗

c3,α

|.|3−α

)
= δΓ[g] ∗ (−∆)α/2 c3,α

|.|3−α

= δΓ[g] ∗ δ = δΓ[g].

Concluding the above results, we have already found that (−∆)α/2uα, f = f 0[ f ] and(
(−∆)α/2δΓ[g] ∗

c3,α

|.|3−α

)
= δΓ[g]

(both in S′), i. e. (−∆)α/2u = δΓ[g] + f 0[ f ] in S′ (for each g ∈ L2(Γ)), u given by (6), and
u|Γ = ψα,g + ϕα, f ( f satisfying (3)).

Now the final question is whether a possibly unique g ∈ L2(Γ) can be determined,
corresponding to ϕ, for arbitrary ϕ in a suitable sub-space of L2(Γ). Then, by means of the
Formula (6) we could obtain a solution of the basic problem:

(a) (−∆)α/2u|D = f , b) u|Γ = ϕ. (7)

This solution is expected to be unique in the family S′α, f . We provide a positive answer to

this question by introducing, in Section 3 (below), the sub-space H1
α ⊂ L2(Γ) (coincident

with the map image of Bα,Γ[L2(Γ)]), and then find a unique g ∈ L2(Γ), such that Bα,Γ[g] =
ϕ− ϕα, f , for ϕ ∈ L2(Γ) : ϕ− ϕα, f ∈ H1

α(Γ). The key instrument for obtaining the answer is
contained in the properties of the boundary operator Bα,Γ, analyzed primarily in the next
Section 2.

In the present paper we propose a new approach for solving the problem of Dirichlet
for the fractional Poisson equation with local nonzero boundary data, valid both for
bounded (3D) domains and their unbounded exteriors. It is illustrated by several key
results essentially different from the known ones:

(1) The problem whether zero is an eigenvalue of the boundary integral operator

Bα,Γ : L2(Γ)→ L2(Γ)

is solved.
(2) By obtaining explicit formulae, consisting in two Riesz-type potentials, a single layer

and a volume one, well-posedness is established regarding solutions from the fami-
lies S′α, f .

(3) The basic properties of the found solutions for regularity and asymptotic behavior (far
from the boundary), as well as the inherent a-posterior estimates, are proved, includ-
ing, in particular, the infinite interior regularity of the fractional harmonic functions.
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The article is organized as follows. In Section 2 we study the question of the zero kernel
of Bα,Γ and prove the crucial fact that zero is not an eigenvalue of Bα,Γ. Section 3 includes
the main well-posedness result (based on explicitly expressed solutions) and the theorems
concerning the solution’s asymptotic behavior and their regularity in R3 \ Γ–classical and
in Hs

loc sense, the proper estimates as well. In the Appendix A we consider certain inherent
cases of singular boundary data for the 1D fractional Poisson equation, at 0 < α < 1.

2. The Zero Kernel of the Boundary Integral Operator

It turns out that the kernel of the operator Bα,Γ (acting from L2(Γ) into L2(Γ)) consists
only of the zero element g = 0, i.e., the unique solution of the equation Bα,Γ[g] = 0 is g = 0.
The key to this very important property lies in a simple, but essential, relation in the form:
Iα(∞) = const.JΓ,α, where Iα(∞) = lim

r→∞
Iα(r) and the terms Iα(r), JΓ,α present, respectively,

the integrals:

Iα(r) =
∫
|ξ|≤r
|δ̂Γ[g]|2|ξ|−αdξ;

JΓ,α =
∫

Γ
g(x)(δΓ ∗ |.|α−3)(x)dsx.

Clearly, the above relation (when it holds) means, in particular, that the integral Iα(∞) =∫
R3 |δ̂Γ[g]|2|ξ|−αdξ converges. (Here δ̂Γ[g](ξ) is the Fourier image of δΓ[g](x).) The men-

tioned equality shopuld be found as a specific consequence of the well known Parseval
equality (e.g., [9,14]). To this goal we begin by considering a complement to Parseval’s
equality idea.

Proposition 1. (The boundary Parseval formula.) The following relation is valid, for each function
ψ ∈ C∞(R3), with ψ̂ ∈ L1(R3):

(2π)3(δΓ[g], ψ) = (δ̂Γ[g], ψ̂). (8)

Proof. Note, firstly, that ψ is the complex conjugated quantity to ψ and recall that the
notation (δΓ[g], ψ) expresses the action of δΓ[g], as a distribution in S′, on the function ψ – as
an arbitrary element of S. Thus, (δΓ[g], ψ) =

∫
Γ g(x)ψ(x)dsx, and, by analogy, the notation

(δ̂Γ[g], ψ̂), i.e.,

(δ̂Γ[g], ψ̂) =
∫
R3

δ̂[g](ξ)ψ̂(ξ)dξ

=
∫
R3

ψ̂(ξ)
∫

Γ
g(x) exp(−i〈x, ξ〉)dsxdξ. (9)

The proof uses the approximation approach to (8) the following two-step scheme: first,
obtain (8) with w ∈ C∞

0 (R3) instead of δΓ[g], and C∞
0 (R3) is the space of the compactly

supported infinitely smooth functions. Then, apply an approximation procedure with
wn (wn ∈ C∞

0 (R3), n = 1, 2, . . . ) tending to δΓ[g], at n → ∞. The first step is done in the
given lemma.

Lemma 1. The next Parseval equality is valid for each pair w ∈ C∞
0 (R3) and ψ ∈ C∞(R3), with

ψ̂ ∈ L1(R3):
(2π)3(w, ψ) = (ŵ, ψ̂). (10)

At the beginning of the proof of (10), note, as above, that the notation (w, ψ) is used
in the known distribution ( S′) sense, with (w, ψ) =

∫
R3 w(x)ψ(x)dx, and, by analogy,

the notation (ŵ, ψ̂). Now, let us introduce the function φ0(x) ∈ C∞
0 : φ0(x) = φ0(|x|),

1 ≥ φ0(x) ≥ 0, ∀x, φ0(x) ≡ 1 for |x| ≤ r0/2, φ0(x) ≡ 0 for |x| ≥ r0 , with a fixed r0 > 0,
such that

∫
R3 φ0(x)dx = 1. With the real parameter s ∈ (0, 1] we deal with φ0(sx) and
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its Fourier map F[φ0(s.)](ξ) = 1
(2πs)3 φ̂0(s−1ξ). Then, the conventional Parseval formula

yields the identity Q(s) = (2π)−3Q̃(s), for s ∈ (0, 1], where Q(s) := (w, ψφ0(s.)) and
Q̃(s) := (ŵ, ψ̂ ∗ (2πs)−3φ̂0(./s)). For our goal, we had to compare the limit values of Q(s)
and Q̃(s) at s → 0. Function Q(s) was actually defined and continuous in [0, 1], i.e., its
limit value ( s→ 0) was Q(0), while, concerning the lim

s→0
Q̃(s), we needed some reworking

of the integral for Q̃(s). Starting from the initial expression of Q̃(s), and applying the linear
transform θ = s−1(ξ − η) in the repeated integral (below), we consecutively found the
following relations:

Q̃(s) =
∫
R3

ŵ(ξ)ψ̂ ∗ (2πs)−3φ̂0(s−1.)(ξ)dξ

=
∫
R3

ŵ(ξ)
∫
R3

ψ̂(η)(2πs)−3φ̂0(s−1(ξ − η))dηdξ

=
∫
R3

ψ̂(η)
∫
R3

ŵ(η + sθ)
φ̂0(θ)

(2π)3 dθdη.

The above integral
∫
R3 ŵ(η + sθ)φ̂0(θ)dθ is uniformly convergent for, respectively, the pa-

rameters (η, s) ∈ K0× [0, 1] , for each compact K0 ⊂ R3 (This clearly holds, because ŵ(ξ) is
a bounded function). Therefore, F̃0

w(η, s) :=
∫
R3 ŵ(η + sθ)φ̂0(θ)dθ is a continuous, bounded

function in R3 × [0, 1], and, repeating the same argument (now that
∫
R3 ψ̂(η)F̃0

w(η, s)dη is
also a uniformly convergent integral), we obtain f̃ 0

w(s) :=
∫
R3 ψ̂(η)F̃0

w(η, s)dη is a contin-
uous function in [0, 1]. However, Q̃(s) is identical with (2π)−3 f̃ 0

w(s) for 0 < s ≤ 1, and
lim
s→0

Q̃(s) = f̃ 0
w(0)/(2π)3 = (ŵ, ψ̂), i.e., lim

s→0
Q̃(s) = (ŵ, ψ̂). (We used 1

(2π)3

∫
R3 φ̂0(θ)dθ =

φ0(0) = 1). Thus, letting s→ 0 in the equality Q(s) = (2π)−3Q̃(s), we obtain the necessary
Formula (10).

The approximation step is now performed. Suppose {wn(x)}, n = 1, 2, . . . , is an
infinite family of functions wn ∈ C∞

0 (R3), such that the family of the Fourier maps {wn}
is uniformly bounded and limn→∞ wn = δΓ[g] (in S′). An easy direct construction of
such a family is given by the convolution wn := δΓ[g] ∗ n3φ0(nx). In this case, it is well-
known (and can be easily verified) that lim

n→∞
wn = δΓ[g] in S′ , and the assumption for an

uniformly bounded {ŵn} is directly seen from ŵn = δ̂Γ[g]φ̂0(./n) (clearly δ̂Γ[g] and φ̂0

are bounded functions). Letting n → ∞ in the equality (2π)3(wn, ψ) = (ŵn, ψ̂) (see (10)),
we, respectively, obtain: lim

n→∞
(wn, ψ) = (δΓ[g], ψ), and lim

n→∞
(ŵn, ψ̂) = (δ̂Γ[g], ψ̂), for ŵn =

δ̂Γ[g]φ̂0(./n). Here we take into account the equality (ŵn, ψ̂) =
∫
R3 δ̂Γ[g](ξ)φ̂0(ξ/n)ψ̂(ξ)dξ,

combined with the estimate |δ̂Γ[g](ξ)φ̂0(ξ/n)ψ̂(ξ)| ≤ (mes(Γ))1/2||g||L2(Γ)|ψ̂(ξ)|, ξ ∈ R3,
and then apply the well-known Lebesgue dominated convergence theorem (e.g., [15]),
to find:

lim
n→∞

∫
R3

δ̂Γ[g](ξ)φ̂0(ξ/n)ψ̂(ξ)dξ =
∫
R3

δ̂Γ[g](ξ)ψ̂(ξ)dξ = (δ̂Γ[g], ψ̂).

(Above mes(Γ) is the measure of Γ and ||g||L2(Γ) is the L2 norm of density g), This proves
the boundary Parseval Formula (8).

Below, we add a consequence of (8), useful for the basic result in this section.

Corollary 1. For each φ ∈ C∞
0 (R3) the next Parseval-type relation holds, with φF = F−1[φ]:

∫
R3
|δ̂Γ[g](ξ)|2.

φ(ξ)

|ξ|α dξ = (2π)3
∫

Γ
g(x)

(
δΓ[g] ∗

c3,α

|.|3−α
∗ φF

)
(x)dsx. (11)

Proof. Let us set ψg(x) =
(

δΓ[g] ∗
c3,α
|.|3−α ∗ φF

)
(x). Then, ψ̂g(x) = δ̂Γ[g](ξ)

φ(ξ)
|ξ|α and

(δ̂Γ[g], ψ̂g) =
∫
R3 |δ̂Γ[g](ξ)|2. φ(ξ)

|ξ|α dξ. In addition (δΓ[g], ψg) evidently equals the right
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hand integral above. Clearly, it is not difficult to check the two assumptions regard-
ing ψg, First, it is directly seen that ψ̂g ∈ L1(R3), and second, from ψg = ψg,α ∗ φF, where
ψg,α := δΓ[g] ∗

c3,α
|.|3−α is a distribution in Lloc

1 (R3), the validation as to whether ψg ∈ C∞(R3)

is obvious. Thus, the proof of (11) follows directly from (8).
Now, the basic result in Section 2 can be presented.

Theorem 1. (The kernel of Bα,Γ.) The zero is not an eigen value of the boundary integral operator

Bα,Γ : L2(Γ)→ L2(Γ),

i.e., the only solution of the equation Bα,Γ[g] = 0 is g = 0.

Proof. Using (11) with φ(ξ) ≡ φ0(σξ), ξ ∈ R3, where σ ∈ (0, 1] is a real parameter, we get
the formula:∫

R3
|δ̂Γ[g](ξ)|2.

φ0(σξ)

|ξ|α dξ =
∫

Γ
g(x)

(
δΓ[g] ∗

c3,α

|.|3−α
∗ σ−3φ̂0(./σ)

)
(x)dsx. (12)

(Note here hat φ̂0 is a real valued function), For the auxiliary assumption for g as a continu-
ous function on Γ we first analyze the limit values of the integrals above, for σ→ 0. Clearly,
the limit expression of (12) is expected in the form:

∫
R3

|δ̂Γ[g](ξ)|2
|ξ|α dξ = (2π)3

∫
Γ

g(x)
(

δΓ[g] ∗
c3,α

|.|3−α

)
(x)dsx. (13)

We start with the integral J0
Γ,α(σ) :=

∫
Γ g(x)

(
δΓ[g] ∗

c3,α
|.|3−α ∗ σ−3φ̂0(./σ)

)
(x)dsx (The left

integral I0
Γ,α(σ) in (12), with I0

Γ,α(σ) :=
∫
R3 |δ̂Γ[g](ξ)|2. φ0(σξ)

|ξ|α dξ, is commented on later).

From the simplified expression J0
Γ,α(σ) =

∫
Γ g(x)J0

Γ,φ(x; σ)dsx, where

J0
Γ,φ(x; σ) :=

(
δΓ[g] ∗

c3,α

|.|3−α
∗ σ−3φ̂0(./σ)

)
(x)

=
∫

Γ
g(y)

∫
R3

c3,ασ−3φ̂0(tσ−1)

|x− y− t|3−α
dtdsy,

it is directly seen that J0
Γ,α(σ) can be presented as follows (applying the substitution

tσ−1 = τ):

J0
Γ,α(σ) =

∫
Γ

g(x)
∫

Γ
g(y)

∫
R3

c3,ασ−3φ̂0(tσ−1)

|x− y− t|3−α
dtdsydsx

=
∫
R3

φ̂0(τ)
∫

Γ
g(x)

∫
Γ

c3,αg(y)dsy

|x− στ − y|3−α
dsxdτ. (14)

Thus, J0
Γ,α(σ) =

∫
R3 φ̂0(τ)

∫
Γ g(x)Fg(x − στ)dsxdτ, with Fg(θ) :=

∫
Γ

c3,αg(y)dsy

|θ − y|3−α
. Note

that Fg(θ) is a bounded and continuous function for θ ∈ R3, because the given single
layer Riesz potential (defining Fg) is uniformly convergent regarding θ, for θ ∈ K ⊂ R3,
K an arbitrarily fixed compact set, containing the closed surface Γ, under the assump-
tion of continuous surface density g and the second order regularity of Γ. This holds
by the same arguments that are well known from classical potential theory (e.g., [12])
of the single layer potential (the case of α = 2). Next, the found properties of Fg(θ)
yield the automatic conclusion that the function G(θ) :=

∫
Γ g(x)Fg(x − θ)dsx is also

bounded and continuous, θ ∈ R3. Then, again by the mentioned Lebesgue theorem,
we see that the integral

∫
R3 φ̂0(τ)G(στ)dτ is uniformly convergent regarding σ ∈ [0, 1], i.e.,
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J0
Γ,α(σ) =

∫
R3 φ̂0(τ)G(στ)dτ is a continuous function in [0, 1]. We get this way:

∃ lim
σ→0

J0
Γ,α(σ) = J0

Γ,α(0). As is clear from (14), J0
Γ,α(0) =

∫
R3 φ̂0(τ)dτ

∫
Γ g(x)

∫
Γ

c3,αg(y)dsy
|x−y|3−α dsx,

i.e., (because of equality
∫
R3 φ̂0(τ)dτ = (2π)3) J0

Γ,α(0) = (2π)3
∫

Γ g(x)(δΓ[g] ∗
c3,α
|.|3−α )(x)dsx)

(see the right hand side of (13)). In addition (12) also yields: ∃ lim
σ→0

I0
Γ,α(σ) = J0

Γ,α(0). On the

other hand, from the estimates I0
Γ,α(r

0r−1) ≤ Iα(r) ≤ I0
Γ,α(r

0r−1/2) we establish that there
exists the limit value Iα(∞) := lim

r→∞
Iα(r), i.e., the integral

∫
R3 |δ̂Γ[g]|2|ξ|−αdξ converges and

its value Iα(∞) equals to J0
Γ,α(0). Thus, (13) is proven.

Let us look at whether Formula (13) remains valid in the general case
g ∈ L2(Γ). Actually it is enough to establish the next inequality:

Iα(r)[g] ≤ (2π)3
∫

Γ
g(x)Bα,Γ[g](x)dsx, g ∈ L2(Γ). (15)

Here r > 0 is an arbitrary fixed, Iα(r)[g] is the previously given integral Iα(r), and
for x ∈ Γ: Bα,Γ[g](x) ≡ (δΓ[g] ∗

c3,α
|.|3−α )(x). Note firstly that the integrals Iα(r)[g] and∫

Γ g(x)Bα,Γ[g](x)dsx are correctly defined ∀ g ∈ L2(Γ). Choosing now an arbitrary approx-
imating sequence {gn} : gn → g, n → ∞ in L2(Γ), gn – continuous (∀ n = 1, 2, . . . ), we
evidently have from (13) the estimate:

Iα(r)[gn] ≤ (2π)3
∫

Γ
gn(x)Bα,Γ[gn](x)dsx. (16)

Then, let n → ∞ in (16), to provided preliminary verification that Iα(r)[gn] and∫
Γ gn(x)Bα,Γ[gn](x)dsx, respectively, tend to Iα(r)[g] and

∫
Γ g(x)Bα,Γ[g](x)dsx. Certainly,

first of all, the below relations evidently hold,

|δ̂Γ[g](ξ)− δ̂Γ[gn](ξ)| = |
∫

Γ
[g(x)− gn(x)] exp (−i〈x, ξ〉)dsx|

≤ (mes(Γ))1/2||g− gn||L2(Γ),

consequently, |δ̂Γ[gn](ξ)| uniformly tends (at n→ ∞) to |δ̂Γ[g](ξ)|, for |ξ| ≤ r, and the same
is valid concerning |δ̂Γ[gn](ξ)|2 and |δ̂Γ[g](ξ)|2. Therefore, lim

n→∞
Iα(r)[gn] = Iα(r)[g]. On the

other hand, it is not difficult to find:

|
∫

Γ
(g(x)Bα,Γ[g](x)− gn(x)Bα,Γ[gn](x))dsx| ≤ ||g− gn||L2(Γ).||Bα,Γ[g]||L2(Γ)

+ ||gn||L2(Γ).||Bα,Γ||.||g− gn||L2(Γ),

(||Bα,Γ|| is the norm of the operator Bα,Γ); i.e., the integral
∫

Γ gn(x)Bα,Γ[gn](x)dsx tends
to
∫

Γ g(x)Bα,Γ[g](x)dsx (n → ∞). Thus, the estimate (15) is proved, and, observing that
the function of r Iα(r)[g]is monotone, increasing and bounded (because of (15)) we con-
clude that the integral

∫
R3 |δ̂Γ[g]|2|ξ|−αdξ = Iα(∞)[g] := lim

r→∞
Iα(r)[g] converges and the

following inequality is fulfilled:∫
R3
|δ̂Γ[g]|2|ξ|−αdξ ≤ (2π)3

∫
Γ

g(x)Bα,Γ[g](x)dsx, g ∈ L2(Γ). (17)

Finally, when Bα,Γ[g] = 0 evidently Bα,Γ[g] = 0 as well, and (17) shows that δ̂Γ[g] = 0,
consequently δΓ[g] = 0 which automatic yields g = 0. This proves the theorem.

3. Main Results

The found property of the operator Bα,Γ was certainly of essential importance in our
approach for solving the problem of Dirichlet. It is in a direct relation with the well-known
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Hilbert–Schmidt theorem (e.g., [14,15]) and, as a first step below, we recall a selected
formulation of this theorem.

Theorem 2. (Hilbert–Schmidt)
Let B : H → H be a bounded, compact and symmetrical linear operator in the Hilbert space

H, with h = 0 as the unique solution of the equation Bh = 0 , h varying in H. Then there exists a
complete orthogonal system {hj} ⊂ H, ||hj|| = 1, j = 1, 2, . . . , of eigenvalue elements to B, with a
corresponding set of (real) eigenvalues {λj}, such that the following expression holds, ∀ h ∈ H:

(H-S), h =
∞

∑
j=1

σjhj, σj = 〈h, hj〉. Here, 〈. , .〉 is the scalar product in H (and ||h|| = 〈h, h〉

is the norm of h).

Preparing to apply Theorem 2 concerning the operator Bα,Γ, we start with the next
two initial properties, the first one follows from the classical theory of the weakly singular
integral equations, and the second from Theorem 2.

(i*) The integral operator Bα,Γ : L2(Γ)→ L2(Γ), with

Bα,Γ[g](x) :=
∫

Γ
c3,αg(y)|x− y|α−3dsy,

x ∈ Γ, g ∈ L2(Γ), is bounded, compact and symmetrical.
(ii*) Each function µ ∈ L2(Γ) can be uniquely expressed by the decomposition for-

mula below:

µ =
∞

∑
k=1

γkζk,α, in L2(Γ), (18)

where {ζk,α} is the complete orthogonal system of eigen functions for Bα,Γ and γk are the
Fourier coefficients of µ, γk :=

∫
Γ µ(x)ζk,α(x)dsx. In our basic result we use the already

mentioned sub-space H1
α(Γ) ⊂ L2(Γ).

Definition 1. Let us set

H1
α(Γ) := {ϕ ∈ L2(Γ), ϕ =

∞

∑
k=1

τkζk,α :
∞

∑
k=1

τ2
k λ−2

k,α < +∞}, where λk,α are the eigenvalues

of Bα,Γ. The scalar product 〈ϕ, ψ〉1,α in H1
α(Γ) is defined by the sum

∞

∑
k=1

τkθk(1 + λ−2
k,α), for

ϕ, ψ ∈ H1
α(Γ): ϕ =

∞

∑
k=1

τkζk,α, ψ =
∞

∑
k=1

θkζk,α.

Note that the inverse operator B−1
α,Γ of Bα,Γ is correctly defined on H1

α(Γ), by the evident

rule B−1
α,Γ[ϕ] :=

∞

∑
k=1

τkλ−1
k,α ζk,α, for ϕ =

∞

∑
k=1

τkζk,α, ϕ ∈ H1
α(Γ).Thus, B−1

α,Γ : H1
α(Γ)→ L2(Γ) is a

bounded linear operator.
In the first theorem below, excepting results on existence, uniqueness and continuous

data dependent on solutions, additional ones are also included concerning the asymptotic
(at |x| → ∞ ) and Lloc

1 (R3) approximation of solutions (by globally defined continuous
functions). As a specific moment, the approximation process is uniquely generated by the
corresponding boundary one in L2(Γ). Consider now the central result of our study.
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Theorem 3. Let f (x) be a function, defined on D and satisfying the assumptions (3). Then, for
each data ϕ(x) ∈ L2(Γ) : (ϕ − ϕα, f )(x) ∈ H1

α(Γ), the problem of Dirichlet (7) is solvable in
Lloc

1 (R3) by the formula:

u(x) =
∫

Γ

c3,αB−1
α,Γ[ϕ− ϕα, f ](y)dsy

|x− y|3−α
+
∫
D

c3,α f (y)dy
|x− y|3−α

, x ∈ R3. (19)

The above function u is the unique solution of (7) in the family S′α, f , contained in the class Lloc
1 (R3)

and continuous in the two domain components of R3 \ Γ. The solution (19) is additionally charac-
terized by the following conventional, but essential, properties.

(P1) In case of f (x) with a compact support in D, when D = CΩ, the asymptotic relation
below holds for u(x):

|u(x)| ≤ c0

|x|3−α
, |x| → ∞, (20)

(i.e., u(x) = O(1/|x|3−α) for |x| → ∞), with constant c0;
(P2) A property for continuous data dependence is valid in the Lloc

1 (R3) sense, expressed by
the following assertion: given two systems of data, { f1, f2} – satisfying (3) and {ϕ1, ϕ2} ⊂ L2(Γ),
where (∆ f ϕ)i := ϕi − ϕα, f i ∈ H1

α, i = 1, 2, there exist constants C0
K, C∗K so that the difference

u2 − u1 of the solutions, corresponding to the above data, satisfies an estimate in the form:

||u2 − u1||L1(K) ≤ C0
K||(∆ f ϕ)2 − (∆ f ϕ)1||H1

α(Γ)
+ C∗K|| f2 − f1||L1(D), (21)

for an arbitrarily chosen compact K ⊂ R3.
(P3) Each approximating system {ψn} ⊂ H1

α(Γ), lim
n→∞

ψn = g f [ϕ] in L2(Γ)

(where g f [ϕ] := B−1
α,Γ[ϕ− ϕα, f ]), with continuous functions ψn, generates an infinite sequence of

continuous approximations un to u : lim
n→∞

un = u in Lloc
1 (R3). Moreover, un solve the problem (7)

at the boundary condition u|Γ = ϕn, limn→∞ ϕn = ϕ in L2(Γ), with ϕn := Bα,Γ[ψn] + ϕα, f , and
the estimate (22) (below) is valid for each fixed compact K ⊂ R3:

||u− un||L1(K) ≤ C0
K||ϕ− ϕn||H1

α(Γ)
. (22)

Proof. Recall that the verification as to whether function u(x) from (19) satisfies the equa-
tion (−∆)α/2u|D = f was done in Section 1: by the notations
vα,g(x), uα, f (x), respectively, for the already introduced single layer and volume Riesz
potential, with g = g f [ϕ], Formula (19) is rewritten as u = vα,g + uα, f , where vα,g is a
BF harmonic function, while (−∆)α/2uα, f = f 0[ f ] (in S′ ). And for (−∆)α/2u we get
(−∆)α/2u = δΓ[g] + f 0[ f ] (in S′), which evidently means that (−∆)α/2u|D = f . Next, for
x ∈ Γ we have: u|Γ = vα,g|Γ + ϕα, f = Bα,Γ[B−1

α,Γ[ϕ− ϕα, f ]] + ϕα, f = ϕ. Thus, the existence
assertion is proved (i.e., u is a solution of the problem (7) in S′α, f ). For the uniqueness of
solution (19) in S′α, f , assuming existence of two ones, u1, u2 ∈ S′α, f which satisfy (7) (with
identical data ϕ, f ), it is directly seen that the difference U = u2 − u1 is a BF harmonic
function, i.e., (−∆)α/2U = δΓ[g] in S′, with a density g ∈ L2(Γ). To resolve this equation
regarding U (recall the analogous comments about (4)) we have evidently to act by the

operation
c3,α

|.|3−α
∗, finding, thus, the expression U(x) = (δΓ[g] ∗

c3,α

|.|3−α
)(x), x ∈ R3. Re-

stricted to Γ it yields: U|Γ = Bα,Γ[g], i.e., Bα,Γ[g] = 0, and, therefore, g = 0 (Theorem 1),

and (from U = (δΓ[g] ∗
c3,α

|.|3−α
) in S′) U(x) = 0, x ∈ R3. Next, looking at Formula (19)

(i.e., u = vα,g + uα, f ), it is directly seen that vα,g, uα, f ∈ Lloc
1 (R3), and the same for u(x).

Moreover, as in the proof of (21) (below), it follows the estimate

||u||L1(K) ≤ C0
K||ϕ− ϕα, f ||H1

α(Γ)
+ C∗K|| f ||L1(D). (23)
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(Here K ⊂ R3 is an arbitrarily fixed compact, and a choice of constants C0
K, C∗K is given con-

cerning (21)). The property u(x) ∈ C0(R3 \ Γ) (C0, the space of the continuous functions),
in both the cases D = Ω and D = CΩ is also an automatic consequence from the clear
relations vα,g ∈ C0(K), uα, f ∈ C0(K), valid for each compact K ⊂ R3 \ Γ.

Consider now the properties (P1)–(P3).The asymptotic relation (20) is actually evident
(as a slight consequence of the standard inequality |x− y| ≥ |x| − |y| > 0, valid at |x| → ∞
and y varying in a compact). For the proof of (21) let us first rewrite (19) with u2 − u1,
ϕ2 − ϕα, f2 − (ϕ1 − ϕα, f1), f2 − f1, respectively, instead of u, ϕ − ϕα, f , f . For the sake of
convenience we use the notations ∆ f ϕ = ϕ− ϕα, f , ((∆ f ϕ)i = ϕi − ϕα, fi

, i = 1, 2). After
integration of |u2 − u1| on a compact K ⊂ R3 it easily follows:

|u2 − u1|L1(K) ≤ c3,α

∫
Γ

WK(y)|B−1
α,Γ[(∆ f ϕ)2 − (∆ f ϕ)1](y)|dsy

+ c3,α

∫
D

WK(y)| f2(y)− f1(y)|dy,

WK(y) :=
∫

K
|x− y|α−3dx, y ∈ R3.

In order to rework the above inequality suitably we take into account the estimate

||c3,αB−1
α,Γ[(∆ f ϕ)2 − (∆ f ϕ)1]||L2(Γ) ≤ b∗α,Γ||(∆ f ϕ)2 − (∆ f ϕ)1||H1

α(Γ)
,

where b∗α,Γ is the norm of the operator c3,αB−1
α,Γ. In this way, we come to the next relation for

the difference u2 − u1:

||u2 − u1||L1(K) ≤ ||WK||L∞(R3)

(
b∗α,Γ

√
mesΓ||(∆ f ϕ)2 − (∆ f ϕ)1||H1

α(Γ)

)
+ ||WK||L∞(R3)

(
c3,α|| f2 − f1||L1(D)

)
. (24)

Afterwards, it remains to set: C0
K = b∗α,Γ

√
mesΓ||WK||L∞(R3), C∗K = |c3,α||WK||L∞(R3). Thus

(24) takes the form of (21).

Remark 2. The partial case f1 = f2 could be practically more valuable (then the accent is paid on
the boundary data dependence). Now the estimates (24), (21) take, respectively, the forms:

||u2 − u1||L1(K) ≤ ||WK||L∞(R3)b
∗
α,Γ

√
mesΓ||ϕ2 − ϕ1||H1

α(Γ)
; (25)

||u2 − u1||L1(K) ≤ C0
K||ϕ2 − ϕ1||H1

α(Γ)
. (26)

Consider, finally, the proof of (P3). Via the remark above, when the boundary prob-
lem (7) is used in a model, the contour L2 data ϕ can be preferably changed by suitable
continuous approximations {ϕn} in order to simplify a numerical procedure. In our ap-
proach, the boundary operator pair {Bα,Γ, B−1

α,Γ} suggests seeking {ϕn} by the map Bα,Γ[ψn],
given an arbitrary sequence {ψn} ⊂ H1

α(Γ) of continuous L2 approximations to g f [ϕ]. In
the framework of the problem (7) (considered now at boundary data ϕn, regarding an
unknown solution un) the basic Formula (19) serves as the answer both, for ϕn and un,
namely ϕn = Bα,Γ[ψn] + ϕα, f and un as follows:

un(x) =
∫

Γ

c3,αψn(y)dsy

|x− y|3−α
+ uα, f (x), x ∈ R3. (27)

The property un ∈ C0(R3) follows (by the integral above) from the continuous assumption
for ψn, and the same for ϕn (We have again taken into account that the single layer Riesz
potentials possess, at 3− α < 2, the same continuous properties as in the classical case of
3− α = 1). The announced estimate (22) is actually proved by the already shown (26). In
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conclusion, let us comment on how to construct approximating systems {ψn} ⊂ H1
α(Γ)

of continuous functions by introducing an arbitrary system of (real) numbers {τk}, k =

1, 2, . . . :
∞

∑
k=1

τ2
k λ−2

k,α < ∞, we get an element g of the space H1
α(Γ), g(x) :=

∞

∑
k=1

τkζk,α(x)

and for an obviously convenient approximating (to g) sequence we have to take ψn(x) :=
n

∑
k=1

τkζk,α(x), n = 1, 2, . . . . Recall that the eigen functions ζk,α of Bα,Γ are continuous (i.e.,

{ζk,α} ⊂ C0(Γ)), according to the known classical theorem for the continuous L2 solutions
of weakly singular integral equations (e.g., [11–13]).

Our next result concerns regularity properties of the solution (19), in the interior of
R3 \ Γ, as a consequence of which f (x). We consider below two cases for the regularity of
f (x), assumed with a compact support: f ∈ Cm

0 (D), m = 1, 2, . . . , and f ∈ L∞(D) ∩ L′(D),
at f 0[ f ] ∈ Hs(R3), s > 0. Here, as usual, Cm

0 (D) the space of the functions smooths up
to order m in D with compact supports, Hs(R3) are the known Sobolev classes, related
to R3 (e.g., [9]), and L′(D) is the space of the Lauren Schwartz distributions, defined on
D ([9,14,15]), possessing compact supports therein. Clearly the elements of L′(D) are
automatically extended (on the whole R3) as zeros out of their supports, presenting, thus,
distributions from S′(R3).

Concerning the conventional regularity of the (19) solution u(x) (in the case
f ∈ Cm

0 (D)) we again apply L1(K) estimates, now related to the partial derivatives ∂
β
x u(x).

Recall here that β is a 3D multi index, i.e., β = (β1, β2, β3), with βi (i = 1,2,3 ) – (non-
negative) integers; ∂

β
x u(x) is of order k (k = 0, 1, 2, . . . ) when |β| = k, |β| := β1 + β2 + β3,

and a function F(x), defined in a domain Ω̃ ⊂ R3, belongs to the class Cm(Ω̃) when
F possesses continuous in Ω̃ derivatives of each order k, k ≤ m. In the case of certain
Sobolev regularity for the solution u(x) (assuming f 0[ f ] ∈ Hs(R3)), it is clearly expected
to hold that u ∈ Hs

loc(R
3 \ Γ). As known, this inclusion is characterized by the property

θu ∈ Hs(R3), valid for each function θ(x) ∈ C∞
0 (R3 \ Γ) (at θu automatically extended as

zero out of the support of θ(x)). We seek a relevant Hs estimation of θu by the boundary
data ϕ− ϕα, f and f .

For analyzing the Hs properties of u(x) we use the following accessory assertion (e.g.,
[16]). (The given proof of the lemma is due to university lectures [17].)

Lemma 2. The map MΦ : v → Φv, v ∈ Hs, with Φ(x) ∈ S, an arbitrary fixed function, is a
continuous operator, acting from Hs into itself, for each (fixed) real s. (Here S = S(R3) and the
same for Hs).

Proof. As a necessary initial step, recall the very useful representation for the Fourier
image (Φ̂v)(ξ), ξ ∈ R3 , of the (generalized) function (Φv)(x):

(Φ̂v)(ξ) = (2π)−3(v̂ ∗ Φ̂)(ξ) = (2π)−3
∫
R3

Φ̂(ξ − η)v̂(η)dη. (28)

From (28), taking into account the known Peetre inequality (e.g., [16]), we get:

|(1 + |ξ)|2)s/2(Φ̂v)(ξ)| ≤ 2|s/2|

(2π)3

∫
R3
(1 + |ξ − η|2)|s/2||Φ̂(ξ − η)(1 + |η)|2)s/2v̂(η)|dη.

Applying the Young inequality ([9–11]) in the integral term above, we find the sought estimate:

||Φv||s ≤ CM||v||s, v ∈ Hs. (29)

Here ||.||s is the norm in the space Hs, ||Φv||s := ||(1 + |ξ)|2)s/2(Φ̂v)(ξ)||L2(R3), and

CM :=
2|s/2|

(2π)3 ||(1 + |ξ)|2)|s/2|(Φ̂)(ξ)||L1(R3). We can now formulate and prove our result

concerning the regularity of the solution in (19).
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Theorem 4. Suppose the free term f (x) in the Equation (7) belongs to some of the spaces Cm
0 (D),

L∞(D) ∩ L′(D) with f 0[ f ] ∈ Hs. Then, the (19) solution u(x) has the relevant regularity
properties in R3 \ Γ, satisfying the attached estimates, as follows:

(I) When f ∈ Cm
0 (D), it holds that u ∈ Cm(R3 \ Γ) and the estimate below is valid, for each

compact K ⊂ R3 \ Γ, ∀β : |β| ≤ m:

||∂β
xu||L1(K) ≤ C0

K,β||ϕ− ϕα, f ||H1
α(Γ)

+ C∗K||∂
β
x f ||L1(D); (30)

C0
K,β = b∗α,Γ

√
mesΓ||WK,β||C0(Γ), WK,β(y) :=

∫
K

∂
β
x |x− y|α−3dx.

(II) When f ∈ L∞(D) ∩ L′(D): f 0[ f ] ∈ Hs, for 1 < α < 3/2, the inclusion
u ∈ Hs

loc(R
3 \ Γ) is valid and there exist two constants cθ,1, cθ,2 (depending on θ), such that

the next estimate is fulfilled, ∀θ ∈ C∞
0 (R3 \ Γ):

||θu||s ≤ cθ,1||ϕ− ϕα, f ||H1
α(Γ)

+ cθ,2(|| f ||L∞ + || f ||s). (31)

(Above L∞ = L∞(R3).)

Proof. In both cases (I) and (II) we can clearly and conveniently deal with the short version
of (19), i.e., u = vα,g + uα, f (with g = B−1

α,Γ[∆ f ϕ]). Acting by the operation ∂
β
x on the

components vα,g and uα, f , we, respectively, find that:

∂
β
x vα,g(x) =

∫
Γ

c3,αB−1
α,Γ[∆ f ϕ](y)∂β

x |x− y|α−3dsy, and ∂
β
x uα, f (x) =

(
∂

β
x f ∗ c3,α

|.|3−α

)
(x),

for x ∈ K (K is a compact in R3 \ Γ). The property u ∈ Cm(R3 \ Γ) now becomes clear. In
addition the above expression for ∂

β
x vα,g suggests introducing the function

WK,β(y) :=
∫

K
∂

β
x |x− y|α−3dx.

Afterwards, to prove the estimate (30) we only have to follow the steps already used from
the proof of (21): the constant C0

K,β in (30) is evidently analogous to C0
K and C∗K is from the

estimate (21).
Going to the proof of (II), let us multiply the relation u = vα,g + uα, f by an arbitrary

θ(x) ∈ C∞
0 (R3 \ Γ) and consider next the Hs properties of the terms θvα,g, θuα, f . According

to the Lemma, for the second product we could conclude that θuα, f ∈ Hs if uα, f ∈ Hs.
However, the former certainly holds for 1 < α < 3/2 (under the assumption f 0[ f ] ∈ Hs):

||uα, f ||2s = ||(1 + |ξ)|2)s| f̂ (ξ)|2|ξ|−2α||L1(R3) ≤ || f̂ ||2C0(|ξ|≤1)

∫
|ξ|≤1

2s

|ξ|2α
dξ + || f ||2s .

On the other hand, θvα,g ∈ C∞
0 (R3 \ Γ), therefore u ∈ Hs

loc(R
3 \ Γ). Preparing the final

estimate (31), we first specify the above estimate for ||uα, f ||2, concerning the term with
|| f̂ ||2C0(|ξ|≤1), it actually holds that:

|| f̂ ||2C0(|ξ|≤1)

∫
|ξ|≤1

2s

|ξ|2α
dξ ≤ 2s+2

3− 2α
πmes2K0

f || f ||
2
L∞ .

Here K0
f = supp[ f ] (the supporter of f ) and L∞ = L∞(R3). Consequently, ||uα, f ||s satisfies

the inequality

||uα, f ||s ≤
(

1 + 21+s/2
√

π√
3− 2α

mesK0
f

)
(|| f ||L∞ + || f ||s). (32)
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Now, by the Lemma 2 we can easily estimate the product θuα, f :

||θuα, f ||s ≤ CM,θC0
f (|| f ||L∞ + || f ||s). (33)

(For CM,θ , C0
f we respectively have: CM,θ := 2|s|/2(2π)−3||(1 + |ξ)|2)|s|/2θ̂(ξ)||L1 , with

L1 = L1(R3), and C0
f = (1 + 21+s/2

√
π√

3− 2α
mesK0

f .)

It remains, then, to estimate the product θvα,g (g = B−1
α,Γ[∆ f , ϕ]). In order to conve-

niently express the impact of the boundary data we deal with the norm ||θvα,g||[s]+1 (using
||θvα,g||[s] ≤ ||θvα,g||[s]+1, where [s] is the integer part of s). As known, ||θvα,g||2[s]+1 can be

expressed taking the sum of addends like ||∂β
x(θvα,g)||2L2

, where

∂
β
x(θvα,g)(x) =

∫
Γ c3,αB−1

α,Γ[∆ f ϕ](y)∂β
x((θvα,g)(x)|x − y|α−3)dsy. The Cauchy–Schwartz in-

equality now yields:

|∂β
x(θvα,g)|2 ≤ ||c3,αB−1

α,Γ[∆ f ϕ]||2L2(Γ)

∫
Γ
|∂β

x(θ(x)|x− y|α−3)|2dsy. (34)

Summarizing the above on all β : |β| = k, for k = 0, 1, . . . [s] + 1, and taking an integration∫
R3 |...|2dx on the relevant terms, we obtain:

||θvα,g||2[s]+1 ≤ ||c3,αB−1
α,Γ[∆ f ϕ]||2L2(Γ)

∫
Γ
||θ|.− y|α−3||2[s]+1dsy. (35)

By the notation Wα,[s]+1[θ](y) := ||θ|.− y|α−3||[s]+1 (35) can be evidently rearranged in the
next form:

||θvα,g||[s]+1 ≤ b∗α,Γ||Wα,[s]+1[θ]||L2(Γ)||ϕ− ϕα, f ||H1
α(Γ)

. (36)

Finally, from the initial inequality ||θu||s ≤ ||θvα,g||[s]+1 + ||θuα, f ||s, and the sum of (33),
(36) we get the expected estimate (31), with cθ,1 = b∗α,Γ||Wα,[s]+1[θ]||L2(Γ), cθ,2 = CM,θC0

f .
Thus, the theorem is proved.
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Appendix A. The Dirichlet Problem for 1D Equations

We will comment here the problem of Dirichlet for the 1D equations
(−∆)α/2u|(l0,+∞) = f (x), with assumed continuous in (l0, +∞) and (for the sake of sim-
plicity) f (x) vanishing out of a compact subinterval of (l0, +∞), and (∆)α/2u|(−l,l) = f (x),
with f (x) continuous in [−l, l]. Looking for globally existing solutions, we shall need the
respective Riesz potentials:

u0
α, f (x) =

∫ ∞

l0

c1,α f (y)dy
|x− y|1−α

, uα, f (x) =
∫ l

−l

c1,α f (y)dy
|x− y|1−α

,

(
c1,α =

Γ( 1−α
2 )

2α
√

πΓ( α
2 )

)
.
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Clearly, for the existence of these potentials it is required that 0 < α < 1. Suggested from
the possible singularities of the types 1

|x−l0|1−α or 1
|x±l|1−α , concerning respectively the first

or the second equation above, we shall interesting in solutions u ∈ S′ = S′(R1) satisfying
the relevant condition:

(a) (x− l0)1−αu(x) ∈ L∞(l0 − 1, l0 + 1); (b) (x± l)1−αu(x) ∈ L∞(−l − 1, l + 1). (A1)

Below we shall use the notation |x − l∗|1−αu|x=l∗ for the limit (assumed existing)
lim
x→l∗
|x− l∗|1−αu(x), l∗ ∈ R1. Consider now the following boundary value problems

of Dirichlet type:

(−∆)α/2u|(l0,+∞) = f (x); |x− l0|1−αu|x=l0 = c0 (c0 = const ∈ R1). (A2)

(−∆)α/2u|(−l,l) = f (x); |x± l|1−αu|x=∓l = c0
∓ (c0

−, c0
+ = const ∈ R1). (A3)

Next, the question for resolving the problems is discussed separately but in a common
framework. The relevant two assertions give the essence of the needed answer.

Proposition A1. For f (x), continuous in [l0,+∞) and vanishing out of [x1, x2] ⊂ [l0,+∞), and
an arbitrary constant c0 problem (A2) has a unique solution u ∈ S′ satisfying condition (A1),
expressed by the formula:

u(x) =
c0

|x− l0|1−α
+
∫ +∞

l0

c1,α f (y)dy
|x− y|1−α

, (x ∈ R1). (A4)

Proposition A2. For f (x)– continuous function in [−l, l] and c0
−, c0

+ – arbitrary constants prob-
lem (A3) has a unique solution u ∈ S′ satisfying conditions (A1), which is present by the formula:

u(x) =
c0
−

|x + l|1−α
+

c0
+

|x− l|1−α
+
∫ +l

−l

c1,α f (y)dy
|x− y|1−α

, (x ∈ R1). (A5)

Sketch of proofs: Suppose u ∈ S′ is a solution of the equation from (A2), satis-
fying condition (A1), i.e., (−∆)α/2u = f 0[ f ] in S′, and (−∆)α/2[u − u0

α, f ] = 0 on R1 \
{l0}, therefore (−∆)α/2[u − u0

α, f ] = C0δ(x − l0), with a constant C0, because of condi-
tion (A1). More accurately, according to the known properties of the compactly sup-
ported distributions u ∈ S′ ([9]), instead of C0δ(x − l0) it should be taken a sum of

the type C0δ(x− l0) +
N

∑
m=1

Cmδ(m)(x− l0). However condition (A1) yields Cm = 0 (m =

1, 2, . . . , N). Next, as in the Introduction, by applying the Fourier transform to equation
(−∆)α/2[u− u0

α, f ] = C0δ(x− l0) we resolve it regarding u, finding the relation

u =
C0c1,α

|x− l0|1−α
+ u0

α, f . Rewriting in details the potential u0
α, f , we get the following general

solution formula (with C0 as a free constant):

u(x) = C0
c1,α

|x− l0|1−α
+
∫ +∞

l0

c1,α f (y)dy
|x− y|1−α

, (x ∈ R1). (A6)

In the case related to the final interval (−l, l) we only have to use once more the above
arguments and to solve now the equation (−∆)α/2[u− u0

α, f ] = C−lδ(x + l) + Clδ(x− l).
The resulting expression for u gives the next general formula:

u(x) = C−l
c1,α

|x + l|1−α
+ Cl

c1,α

|x− l|1−α
+
∫ +l

−l

c1,α f (y)dy
|x− y|1−α

, (x ∈ R1). (A7)

Substituting afterwards from (A6) and (A7) respectively in the boundary conditions
|x− l0|1−αu|x=l0 = c0, |x± l|1−αu|x=∓l = c0

∓, we easily obtain the announced
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Formulas (A4) and (A5). Thus we actually get the uniqueness part (of Propositions A1 and A2)
and the existence one consists in the verification already known from the Introduction.
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