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1. Introduction

During the past few decades, fractional calculus has evolved as an important and
popular area of research in mathematical analysis. It has been mainly due to the extensive
use of its tools in developing innovative mathematical models associated with several
phenomena occurring in science, engineering, mechanics, economics, etc. For examples
and details, see [1–4]. Among a variety of fractional derivatives introduced so far, there has
been shown a great interest in the study of the Riemann–Liouville and Caputo fractional
derivatives and their applications. In [5], Hilfer introduced a fractional derivative (known
as Hilfer fractional derivative), which reduces to the Riemann–Liouville and Caputo frac-
tional derivatives for the extreme values of the parameter involved in its definition. One can
find details about this derivative in [6,7]. For some interesting results on Hilfer-type initial
and boundary value problems, for example, see [8–13]. In a recent work [14], some exis-
tence and Ulam–Hyers stability results for a fully coupled system of nonlinear sequential
Hilfer fractional differential equations and integro-multistrip-multipoint boundary condi-
tions were obtained. A boundary value problem for hybrid generalized Hilfer fractional
differential equations was studied in [15].

A fractional derivative involving a logarithmic function with an arbitrary exponent
in its kernel, introduced by Hadamard [16] in 1892, is known as Hadamard fractional
derivative. Later, some variants of this derivative such as Caputo–Hadamard, and Hilfer–
Hadamard fractional derivatives were studied in [17–21]. It is imperative to mention
that Hadamard and Caputo–Hadamard fractional derivatives appear as special cases
of the Hilfer–Hadamard fractional derivative with parameter β for β = 0 and β = 1,
respectively. In [22], the authors discussed the Hyers–Ulam stability for Hilfer–Hadamard-
type coupled fractional differential equations. A two-point boundary value problem for
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a system of nonlinear Hilfer–Hadamard sequential fractional differential equations was
studied in [23]. The authors in [24] derived some existence results for nonlocal mixed Hilfer–
Hadamard type fractional boundary value problems. Some existence results for a Hilfer–
Hadamard fractional differential equation equipped with nonlocal integro-multipoint
boundary conditions were derived in [25]. The authors studied a coupled Hilfer and
Hadamard fractional differential system in generalized Banach spaces [26].

Inspired by the recent works presented in [23,24], we introduce and investigate a non-
linear nonlocal coupled boundary value problem involving Hilfer–Hadamard derivatives
and Hadamard fractional integral operators of different orders given by{

HHDα1,β1
1+ u(t) = $1(t, u(t), v(t)), 1 < α1 ≤ 2, t ∈ E := [1, T],

HHDα2,β2
1+ v(t) = $2(t, u(t), v(t)), 2 < α2 ≤ 3, t ∈ E := [1, T],

(1)

{
u(1) = 0, u(T) = λ1

H Iδ1
1+v(η1),

v(1) = 0, v(η2) = 0, v(T) = λ2
H Iδ2

1+u(η3), 1 < η1, η2, η3 < T,
(2)

where HHDαj ,β j
1+ denotes the Hilfer-Hadamarad fractional derivative operator of order αj

and type β j; j = 1, 2, H Iξ
1+ is the Hadamard fractional integral operator of order ξ ∈ {δ1, δ2},

$1, $2 : E ×R×R→ R are continuous functions, δ1, δ2 > 0 and λ1, λ2 ∈ R+.
Here we emphasize that the problem investigated in the present study is novel in the

configuration of Hilfer–Hadamard fractional differential equations of different orders and
coupled Hadamard-type fractional integral boundary conditions. We apply the fixed point
approach to obtain the existence and uniqueness results for the problem (1) and (2). Our
strategy is to convert the given problem into an equivalent fixed point problem and then use
Leray–Schauder alternative and Banach’s fixed point theorem to prove the existence and
uniqueness results for the given problem, respectively. Our results are new and contribute
to the literature on boundary value problems involving coupled systems of fractional
differential equations.

The rest of the paper is organized as follows. Some preliminary concepts of fractional
calculus related to our work are outlined in Section 2. An auxiliary lemma dealing with
the linear variant of the problem (1) and (2) is proved in Section 3, while the main results
together with illustrative examples are presented in Section 4. Some concluding remarks
are given in Section 5.

2. Preliminaries

Definition 1 ([27]). The Hadamard fractional integral of order p > 0 for a continuous function
f : [a, ∞)→ R is given by

H Ip
a+ f (t) =

1
Γ(p)

∫ t

a

(
log

t
s

)p−1 f (s)
s

ds, t > a,

where log(.) = loge(.).

Definition 2 ([27]). The Hadamard fractional derivative of order p > 0 for a function f : [a, ∞)→
R is defined by

H Dp
a+ f (t) = δn

(
H In−p

a+ f
)
(t), n = [p] + 1,

where δn = tn dn

dtn and [p] denotes the integer part of the real number p.

Lemma 1 ([27]). If p, q > 0 and 0 < a < b < ∞, then

(i)
(

H Ip
a+
(
log t

a
)q−1

)
(x) = Γ(q)

Γ(q+p)

(
log x

a
)q+p−1;
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(ii)
(

H Dp
a+
(
log t

a
)q−1

)
(x) = Γ(q)

Γ(q−p)

(
log x

a
)q−p−1.

In particular, for q = 1, we have(
H Dp

a+

)
(1) =

1
Γ(1− p)

(
log

x
a

)−p
6= 0, 0 < p < 1.

Definition 3 ([7]). For n− 1 < p < n and 0 ≤ q ≤ 1, the Hilfer-Hadamarad fractional derivative
of order p and type q for f ∈ L1(a, b) is defined as(

HHDp,q
a+ f

)
(t) =

(
H Iq(n−p)

a+ δn H I(n−p)(1−q)
a+ f

)
(t)

=
(

H Iq(n−p)
a+ δn H I(n−γ)

a+ f
)
(t)

=
(

H Iq(n−p)
a+

H Dγ
a+ f
)
(t), γ = p + nq− pq,

where H I(.)a+and H D(.) are given in Definitions 1 and 2, respectively.

Theorem 1 ([28]). If g ∈ L1(a, b), 0 < a < b < ∞, and
(

H In−γ
a+ g

)
(t) ∈ ACn

δ [a, b], then

H Ip
a+

(
HHDp,q

a+ g
)
(t) = H Iγ

a+

(
HHDγ

a+ g
)
(t)

= g(t)−
n−1

∑
j=0

(δ(n−j−1)(H In−γ
a+ g))(a)

Γ(γ− j)

(
log

t
a

)γ−j−1
,

where p > 0, 0 ≤ q ≤ 1 and γ = p + nq− pq, n = [p] + 1. Observe that Γ(γ− j) exists for all
j = 1, 2, . . . , n− 1 and γ ∈ [p, n].

3. An Auxiliary Lemma

Before presenting the main results, we prove an auxiliary lemma for the linear variant
of the problem (1) and (2).

Lemma 2. Let h1, h2 ∈ C(E ,R) and

∆ =
λ1λ2Γ(γ1)Γ(γ2 − 1)

Γ(γ1 + δ2)Γ(δ1 + γ2 − 1)
(log η1)

δ1+γ2−2(log η3)
δ2+γ1−1

[
log η2 −

γ2 − 1
γ2 + δ1 − 1

log η1

]
+ (log T)γ1+γ2−3 log

( T
η2

)
6= 0, (3)

∆ = (log T)γ1+γ2−3 − λ1λ2Γ(γ1)Γ(γ2 − 1)
Γ(γ1 + δ2)Γ(δ1 + γ2 − 1)

(log η1)
δ1+γ2−2(log η3)

δ2+γ1−1 6= 0. (4)

Then the solution of the following linear Hilfer–Hadamard coupled boundary value problem:
HHDα1,β

1+ u(t) = h1(t), 1 < α1 ≤ 2,
HHDα2,β

1+ v(t) = h2(t), 2 < α2 ≤ 3,
u(1) = 0, u(T) = λ1

H Iδ1
1+v(η1),

v(1) = 0, v(η2) = 0, v(T) = λ2
H Iδ1

1+u(η3), 1 < η1, η2, η3 < T,

(5)

is given by

u(t) = H Iα1
1+h1(t) +

(log t)γ1−1

∆

{
(log T)γ2−2 log

( T
η2

)[
λ1

H Iδ1+α2
1+ h2(η1)− H Iα1

1+h1(T)
]

− λ1Γ(γ2 − 1)(log η1)
γ2+δ1−2

Γ(γ2 + δ1 − 1)

[
log η2 −

γ2 − 1
γ2 + δ1 − 1

log η1

][
λ2

H Iδ2+α1
1+ h1(η3)
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− H Iα2
1+h2(T)

]
− λ1Γ(γ2 − 1)(log η1)

γ2+δ1−2

Γ(γ2 + δ1 − 1)

( log T
log η2

)γ2−2
×

[
log T − γ2 − 1

γ2 + δ1 − 1
log η1

]
H Iα2

1+h2(η2)

}
, (6)

and

v(t) = H Iα2
1+h2(t)−

( log t
log η2

)γ2−2
H Iα2

1+h2(η2) +
(log t)γ2−2

∆
log
( t

η2

)
×{

(log T)γ1−1
[
λ2

H Iδ2+α1
1+ h1(η3)− H Iα2

1+h2(T)
]
+

λ2Γ(γ1)(log η3)
γ1+δ2−1

Γ(γ1 + δ2)
×

[
λ1

H Iδ1+α2
1+ h2(η1)− H Iα1

1+h1(T)
]
+

∆
(log η2)γ2−2

H Iα2
1+h2(η2)

}
. (7)

Proof. Applying the Hadamard integral operators H Iα1
1+ and H Iα2

1+ to the first and second
equations in (5), respectively, and using Theorem 1, we get

u(t) = H Iα1
1+h1(t) + c0(log t)γ1−1 + c1(log t)γ1−2, γ1 = α1 + (2− α1)β1, (8)

v(t) = H Iα2
1+h2(t) + d0(log t)γ2−1 + d1(log t)γ2−2 + d2(log t)γ2−3, γ2 = α2 + (3− α2)β2, (9)

where c0, c1, d0, d1 and d2 are unknown arbitrary constants. Combining (8) and (9)
with u(1) = 0 and v(1) = 0, we get c1 = 0, d2 = 0 since γ1 ∈ [α1, 2] and γ2 ∈ [α2, 3].
Consequently, Equations (8) and (9) become

u(t) = H Iα1
1+h1(t) + c0(log t)γ1−1, (10)

v(t) = H Iα2
1+h2(t) + d0(log t)γ2−1 + d1(log t)γ2−2. (11)

Using the condition v(η2) = 0 in (11), we get

d1 = − 1
(log η2)γ2−2

{
H Iα2

1+h2(η2) + d0(log η2)
γ2−1

}
. (12)

Inserting the value of d1 in (11), we have

v(t) = H Iα2
1+h2(t) + d0(log t)γ2−2 log

( t
η2

)
−
( log t

log η2

)γ2−2
H Iα2

1+h2(η2). (13)

Now, using (10) and (13) in the conditions: u(T) = λ1
H Iδ1

1+v(η1) and v(T) =

λ2
H Iδ2

1+u(η3), we find that

c0 A1 + d0 A2 = J1,

c0B1 + d0B2 = J2, (14)

where

A1 = (log T)γ1−1, A2 = λ1
Γ(γ2 − 1)(log η1)

δ1+γ2−2

Γ(δ1 + γ2 − 1)

{
log η2 −

γ2 − 1
δ1 + γ2 − 1

log η1

}
,

J1 = λ1
H Iδ1+α2

1+ h2(η1)− λ1
Γ(γ2 − 1)

Γ(δ1 + γ2 − 1)
(log η1)

δ1+γ2−2

(log η2)γ2−2
H Iα2

1+h2(η2)− H Iα1
1+h1(T),

B1 = − λ2Γ(γ1)

Γ(δ2 + γ1)
(log η3)

δ2+γ1−1, B2 = (log T)γ2−2 log
( T

η2

)
,

J2 = λ2
H Iδ2+α1

1+ h1(η3) +
( log T

log η2

)γ2−2
H Iα2

1+h2(η2)− H Iα2
1+h2(T).
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Solving the system (14) for c0 and d0, we get

c0 =
1
∆

{
(log T)γ2−2 log

( T
η2

)[
λ1

H Iδ1+α2
1+ h2(η1)− H Iα1

1+h1(T)
]

− λ1
Γ(γ2 − 1)

Γ(δ1 + γ2 − 1)
(log η1)

δ1+γ2−2
[

log η2 −
γ2 − 1

δ1 + γ2 − 1
log η1

]
×[

λ2
H Iα1+δ2

1+ h1(η3)− H Iα2
1+h2(T)

]
− λ1Γ(γ2 − 1)

Γ(δ1 + γ2 − 1)
(log η1)

δ1+γ2−2
( log T

log η2

)γ2−2
×

[
log T − γ2 − 1

δ1 + γ2 − 1
log η1

]
H Iα2

1+h2(η2)

}
, (15)

d0 =
1
∆

{
(log T)γ1−1

[
λ2

H Iδ2+α1
1+ h1(η3)− H Iα2

1+h2(T)
]

+
λ2Γ(γ1)

Γ(δ2 + γ1)
(log η3)

δ2+γ1−1
[
λ1

H Iδ1+α2
1+ h2(η1)− H Iα1

1+h1(T)]

+
∆

(log η2)γ2−2
H Iα2

1+h2(η2)

}
, (16)

where ∆, ∆ are defined in (3) and (4), respectively. Substituting the value of c0 from
(15) into (10), and the values of d0 and d1, respectively, from (16) and (12) into (11), we
get the solution (6) and (7). The converse of this lemma can be established by direct
computation.

4. Main Results

For a Banach space U = C(E ,R) equipped with the norm ‖u‖ = supt∈E |u(t)|,
the product space (U ×U, ‖.‖U×U) endowed with the norm ‖(u, v)‖U×U = ‖u‖ + ‖v‖
for (u, v) ∈ U ×U is also a Banach space.

In view of Lemma 2, we introduce an operator Υ : U ×U → U ×U as follows:

Υ(u, v)(t) := (Υ1(u, v)(t), Υ2(u, v)(t)), (17)

where

Υ1(u, v)(t) =
1

Γ(α1)

∫ t

1

(
log

t
s

)α1−1 $1(s, u(s), v(s))
s

ds +
(log t)γ1−1

∆
×{

(log T)γ2−2 log
( T

η2

)[ λ1

Γ(δ1 + α2)

∫ η1

1

(
log

η1

s

)δ1+α2−1 $2(s, u(s), v(s))
s

ds

− 1
Γ(α1)

∫ T

1

(
log

T
s

)α1−1 $1(s, u(s), v(s))
s

ds
]

− λ1Γ(γ2 − 1)(log η1)
γ2+δ1−2

Γ(γ2 + δ1 − 1)

[
log η2 −

γ2 − 1
γ2 + δ1 − 1

log η1

]
×[ λ2

Γ(δ2 + α1)

∫ η3

1

(
log

η3

s

)δ3+α1−1 $1(s, u(s), v(s))
s

ds

− 1
Γ(α2)

∫ T

1

(
log

T
s

)α2−1 $2(s, u(s), v(s))
s

ds
]

− λ1Γ(γ2 − 1)(log η1)
γ2+δ1−2

Γ(α2)Γ(γ2 + δ1 − 1)

( log T
log η2

)γ2−2[
log T − γ2 − 1

γ2 + δ1 − 1
log η1

]
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×
∫ η2

1

(
log

η2

s

)α2−1 $2(s, u(s), v(s))
s

ds

}
,

and

Υ2(u, v)(t)

=
1

Γ(α2)

∫ t

1

(
log

t
s

)α2−1 $2(s, u(s), v(s))
s

ds

− 1
Γ(α2)

( log t
log η2

)γ2−1 ∫ η2

1

(
log

η2

s

)α2−1 $2(s, u(s), v(s))
s

ds

+
(log t)γ2−2

∆
log
( t

η2

){
(log T)γ1−1

[ λ2

Γ(δ2 + α1)

∫ η3

1

(
log

η3

s

)δ2+α1−1 $1(s, u(s), v(s))
s

ds

− 1
Γ(α2)

∫ T

1

(
log

T
s

)α2−1 $2(s, u(s), v(s))
s

ds
]
+

λ2Γ(γ2)(log η3)
γ1+δ2−1

Γ(γ1 + δ2)
×[ λ1

Γ(δ1 + α2)

∫ η1

1

(
log

η1

s

)δ1+α2−1 $2(s, u(s), v(s))
s

ds

− 1
Γ(α1)

∫ T

1

(
log

T
s

)α1−1 $1(s, u(s), v(s))
s

ds
]

+
∆

Γ(α2)(log η2)γ2−2

∫ η2

1

(
log

η2

s

)α2−1 $2(s, u(s), v(s))
s

ds

}
.

In the sequel, we need the following assumptions.

(H1) For real constants κi, κi ≥ 0 (i = 1, 2) and κ0 > 0, κ0 > 0, we have

|$1(t, u, v)| ≤ κ0 + κ1|u|+ κ2|v|, |$2(t, u, v)| ≤ κ0 + κ1|u|+ κ2|v|, ∀u, v ∈ R.

(H2) For positive constants l1 and l2, we have

|$1(t, ν1, µ1)− $1(t, ν2, µ2)| ≤ l1(|ν1 − ν2|+ |µ1 − µ2|),
|$2(t, ν1, µ1)− $2(t, ν2, µ2)| ≤ l2(|ν1 − ν21|+ |µ1 − µ2|), ∀t ∈ E , νi, µi ∈ R, i = 1, 2.

Moreover, we set the notation:

Ω1 =
(log T)α1

Γ(α1 + 1)
+

(log T)α1+γ1+γ2−3

|∆|Γ(α1 + 1)
log
( T

η2

)
+ λ1λ2

Γ(γ2 − 1)(log η1)
γ2+δ1(log η3)

δ2+α1(log T)γ1−1

|∆|Γ(γ2 + δ1 + 1)Γ(δ2 + α1 + 1)

∣∣∣ log η2 −
γ2 − 1

γ2 + δ1 − 1
log η1

∣∣∣,
(18)

Ω2 = λ1
(log η1)

α2+δ1(log T)γ1+γ2−3

|∆|Γ(δ1 + α2 + 1)
log
( T

η2

)
+ λ1

Γ(γ2 − 1)(log η1)
γ2+δ2(log T)γ1+α2−1

|∆|Γ(γ2 + δ1 − 1)Γ(α2 + 1)

∣∣∣ log η2 −
γ2 − 1

γ2 + δ1 − 1
log η1

∣∣∣
+ λ1

Γ(γ2 − 1)(log η1)
γ2+δ2(log T)γ1−1(log η2)

α2

|∆|Γ(γ2 + δ1 − 1)Γ(α2 + 1)

∣∣∣ log T − γ2 − 1
γ2 + δ1 − 1

log η1

∣∣∣, (19)

Ω1 = log
( T

η2

)[λ2(log T)γ1+γ2−3(log η3)
δ2+α1

|∆|Γ(δ2 + α1 + 1)
+ λ2

Γ(γ1)(log η3)
γ1+δ2−1(log T)γ2+α1−2

|∆|Γ(γ1 + δ1)Γ(α1 + 1)

]
,

(20)

Ω2 =
(log T)α2

Γ(α2 + 1)
+

(log T)γ2−2

Γ(α2 + 1)(log η2)γ2−α2−2 + log
( T

η2

)[ (log T)γ1+γ2+α2−3

|∆|Γ(α2 + 1)
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+ λ1λ2
Γ(γ1)(log η1)

δ1+α2(log η3)
γ1+δ2−1(log T)γ2−2

|∆|Γ(γ1 + δ2)Γ(δ1 + α2 + 1)
+
|∆|(log T)γ2−1(log η2)

α2

|∆|Γ(α2 + 1)

]
, (21)

Φ = min
{

1− [(Ω1 + Ω1)κ1 + (Ω2 + Ω2)κ1], 1− [(Ω1 + Ω1)κ1 + (Ω2 + Ω2)κ1]
}

. (22)

We apply the following known result to prove the existence of solutions for the
problem (1) and (2).

Lemma 3 (Leray-Schauder alternative [29]). Let Θ(χ) = {x ∈ D : x = κχ(x) for some
0 < κ < 1}, where χ : D → D is a completely continuous operator. Then either the set Θ(χ) is
unbounded or there exists at least one fixed point for the operator χ.

Theorem 2. Let ∆, ∆, Φ 6= 0, where ∆, ∆ and Φ are defined in (3), (4) and (22), respectively.
If the assumption (H1) holds, and that

(Ω1 + Ω2)κ1 + (Ω1 + Ω2)κ1 < 1, (23)

and

(Ω1 + Ω2)κ2 + (Ω1 + Ω2)κ2 < 1. (24)

Then there exists at least one solution for the problem (1) and (2) on E .

Proof. Let us first establish that the operator Υ : U × U → U × U defined by (17) is
completely continuous. Obviously, continuity of the operator Υ (in terms of Υ1 and Υ2)
follows from that of $1 and $2. Next we show that the operator Υ is uniformly bounded.
For that, letM⊂ U ×U be a bounded set. Then we can find positive constants N1 and N2
satisfying |$1(t, u(t), v(t)| ≤ N1 and |$2(t, u(t), v(t))| ≤ N2, ∀(u, v) ∈ M. Consequently,
we obtain

‖Υ1(u, v)‖
= sup

t∈E
|Υ1(u, v)(t)|

≤ 1
Γ(α1)

∫ t

1

(
log

t
s

)α1−1 |$1(s, u(s), v(s))|
s

ds

+
(log t)γ1−1

|∆|

{
(log T)γ2−2 log

( T
η2

)[ λ1

Γ(δ1 + α2)

∫ η1

1

(
log

η1

s

)δ1+α2−1 |$2(s, u(s), v(s))|
s

ds

+
1

Γ(α1)

∫ T

1

(
log

T
s

)α1−1 |$1(s, u(s), v(s))|
s

ds
]

+
λ1Γ(γ2 − 1)(log η1)

γ2+δ1−2

Γ(γ2 + δ1 − 1)

∣∣∣ log η2 −
γ2 − 1

γ2 + δ1 − 1
log η1

∣∣∣×[ λ2

Γ(δ2 + α1)

∫ η3

1

(
log

η3

s

)δ3+α1−1 |$1(s, u(s), v(s))|
s

ds

+
1

Γ(α2)

∫ T

1

(
log

T
s

)α2−1 |$2(s, u(s), v(s))|
s

ds
]

+
λ1Γ(γ2 − 1)(log η1)

γ2+δ1−2

Γ(α2)Γ(γ2 + δ1 − 1)

( log T
log η2

)γ2−2∣∣∣ log T − γ2 − 1
γ2 + δ1 − 1

log η1

∣∣∣×
∫ η2

1

(
log

η2

s

)α2−1 |$2(s, u(s), v(s))|
s

ds

}
,

≤ N1

{ (log T)α1

Γ(α1 + 1)
+

(log T)α1+γ1+γ2−3

|∆|Γ(α1 + 1)
log
( T

η2

)
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+ λ1λ2
Γ(γ2 − 1)(log η1)

γ2+δ1(log η3)
δ2+α1(log T)γ1−1

|∆|Γ(γ2 + δ1 + 1)Γ(δ2 + α1 + 1)

∣∣∣ log η1 −
γ2 − 1

γ2 + δ1 − 1
log η1

∣∣∣}
+ N2

{
λ1

(log η1)
α2+δ1(log T)γ1+γ2−3

|∆|Γ(δ1 + α2 + 1)
log
( T

η2

)
+ λ1

Γ(γ2 − 1)(log η1)
γ2+δ2(log T)γ1+α2−1

|∆|Γ(γ2 + δ1 − 1)Γ(α2 + 1)

∣∣∣ log η2 −
γ2 − 1

γ2 + δ1 − 1
log η1

∣∣∣
+ λ1

Γ(γ2 − 1)(log η1)
γ2+δ2(log T)γ1−1(log η2)

α2

|∆|Γ(γ2 + δ1 − 1)Γ(α2 + 1)

∣∣∣ log T − γ2 − 1
γ2 + δ1 − 1

log η1

∣∣∣},

which, in view of the notation (18) and (19) yields

‖Υ1(u, v)‖ ≤ Ω1N1 + Ω2N2. (25)

Likewise, using the notation (20) and (21), we have

‖Υ2(u, v)‖ ≤ Ω1N1 + Ω2N2. (26)

Then it follows from (25) and (26) that

‖Υ(u, v)‖ ≤ (Ω1 + Ω1)N1 + (Ω2 + Ω2)N2, (27)

which shows that the operator Υ is uniformly bounded.
In order to establish that Υ is equicontinuous, we take t1, t2 ∈ E with t1 < t2. Then,

we find that

|Υ1(u, v)(t2)− Υ1(u, v)(t1)|

≤ N1

Γ(α1)

[ ∫ t1

1

∣∣∣( log
t2

s

)α1−1
−
(

log
t1

s

)α1−1∣∣∣ds
s

+
∫ t2

t1

(
log

t2

s

)α1−1 ds
s

]
+

N1

∣∣∣(log t2)
γ1−1 − (log t1)

γ1−1
∣∣∣

|∆| ×{
(log T)γ2−2

Γ(α1)
log
( T

η2

) ∫ T

1

(
log

T
s

)α1−1 ds
s
+

λ1λ2Γ(γ2 − 1)(log η1)
γ2+δ1−2

Γ(δ2 + α1)Γ(γ2 + δ1 − 1)

∣∣∣ log η2

− γ2 − 1
γ2 + δ1 − 1

log η1

∣∣∣ ∫ η3

1

(
log

η3

s

)δ3+α1−1 ds
s

}

+
N2

∣∣∣(log t2)
γ1−1 − (log t1)

γ1−1
∣∣∣

|∆|

{
λ1(log T)γ2−2

Γ(δ1 + α2)
log
( T

η2

) ∫ η1

1

(
log

η1

s

)δ1+α2−1 ds
s

+
λ1Γ(γ2 − 1)(log η1)

γ2+δ1−2

Γ(α2)Γ(γ2 + δ1 − 1)

∣∣∣ log η2 −
γ2 − 1

γ2 + δ1 − 1
log η1

∣∣∣ ∫ T

1

(
log

T
s

)α2−1 ds
s

+
λ1Γ(γ2 − 1)(log η1)

γ2+δ1−2

Γ(α2)Γ(γ2 + δ1 − 1)

( log T
log η2

)γ2−2∣∣∣ log T

− γ2 − 1
γ2 + δ1 − 1

log η1

∣∣∣ ∫ η2

1

(
log

η2

s

)α2−1 ds
s

}
,→ 0 as t2 → t1,

independent of (u, v) ∈ M. Likewise, it can be shown that |Υ2(u, v)(t2)−Υ2(u, v)(t1)| → 0
as t2 → t1 independent of (u, v) ∈ M. Thus, the equicontinuity of Υ1 and Υ2 implies that
the operator Υ is equicontinuous. Hence, the operator Υ is compact by Arzela-Ascoli’s
theorem.

Finally, we establish the boundedness of the set Θ(Υ) = {(u, v) ∈ U ×U : (u, v) =
κΥ(u, v) ; 0 ≤ κ ≤ 1}. Let (u, v) ∈ Θ(Υ). Then (u, v) = κΥ(u, v), which implies that
u(t) = κΥ1(u, v)(t), v(t) = κΥ2(u, v)(t) for any t ∈ E .



Fractal Fract. 2023, 7, 178 9 of 14

By the assumption (H1), we get

|u(t)| ≤ 1
Γ(α1)

∫ t

1

(
log

t
s

)α1−1[
κ0 + κ1|u|+ κ2|v|

]ds
s

+
(log t)γ1−1

|∆|

{
(log T)γ2−2 log

( T
η2

)[ λ1

Γ(δ1 + α2)

∫ η1

1

(
log

η1

s

)δ1+α2−1[
κ0 + κ1|u|

+ κ2|v|
]ds

s
+

1
Γ(α1)

∫ T

1

(
log

T
s

)α1−1[
κ0 + κ1|u|+ κ2|v|

]ds
s

]
+

λ1Γ(γ2 − 1)(log η1)
γ2+δ1−2

Γ(γ2 + δ1 − 1)

∣∣∣ log η2 −
γ2 − 1

γ2 + δ1 − 1
log η1

∣∣∣×[ λ2

Γ(δ2 + α1)

∫ η3

1

(
log

η3

s

)δ3+α1−1[
κ0 + κ1|u|+ κ2|v|

]ds
s

+
1

Γ(α2)

∫ T

1

(
log

T
s

)α2−1[
κ0 + κ1|u|+ κ2|v|

]ds
s

]

+
λ1Γ(γ2 − 1)(log η1)

γ2+δ1−2

Γ(α2)Γ(γ2 + δ1 − 1)

( log T
log η2

)γ2−2∣∣∣ log T − γ2 − 1
γ2 + δ1 − 1

log η1

∣∣∣
×
∫ η2

1

(
log

η2

s

)α2−1[
κ0 + κ1|u|+ κ2|v|

]ds
s

}
≤ Ω1[κ0 + κ1|u|+ κ2|v|] + Ω2[κ0 + κ1|u|+ κ2|v|],

which implies that

‖u‖ = sup
t∈E
|u(t)| ≤ Ω1κ0 + Ω2κ0 + (Ω1κ1 + Ω2κ1)||u||+ (Ω1κ2 + Ω2κ2)||v||. (28)

Similarly, one can find that

‖v‖ ≤ Ω1κ0 + Ω2κ0 + (Ω1κ1 + Ω2κ1)‖u‖+ (Ω1κ2 + Ω2κ2)‖v‖. (29)

From (28) and (29), we obtain

‖u‖+ ‖v‖ ≤ (Ω1 + Ω1)κ0 + (Ω2 + Ω2)κ0 + [(Ω1 + Ω1)κ1 + (Ω2 + Ω2)κ1]||u||
+ [(Ω1 + Ω1)κ2 + (Ω2 + Ω2)κ2]‖v‖, (30)

which, by ‖(u, v)‖ = ‖u‖+ ‖v‖, yields

‖(u, v)‖ ≤ 1
Φ
[(Ω1 + Ω1)κ0 + (Ω2 + Ω2)κ0].

In consequence, Θ(Υ) is bounded. Thus, the conclusion of Lemma 3 applies and hence
the operator Υ has at least one fixed point, which is indeed a solution of the problem (1)
and (2).

In the following result, the existence of a unique solution for the problem (1) and (2)
will be proved by means of a fixed point theorem due to Banach.

Theorem 3. If the assumption (H2) is satisfied and that(
Ω1 + Ω1

)
l1 +

(
Ω2 + Ω2

)
l2 < 1, (31)

where Ωi and Ωi, (i = 1, 2) are given in (18)–(21), then the problem (1) and (2) has a unique
solution on E .
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Proof. Letting K1 = supt∈E |$1(t, 0, 0)| < ∞ and K2 = supt∈E |$2(t, 0, 0)| < ∞, it follows
by the assumption (H1) that

|$1(t, u, v)| ≤ l1(‖u‖+ ‖v‖) + K1 ≤ l1‖(u, v)‖+ K1,

and

|$2(t, u, v)| ≤ l2‖(u, v)‖+ K2.

Firstly, we show that ΥBρ ⊂ Bρ, where Bρ = {(u, v) ∈ U ×U : ‖(u, v)‖ ≤ ρ}, with

ρ >
(Ω1 + Ω1)K1 + (Ω2 + Ω2)K2

1− (Ω1 + Ω1)l1 − (Ω2 + Ω2)l2
. (32)

For (u, v) ∈ Bρ, we have

‖Υ1(u, v)‖ = sup
t∈E
|Υ1(u, v)(t)|

≤ 1
Γ(α1)

∫ t

1

(
log

t
s

)α1−1 |$1(s, u(s), v(s))|
s

ds

+
(log t)γ1−1

|∆|

{
(log T)γ2−2 log

( T
η2

)
×

[ λ1

Γ(δ1 + α2)

∫ η1

1

(
log

η1

s

)δ1+α2−1 |$2(s, u(s), v(s))|
s

ds

+
1

Γ(α1)

∫ T

1

(
log

T
s

)α1−1 |$1(s, u(s), v(s))|
s

ds
]

+
λ1Γ(γ2 − 1)(log η1)

γ2+δ1−2

Γ(γ2 + δ1 − 1)

∣∣∣ log η2 −
γ2 − 1

γ2 + δ1 − 1
log η1

∣∣∣×[ λ2

Γ(δ2 + α1)

∫ η3

1

(
log

η3

s

)δ3+α1−1 |$1(s, u(s), v(s))|
s

ds

+
1

Γ(α2)

∫ T

1

(
log

T
s

)α2−1 |$2(s, u(s), v(s))|
s

ds
]

+
λ1Γ(γ2 − 1)(log η1)

γ2+δ1−2

Γ(α2)Γ(γ2 + δ1 − 1)

( log T
log η2

)γ2−2∣∣∣ log T − γ2 − 1
γ2 + δ1 − 1

log η1

∣∣∣×
∫ η2

1

(
log

η2

s

)α2−1 |$2(s, u(s), v(s))|
s

ds

}
,

which yields

‖Υ1(u, v)‖ ≤ (l1ρ + K1)
{ (log T)α1

Γ(α1 + 1)
+

(log T)α1+γ1+γ2−3

|∆|Γ(α1 + 1)
log
( T

η2

)
+ λ1λ2

Γ(γ2 − 1)(log η1)
γ2+δ1(log η3)

δ2+α1(log T)γ1−1

|∆|Γ(γ2 + δ1 + 1)Γ(δ2 + α1 + 1)

∣∣∣ log η1

− γ2 − 1
γ2 + δ1 − 1

log η1

∣∣∣}+ (l2ρ + K2)
{

λ1
(log η1)

α2+δ1(log T)γ1+γ2−3

|∆|Γ(δ1 + α2 + 1)
log
( T

η2

)
+ λ1

Γ(γ2 − 1)(log η1)
γ2+δ2(log T)γ1+α2−1

|∆|Γ(γ2 + δ1 − 1)Γ(α2 + 1)

∣∣∣ log η2 −
γ2 − 1

γ2 + δ1 − 1
log η1

∣∣∣
+ λ1

Γ(γ2 − 1)(log η1)
γ2+δ2(log T)γ1−1(log η2)

α2

|∆|Γ(γ2 + δ1 − 1)Γ(α2 + 1)

∣∣∣ log T − γ2 − 1
γ2 + δ1 − 1

log η1

∣∣∣}.
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Using the notation (18)–(21), we get

‖Υ1(u, v)‖ ≤ (l1Ω1 + l2Ω2)ρ + Ω1K1 + Ω2K2. (33)

Likewise, we can find that

‖Υ2(u, v)‖ ≤ (l1Ω1 + l2Ω2)ρ + Ω1K1 + Ω2K2. (34)

Then it follows from (32)–(34) that

‖Υ(u, v)‖ = ‖Υ1(u, v)‖+ ‖Υ2(u, v)‖ 6 ρ.

Therefore, ΥBρ ⊂ Bρ as (u, v) ∈ Bρ is an arbitrary element.
In order to verify that the operator Υ is a contraction, let νi, µi ∈ Bρ, i = 1, 2. Then,

we get

‖Υ1(ν1, µ1)− Υ1(ν2, µ2)‖

≤ 1
Γ(α1)

∫ t

1

(
log

t
s

)α1−1
|$1(s, ν1(s), µ1(s))− $1(s, ν2(s), µ2(s))|

ds
s

+
(log t)γ1−1

|∆|

{
(log T)γ2−2 log

( T
η2

)
×

[ λ1

Γ(δ1 + α2)

∫ η1

1

(
log

η1

s

)δ1+α2−1
|$2(s, ν1(s), µ1(s))− $2(s, ν2(s), µ2(s))|

ds
s

+
1

Γ(α1)

∫ T

1

(
log

T
s

)α1−1
|$1(s, ν1(s), µ1(s))− $1(s, ν2(s), µ2(s))|

ds
s

]
+

λ1Γ(γ2 − 1)(log η1)
γ2+δ1−2

Γ(γ2 + δ1 − 1)

∣∣∣ log η2 −
γ2 − 1

γ2 + δ1 − 1
log η1

∣∣∣×[ 1
Γ(α2)

∫ T

1

(
log

T
s

)α2−1
|$2(s, ν1(s), µ1(s))− $2(s, ν2(s), µ2(s))|

ds
s

+
λ2

Γ(δ2 + α1)

∫ η3

1

(
log

η3

s

)δ3+α1−1
|$1(s, ν1(s), µ1(s))− $1(s, ν2(s), µ2(s))|

ds
s

]
+

λ1Γ(γ2 − 1)(log η1)
γ2+δ1−2

Γ(α2)Γ(γ2 + δ1 − 1)

( log T
log η2

)γ2−2∣∣∣ log T − γ2 − 1
γ2 + δ1 − 1

log η1

∣∣∣×
∫ η2

1

(
log

η2

s

)α2−1
|$2(s, ν1(s), µ1(s))− $2(s, ν2(s), µ2(s))|

ds
s

}
,

which, by (H2), yields

‖(Υ1(ν1, µ1)− Υ1(ν2, µ2)‖ ≤ (Ω1l1 + Ω2l2)
[
‖ν1 − ν2‖+ ‖µ1 − µ2‖

]
. (35)

In a similar manner, we can find that

‖Υ2(ν1, µ1)− Υ2(ν2, µ2)‖ ≤ (Ω1l1 + Ω2l2)
[
‖ν1 − ν2‖+ ‖µ1 − µ2‖

]
. (36)

Consequently, it follows from (35) and (36) that

‖Υ(ν1, µ1)− Υ(ν2, µ2)‖ = ‖Υ1(ν1, µ1)− Υ1(ν2, µ2)‖+ ‖Υ2(ν1, µ1)− Υ2(ν2, µ2)‖

≤
[
(Ω1 + Ω1)l1 + (Ω2 + Ω2)l2

](
‖ν1 − ν2‖+ ‖µ1 − µ2‖

)
,

which, by the condition (31), implies that Υ is a contraction. Therefore, the operator Υ has a
unique fixed point as an application of Banach fixed point theorem. Hence, there exists a
unique solution for the problem (1) and (2) on E .
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Examples

Consider the following coupled Hilfer–Hadamard fractional differential system:HHD
1
4 , 1

4
1+ u(t) = $1(t, u(t), v(t)), t ∈ [1, 10],

HHD
5
2 , 1

2
1+ v(t) = $2(t, u(t), v(t)),

(37)

supplemented with nonlocal coupled Hadamard integral boundary conditions:u(1) = 0, u(10) = 3 H I
1
3
1+v(6),

v(1) = 0, v( 4
3 ) = 0, v(10) = 2 H I

3
4
1+u(5).

(38)

Here α1 = 1/4, β1 = 1/4, α2 = 5/2, β2 = 1/2, T = 10, δ1 = 1/3, δ2 = 3/4, η1 = 6,
η2 = 4/3, η3 = 5, λ1 = 3, and λ2 = 2. With the given data, it is found that γ1 = 11/16,
γ2 = 11/4, ∆1 = −19.38876, ∆2 = −16.87, Ω1 = 1.95131, Ω2 = 2.88353, Ω1 = 1.34903,
Ω2 = 7.54898.

(1) For illustrating Theorem 2, we take

$1(t, u(t), v(t)) =
√

2t + 1 +
|u(t)|

25(1 + |u(t)|) +
cos v(t)
5t + 10

,

$2(t, u(t), v(t)) = e−2t +
tan−1 u(t)

30t
+

1
45

sin v(t). (39)

Clearly the condition (H1) is satisfied with κ0 =
√

3, κ1 = 1/25, κ2 = 1/15, κ0 = 1/e2,
κ1 = 1/30, κ2 = 1/45. Moreover, we have

1
25

(Ω1 + Ω2) +
1

30
(
Ω1 + Ω2

)
≈ 0.635578 < 1,

1
15

(Ω1 + Ω2) +
1

45
(
Ω1 + Ω2

)
≈ 0.617112 < 1.

Thus, the hypothesis of Theorem 2 holds true. Therefore, the conclusion of Theorem 2
applies and hence the problem (37) and (38) with $1 and $2 given by (39) has at least one
solution on [1, 10].

(2) We illustrate Theorem 3 by considering

$1(t, u(t), v(t)) =
1

t2 + 4
+

1
10
√

2t + 7
(sin u(t) + |v(t)|),

$2(t, u(t), v(t)) = e−2t +
1

5(t + 4)

(
tan−1 u(t) + cos v(t)

)
. (40)

In a straightforward manner, we find that (H2) is satisfied with l1 = 1/30 and
l2 = 1/25, and

1
30
(
Ω1 + Ω1

)
+

1
25
(
Ω2 + Ω2

)
≈ 0.527312 < 1.

As the hypothesis of Theorem 3 holds true, therefore, it follows by its conclusion that the
problem (37) and (38) with $1 and $2 given by (40) has a unique solution on [1, 10].

5. Conclusions

We have presented the existing criteria for solutions of a coupled system of nonlinear
Hilfer–Hadamard fractional differential equations of different orders subject to nonlocal
coupled Hadamard integral boundary conditions. The methods of modern analysis are
successfully applied to establish the desired results. It is imperative to mention that the
work presented in the given configuration is new and enriches the literature on the topic.
Moreover, our results reduce to the ones for system (1) with boundary conditions of the
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form: u(1) = 0, u(T) = 0, v(1) = 0, v(η2) = 0, v(T) = 0, 1 < η2 < T, when we choose
λ1 = 0 and λ2 = 0, which are indeed new. In the future, we plan to extend the present
work to a coupled system of nonlinear Hilfer–Hadamard sequential fractional differential
equations of different orders subject to integro-multipoint boundary conditions. We will
also study the multivalued analog of the problem investigated in this paper.
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