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Abstract: Due to the interest of anomalous diffusion phenomena and their application, our work
has widely studied a fractional-order generalized Langevin Equation (FGLE) with a generalized
Mittag–Leffler (GML) noise. Significantly, the spectral of GML noise involving three parameters is
well addressed. Furthermore, the spectral amplification (SPA) of an FGLE has also been investigated.
The generalized stochastic resonance (GSR) phenomenon for FGLE only influenced by GML noise
has been found. Furthermore, material GSR for FGLE influenced by two types of noise has been
studied. Moreover, it is found that the GSR behaviors of the FGLE could also be induced by the
fractional orders of the FGLE.
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1. Introduction

Many physical systems are immersed in noisy environments. Furthermore, new order
induced by noise attracts significant attention. One of the effects of noise is stochastic reso-
nance (SR) which was coined by Roberto Benzi [1] to account for the glaciation phenomena.
The SR theory has been extensively studied in various fields, including communication
devices, chemical reactions, and material–physics phenomena [1–9]. SR phenomena both
in nonlinear and linear systems could be induced by noise [10–15]. The traditional SR
indicates that it itself exhibits maximal value for signal-to-noise ratio (SNR) versus noise
intensity [1,3]. Subsequently, the generalized stochastic resonance (GSR) [10] is widely
studied. In this work, we will address spectral amplification (SPA) [11–13] to describe the
SR phenomena.

R. Brown discovered the Brownian motion for small pollen particles suspended in wa-
ter. The diffusion, used in many branches of physics in recent decades [16,17], is described
by the mean squared displacement (MSD). The scaling law 〈x2(t)〉 ∼ t is characteristic
of normal diffusion, while 〈x2(t)〉 ∼ tα exhibits anomalous diffusion [17]. One should
distinguish subdiffusion for 0 < α < 1 and superdiffusion for 1 < α < 2 [17]. Recently,
anomalous diffusion phenomena are receiving considerable attention.

There are several approaches for describing the diffusion process. The stochastic
harmonic oscillator is one of the cornerstones of statistical models and it describes stochastic
systems by using Newton’s second law [17,18]. Kubo coined the fluctuation–dissipation
relation (FDR) to establish a relation between the thermal noise and friction forces [19].
In this condition, the diffusion process could be governed by a generalized Langevin
equation (GLE) [14,15,20]. Subsequently, the subject of the GLE attracts more and more
attention [14,15,20].

Fractional Calculus (FC) is a useful tool for modeling a variety of natural phenomena,
involving areas in engineering, biology, finance, economy, and chemistry [21]. Additionally,
a fractional Langevin equation was introduced to study anomalous diffusion [22]. Recently,
the fractional-order generalized Langevin equations (FGLEs) were studied to discuss the
anomalous diffusion [23,24].
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Anomalous diffusion for a Brownian particle with unit mass m = 1 in viscoelastic
media subjected to a intrinsic noise F(t) could be characterized by the FGLE [23,24]:

CDµ
0 v(t) +

∫ t

0
γ(t− u)ẋ(u)du + U(x) = F(t), CDν

0 x(t) = v(t). (1)

in which x(t) denotes the displacement and v(t) stands for the velocity. U(x) in Equation (1)
denotes a general external force. For harmonic force with free noise, U(x) is written as
U(x) = ω2

0x. For harmonic force with noise, U(x) can be defined as U(x) = ω2
0(1 + ξ(t))x,

where ξ(t) stands for an external noise, and ω0 presents a inherent frequency. Furthermore,
γ(t) in Equation (1) is related to the intrinsic noise F(t), which is zero-centered and satisfies
FDR [19],

〈F(t)F(u)〉 = C(|t− u|) = κBTγ(|t− u|), (2)

in which T represents the absolute temperature and κB signifies the Boltzmann constant.
Recently, the correlation function with a power–law correlation function was studied

to investigate anomalous diffusion phenomena [14,15,25]. Most recently, a Mittag–Leffler
(ML) noise was studied to address anomalous diffusion phenomena [26]. One-parameter
ML correlation function C0

τα Eα[−( |t−u|
τ )α] is used [26], where α stands for the memory

exponent (0 < α < 2), τ denotes the memory time, C0 is a proportionality coefficient, and
function Eα(s) denotes the ML function. Subsequently, Camargo [27] and Fa [28] studied
an FGLE with a two-parameter ML function C0

τα |t− u|β−1Eα,β[−( |t−u|
τ )α], where the Eα,β(s)

function denotes the two-parameter ML function. In recent papers [29], a three-parameter
ML correlation function C0

ταδ |t− u|β−1Eδ
α,β[−(

|t−u|
τ )α] was investigated to model anomalous

diffusion phenomena. The three-parameter ML function, proposed by Prabhakar [30], can
be reduced to various types of ML function for special parameters. Hence, three-parameter
ML noise can recover for various types of ML noise, including fractional noise with power–
law correlation functions and Gaussian white noise. Thus, due to its potential application
in modeling anomalous diffusion, generalized Mittag–Leffler (GML) noise is becoming an
intriguing subject of research.

The fluctuating parameters of the systems could be characterized by extrinsic mul-
tiplicative noise if the physical system fluctuated by external origin. Several stochastic
harmonic oscillators with fluctuating parameters have been widely investigated [31]. Es-
pecially, material results of SR phenomena in stochastic harmonic oscillators have been
extensively studied. For instance, the SR phenomena of stochastic harmonic oscillators with
multiplicative noise were investigated [31]. Most recently, the SR phenomena in stochas-
tic harmonic oscillators with fluctuating inherent frequency and random damping were
also extensively studied [32]. Mankin and collaborators [33] introduced a trichotomous
noise to describe the telegraph process. Due to the trichotomous noise including Gaussian
white noise and dichotomous noise, trichotomous noise is better suited to address natural
fluctuations [33]. Thus, GSR phenomena for Langevin equation with trichotomous noise
attract significant attention [11]. The papers [29] have studied fractional dynamics and the
statistical property of an FGLE with GML noise; however, the impact of multiple multiplica-
tive trichotomous noise was not discussed in these systems. Due to the influence of some
biological and chemical environments, the molecules of viscoelastic media are capable of
both adhering and colliding to it randomly, which leads to the random mass. On the other
hand, random inherent frequency may be influenced by external fluctuations, which arises
from fluctuations of the potential energy. Therefore, the synergy between random mass,
random inherent frequency, and GML noise should be considered. Thus, the main work is
to investigate the GSR phenomena for an FGLE with multiple multiplicative trichotomous
noise and a GML noise, which is missing in the literature reports. Especially, the GSR
phenomenon of the FGLE only induced by a GML noise will be studied. One of the main
aims of this work is to address the dynamical behavior of the various non-monotonic GSR
phenomena of SPA versus the parameters of the intrinsic noise, multiplicative trichotomous



Fractal Fract. 2023, 7, 177 3 of 15

noise, and driving frequency. It is worth noting that the spectral of GML noise would be
addressed due to its spectra describing the power of the noise.

2. Three-Parameter GML Noise

The noise spectral is a significant index, which describes the power of noise. The
spectral of ML noise involving a one-parameter ML correlation function is studied in
Ref. [34]. The three-parameter ML correlation function is written as [29]

〈F(t)F(u)〉 = C(|t− u|) = C0

ταδ
|t− u|β−1Eδ

α,β[−(
|t− u|

τ
)α], (3)

where C0 denotes a proportionality coefficient, α > 0, β > 0, δ > 0. The Eδ
α,β(s) is a

three-parameter ML function defined by the following series:

Eδ
α,β(s) =

∞

∑
k=0

(δ)k
Γ(β + αk)

sk

k!
, (4)

where (δ)k = Γ(δ+k)
Γ(δ) , and Γ(·) denotes the gamma function. For δ = 1, the correlation

function (3) recovers to the two-parameter ML correlation function of GML noise given by

〈F(t)F(u)〉 = C0

τα
|t− u|β−1Eα,β[−(

|t− u|
τ

)α], (5)

where the Eα,β(z) is a two-parameter ML function given by

Eα,β(s) =
∞

∑
k=0

sk

Γ(β + αk)
, α > 0, β > 0. (6)

For δ = 1, β = 1, the function (3) recovers to the correlation function of ML noise with
one-parameter ML function given by

Eα(s) =
∞

∑
k=0

sk

Γ(1 + αk)
, α > 0. (7)

For δ = 1, β = 1, α = 1, C(t) in Equation (3) recovers to C(t) = C0
τ e−

|t|
τ , which is the

function of the Ornstein–Uhlenbeck noise. For δ = 1, β = 1 and τ → 0, the function (3)
recovers to C(t) = C0

t−α

Γ(1−α)
, which corresponds to a power–law function. For δ = 1, β = 1,

α = 1 and τ → 0, the function (3) recovers to C(t) = C1δ(t), a Dirac delta function of
white noise.

Taking the Laplace transform (LT) of C(t), one can have

Ĉ(s) =
C0

ταδ

sαδ−β

(sα + τ−α)δ
. (8)

Assuming ω > 0, after some algebra, one can yield

C̃(ω) = Ĉ(s = −iω) =
C0

ταδ
ωαδ−β cos[π

2 (αδ− β)− ϕ1δ]− i sin[π
2 (αδ− β)− ϕ1δ]

[ω2α + τ−2α + 2ωατ−α cos(π
2 α)]

δ
2

, (9)

where ϕ1 = arctan ωα sin( π
2 α)

ωα cos( π
2 α)+τ−α .
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Therefore, one has, in particular

ReC̃(ω) =
C0

ταδ

ωαδ−β cos[π
2 (αδ− β)− ϕ1δ]

[ω2α + τ−2α + 2ωατ−α cos(π
2 α)]

δ
2

, ω > 0, (10)

whereReC̃(ω) denotes the real part of C̃(ω).
Thus, one can obtain the noise spectral 〈|F(ω)|2〉 of three-parameter ML noise,

〈|F(ω)|2〉 = 2
C0

ταδ

|ω|αδ−β cos[π
2 (αδ− β)− ϕ1δ]

[|ω|2α + τ−2α + 2|ω|ατ−α cos(π
2 α)]

δ
2

. (11)

For δ = 1, Equation (11) recovers to

〈|F(ω)|2〉 = 2
C0

τα
|ω|α−β cos[π

2 (α− β)− ϕ1]

[|ω|2α + τ−2α + 2|ω|ατ−α cos(π
2 α)]

1
2

=
2C0|ω|α−β{cos[π

2 (α− β)] + (τ|ω|)α cos(π
2 β)}

1 + 2(τ|ω|)α cos(π
2 α) + (τ|ω|)2α

. (12)

For β = 1 and δ = 1, Equation (11) recovers to

〈|F(ω)|2〉 =
2C0|ω|α−1 sin(π

2 α)

1 + 2(τ|ω|)α cos(π
2 α) + (τ|ω|)2α

, (13)

which agrees with the result provided in Ref. [34].
Based on the expression spectral (11), Figure 1 exhibits a frequency-dependent spec-

trum of three-parameter ML noise with C0 = 5.52× 10−18 and other parameters explained
in Figure 1. Figure 1a showing the spectrum for various α is monotonic decreasing for
α ≤ 1, while the spectrum exhibits non-monotonicity for α > 1. Figure 1b depicts the
spectrum which presents monotonic decreasing for β ≤ 1. Figure 1c plots the spectrum
exhibiting monotonic decreasing for approximately δ < 0.5, while the spectrum exhibits
monotonic increasing for approximately δ > 0.5. Figure 1d displays the monotonic de-
creasing spectrum for τ ≤ 1. One can find that the spectrum of three-parameter ML noise
exhibits many characteristics. As depicted in Figure 1, for special parameters, one can find
that an increasing spectrum with decreasing frequency identifies with the spectrum of 1/ f
noise or the spectrum of random carriers in lattice defects.
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Figure 1. Spectrum of three-parameter ML noise. (a) Various α with β = 0.5, δ = 0.4, τ = 0.5;
(b) various β with α = 0.5, δ = 0.4, τ = 0.5; (c) various δ with α = 0.5, β = 0.2, τ = 0.5; (d) various τ

with α = 0.5, β = 0.2, δ = 0.2.

3. FGLE with Multiplicative Trichotomous Noise

For convenience, some calculus definitions are given as follows. The Riemann–Liouville
integral is written as [21]

Ip
0 f (t) =

1
Γ(p)

∫ t

0
(t− ς)p−1 f (τ)dς, t > 0, p > 0. (14)

Fractional derivatives in Caputo type is given by [21]

CDµ
0 f (t) = Im−µ f (m)(t), µ > 0, m = [Re(µ)] + 1. (15)

One knows that external fluctuations may often connect with fluctuating parameters.
Usually, the mass and inherent frequency are often immersed in the same environment.
Based on the previous description, the fluctuating parameters are established by multiplica-
tive trichotomous noise, and the thermal noise is established by a GML noise. Thus, an
FGLE with random mass, random frequency, and a GML noise can be characterized by

(1 + ξ(t))CDµ
0 v(t) +

∫ t

0
γ(t− u)v(u)du + ω2

0(1 + ξ(t))x = A0 cos(Ωt) + F(t),

CDν
0 x(t) = v(t),

(16)

where ω0 is the inherent frequency, and Ω, A0 are the frequency and the amplitude of the
external force A0 cos(Ωt), respectively. γ(t) satisfies Equation (2). The thermal noise F(t)
is a three-parameter GML noise [29], zero-centered, meeting Equations(2) and (3). Then,
γ(t) is given by

γ(t) =
C0

κBTταδ
tβ−1Eδ

α,β[−(
t
τ
)α]. (17)

CDµ
0 and CDν

0 in Equation (16) are fractional derivatives in Caputo type, 0 < µ ≤ 1 and
0 < ν ≤ 1. For ν 6= 1, CDν

0 x denotes fractional velocity [12,23]. For ν = 1, CDν
0 x recovers to

ordinary velocity.
The multiplicative extrinsic noise ξ(t) in Equation (16) is established by trichotomous

noise [33]. Due to different origins, ξ(t) and F(t) are assumed to be independent, i.e.,
〈ξ(t)F(t)〉 = 0. The trichotomous noise ξ(t) takes three values: ±a and 0, which meets
ps(a) = ps(−a) = q, ps(0) = 1− 2q for 0 < q ≤ 1

2 . Furthermore, ξ(t) also meets

〈ξ(t)〉 = 0, 〈ξ(t + ε)ξ(t)〉 = 2qa2e−λε. (18)
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4. Spectral Amplification of FGLE

It is well established that the Shapiro–Loginov formula (SLF) [35] plays a significant
role to solve a stochastic differential equation.

To obtain the first moment of Equation (16), it is necessary to average Equation (16),
and one obtains

CDµ
0 〈v(t)〉 = −〈ξ(t)CDµ

0 v(t)〉 −
∫ t

0
γ(t− u)〈v(u)〉du−ω2

0(〈x(t)〉+ 〈ξ(t)x(t)〉) + A0 cos(Ωt),

CDν
0〈x(t)〉 = 〈v(t)〉.

(19)

Multiplying Equation (16) by ξ(t), we could also obtain

〈ξ(t)CDµ
0 v(t)〉 = −〈ξ2(t)CDµ

0 v(t)〉 −
∫ t

0
γ(t− u)〈ξ(t)v(u)〉du−ω2

0(〈ξ(t)x(t)〉+ 〈ξ2(t)x(t)〉),

〈ξ(t)CDν
0 x(t)〉 = 〈v(t)ξ(t)〉.

(20)

To split two correlators 〈ξ(t)CDν
0 x(t)〉 and 〈ξ(t)CDµ

0 v(t)〉, one can exploit the defini-
tion of fractional calculus and the Shapiro–Loginov procedure, and we can yield

〈ξ(t)CDµ
0 v(t)〉 = e−λt

CDµ
0 [〈v(t)ξ(t)〉e

λt],

〈ξ(t)CDν
0 x(t)〉 = e−λt

CDν
0 [〈x(t)ξ(t)〉eλt].

(21)

For the new correlator 〈ξ(t)v(u)〉, after using the SLF procedure, we yield

〈v(u)ξ(t)〉 = 〈v(u)ξ(u)〉e−λ(t−u) (22)

Equation (20) contains the high-order correlator 〈ξ2(t)CDµ
0 v(t)〉, and one has to use

a decoupling procedure. Multiplying Equation (16) by ξ2(t), using ξ3(t) = a2ξ(t) and
〈ξ2(t)〉 = 2qa2, after averaging one can yield

〈ξ2(t)CDµ
0 v(t)〉+ a2〈ξ(t)CDµ

0 v(t)〉+
∫ t

0
γ(t− u)〈ξ2(t)v(u)〉du + ω2

0(〈ξ2(t)x(t)〉

+ a2〈ξ(t)x(t)〉) = 2qa2 A0 cos(Ωt), (23)

〈ξ2(t)CDν
0 x(t)〉 = 〈ξ2(t)v(t)〉.

Using the procedure analogous with SLF, one obtains

〈ξ2(t)CDµ
0 v(t)〉 = e−λt

CDµ
0 [〈ξ

2(t)v(t)〉 − 2qa2〈v(t)〉eλt] + 2qa2
CDµ

0 〈v(t)〉, (24)

and

〈ξ2(t)CDν
0 x(t)〉 = e−λt

CDν
0 [〈ξ2(t)x(t)〉 − 2qa2〈x(t)〉eλt] + 2qa2

CDν
0〈x(t)〉. (25)

Considering the fact that in Equation (23) there is a new correlator 〈ξ2(t)v(u)〉, we
take the generalized Shapiro–Loginov procedure again, and we have

〈ξ2(t)v(u)〉 = 2qa2〈v(u)〉+ (〈ξ2(u)v(u)〉 − 2qa2〈v(u)〉)e−λ(t−u). (26)
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X1(s), X2(s), X3(s), X4(s), X5(s), X6(s) are assumed to be LT of 〈x〉,〈v〉, 〈ξx〉, 〈ξv〉,
〈ξ2x〉, 〈ξ2v〉, respectively. The initial values will vanish (t→ ∞). Using Equations (21), (22),
(24)–(26), we can obtain the following results after LT:

(s + λ)µX4(s) + [sµ + γ̂(s)]X2(s) + ω2
0 [x1(s) + X3(s)] =

A0s
s2 + Ω2 ,

sνX1(s) = X2(s),

(s + λ)µX6(s) + [(s + λ)µ + γ̂(s + λ)]X4(s) + ω2
0 [X3(s) + X5(s)]

+ 2qa2[sµ − (s + λ)µ]X2(s) = 0, (27)

(s + λ)νX3(s) = X4(s),

[(s + λ)µ + γ̂(s + λ)]X6(s) + a2(s + λ)µX4(s) + ω2
0 [X5(s) + a2X3(s)]

+ 2qa2[sµ − (s + λ)µ + γ̂(s)− γ̂(s + λ)]X2(s) = 2qa2 A0s
s2 + Ω2 ,

(s + λ)νX5(s) + 2qa2[sν − (s + λ)ν]x1(s) = X6(s),

in which γ̂(s) is LT of γ(t),

γ̂(s) = γ̄
sαδ−β

(sα + τ−α)δ
, (28)

where γ̄ = C0
κBTταδ . Solving of Equation (27), one can obtain

X1(s) =
G(s)
H(s)

A0s
s2 + Ω2 , (29)

where

G(s) = [γ̂(s + λ)(s + λ)ν + (s + λ)µ+ν + ω2
0 ]

2 + (2q− 1)a2[(s + λ)µ+ν + ω2
0 ]

2,

H(s) = {[γ̂(s + λ)(s + λ)ν + (s + λ)µ+ν + ω2
0 ]

2 − a2[(s + λ)µ+ν + ω2
0 ]

2}[sµ+ν + sνγ̂(s) + ω2
0 ] (30)

+2qa2[(s + λ)µ+ν + γ̂(s + λ)(s + λ)ν + ω2
0 ][(s + λ)µ+ν − sµ+ν][(s + λ)µ+ν + ω2

0 ]

+2qa2[sνγ̂(s)− γ̂(s + λ)(s + λ)ν + sµ+ν − (s + λ)µ+ν][(s + λ)µ+ν + ω2
0 ]

2.

For the stability of the solution conditions, it is necessary to assume that the following
inequality holds:

a2 < [λµ+ν + ω2
0 + γ̄

λαδ−β+ν

(λα + τ−α)δ
]2{(λµ+ν + ω2

0)[λ
µ+ν + ω2

0 + 2qγ̄
λαδ−β+ν

(λα + τ−α)δ
]}−1. (31)

Applying the linear response theory, we can yield the system stationary state response

〈x(t)〉as = lim
t→∞
〈x(t)〉 = R cos(Ωt + ψ), (32)

in which the output amplitude and phase shift are, respectively, given by

R = A0

√
f 2
1 + f 2

2
f 2
3 + f 2

4
, ψ = arctan(

f2 f3 − f1 f4

f1 f3 + f2 f4
), (33)

in which the related coefficients are given by
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f1 = (c1 + f5 + ω2
0)

2 − (c2 + f6)
2 + (2q− 1)a2{(λ2 + Ω2)µ+ν cos[2θ(µ + ν)] + ω4

0 + 2ω2
0c1},

f2 = 2(c1 + f5 + ω2
0)(c2 + f6) + (2q− 1)a2{(λ2 + Ω2)µ+ν sin[2θ(µ + ν)] + 2ω2

0c2},
f3 = 2qa2{(c1 + f5 + ω2

0)(c1 − c3)(c1 + ω2
0)− (c2 + f6)(c2 − c4)(c1 + ω2

0)

−c2(c1 + f5 + ω2
0)(c2 − c4)− c2(c2 + f6)(c1 − c3)

+(c3 − c1 + f7 − f5)[(c1 + ω2
0)

2 − c2
2]− 2c2(c4 − c2 + f8 − f6)(c1 + ω2

0)}
+[(c1 + f5 + ω2

0)
2 − (c2 + f6)

2 − a2(c1 + ω2
0)

2 + a2c2
2](c3 + f7 + ω2

0)

−2[(c1 + f5 + ω2
0)(c2 + f6) + c2(c1 + ω2

0)](c4 + f8),

f4 = 2qa2{c2(c1 + f5 + ω2
0)(c1 − c3)− c2(c2 + f6)(c2 − c4)

+(c1 + f5 + ω2
0)(c2 − c4)(c1 + ω2

0) + (c2 + f6)(c1 − c3)(c1 + ω2
0)

+2c2(c3 − c1 + f7 − f5)(c1 + ω2
0) + (c4 − c2 + f8 − f6)[(c1 + ω2

0)
2 − c2

2]}
+[(c1 + f5 + ω2

0)
2 − (c2 + f6)

2 − a2(c1 + ω2
0)

2 + a2c2
2](c4 + f8)

+2[(c1 + f5 + ω2
0)(c2 + f6) + c2(c1 + ω2

0)](c3 + f7 + ω2
0),

f5 =
γ̄(λ2 + Ω2)

αδ−β+ν
2 cos[θ(αδ− β + ν)− ϕ2δ]

[(λ2 + Ω2)α + τ−2α + 2τ−α(λ2 + Ω2)
α
2 cos(θα)]

δ
2

,

f6 =
γ̄(λ2 + Ω2)

αδ−β+ν
2 sin[θ(αδ− β + ν)− ϕ2δ]

[(λ2 + Ω2)α + τ−2α + 2τ−α(λ2 + Ω2)
α
2 cos(θα)]

δ
2

,

f7 =
γ̄Ωαδ−β+ν cos[π

2 (αδ− β + ν)− ϕ3δ]

[Ω2α + τ−2α + 2τ−αΩα cos(π
2 α)]

δ
2

, f8 =
γ̄Ωαδ−β+ν sin[π

2 (αδ− β + ν)− ϕ3δ]

[Ω2α + τ−2α + 2τ−αΩα cos(π
2 α)]

δ
2

,

c1 = (λ2 + Ω2)
ν+µ

2 cos[θ(ν + µ)], c2 = (λ2 + Ω2)
ν+µ

2 sin[θ(ν + µ)],

c3 = Ωµ+ν cos[
π

2
(ν + µ)], c4 = Ων+µ sin[

π

2
(ν + µ)],

θ = arctan
Ω
λ

, ϕ2 = arctan
(λ2 + Ω2)

α
2 sin(αθ)

(λ2 + Ω2)
α
2 cos(αθ) + τ−α

, ϕ3 = arctan
Ωα sin(π

2 α)

Ωα cos(π
2 α) + τ−α

. (34)

Furthermore, the exact expression of SPA of FGLE (16) can be written as

SPA =
R2

A2
0
=

f 2
1 + f 2

2
f 2
3 + f 2

4
. (35)

For ξ(t) = 0 in Equation (16), one can note that SPA in Equation (35) would recover to

SPA =
1

[Ωµ+ν cos(π
2 (µ + ν)) + f7 + ω2

0 ]
2 + [ f8 + Ωµ+ν sin(π

2 (µ + ν))]2
. (36)

5. Resonance Behavior of FGLE
5.1. GSR for FGLE Only Influenced by GML Noise

Although some properties of the FGLE with GML noise have been studied in some
papers, the resonance behaviors of an FGLE only induced by GML noise involving three
parameter requires further discussion. To begin with, we will study the mechanism of the
SR phenomenon of the FGLE in Equation (36) absence ξ(t), i.e., ξ(t) = 0. According to
Equation (36), Figure 2 displays GSR behaviors for the FGLE, SPA versus α. In Figure 2a,
SPA(α) displays one peak and one valley in each curve, which indicates that GSR [10] and
reverse SR [36] take place. In Figure 2a, it is easy to see that, with the increase in β, the
valley lifts and moves to the right. In Figure 2a, one can also find the peak appears in
SPA(α) at the beginning, and decreases with β increasing. However, the peak appears in the
left of SPA(α), and the right peak of SPA(α) disappears if β keeps increasing. In Figure 2b,
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SPA(α) displays one valley for about δ < 1.4, and SPA(α) displays one valley and one peak
for δ > 1.4. It is obviously seen from Figure 2b that the valley lifts and slightly moves to
the left with δ increasing. Figure 2b also shows that the resonance peak moves to the left as
δ increases.
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Figure 2. GSR behaviors of SPA(α) in (36) for different (a) β and (b) δ. (a) γ̄ = 0.1, δ = 1.6, τ = 0.2,
ω0 = 1, Ω = 2 µ = ν = 0.9; (b) γ̄ = 0.1, β = 0.2, τ = 0.2, ω0 = 1, Ω = 2, µ = ν = 0.9.

Figure 3 displays GSR for SPA in Equation (36) versus β. In Figure 3a, there is a peak
in SPA(β) for about α < 0.9, and SPA(β) exhibits a valley for α > 0.9. Furthermore, in
Figure 3a, the peak decreases as α increases. Then, the peak disappears while a valley
emerges in its left side for α continues increasing. In Figure 3b, SPA(β) exhibits a valley in
its left side for about τ < 0.2, SPA(β) presents one peak and one valley for 0.2 < τ < 0.8,
while SPA(β) exhibits a peak for about τ > 0.8. Furthermore, in Figure 3b, the valley
decreases and moves to the left until it vanishes as τ increases, while the resonance peak (if
SPA(β) presents a peak) increases with τ increasing.

0 0.5 1 1.5 2
0.165

0.17

0.175

0.18

0.185

0.19

β

S
P

A

 

 

α=0.2
α=0.4
α=0.6
α=0.8
α=1
α=1.2

(a)

0 0.5 1 1.5 2 2.5 3
0.1

0.12

0.14

0.16

0.18

0.2

β

S
P

A

 

 

2 2.5
0.188

0.19

0.192

0.194

0.196

 

 

τ=0.2
τ=0.4
τ=0.6
τ=0.8
τ=1
τ=1.2
τ=1.4

(b)

Figure 3. GSR behaviors of SPA(β) in (36) different (a) α and (b) τ. (a) γ̄ = 0.1, δ = 1.6, τ = 0.2,
ω0 = 1, Ω = 2, µ = ν = 0.8; (b) γ̄ = 0.1, α = 1.2, δ = 1.6, ω0 = 1, Ω = 2, µ = ν = 0.8.

According to Equation (36), Figure 4 shows material resonance behaviors of SPA
versus δ. Figure 4a depicts that SPA(δ) is monotonous for about α < 0.2, SPA(δ) exhibits a
valley for about 0.2 < α < 0.6, a peak and a valley exhibit in SPA(δ) for about 0.6 < α < 1,
a peak and two valleys exhibit in SPA(δ) for about 1 < α < 1.3, and two or three peaks
appear for about α > 1.4. This phenomenon indicates that stochastic multi-resonance
(SMR) phenomena occur [37]. Figure 4b presents a peak and two valleys that appear in
SPA(δ). Figure 4b also demonstrates that the valleys lift, while the peak decreases with
β increasing.
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Figure 4. GSR behaviors of SPA( δ) in (36) for distinct (a) α and (b) β. (a) γ̄ = 0.1, β = 0.4, τ = 0.2,
ω0 = 1, Ω = 2, µ = ν = 0.8; (b) γ̄ = 0.1, α = 1.2, τ = 0.2, ω0 = 1, Ω = 2, µ = ν = 0.8.

5.2. GSR for FGLE Influenced by Two Types of Noise

It is interesting to discuss the resonance mechanism of the FGLE under synergy be-
tween multiplicative trichotomous noise and intrinsic additive noise with a three-parameter
ML correlation function. In this subsection, according to Equation (35), we will address
GSR for an FGLE influenced by two types of noise, ξ(t) and F(t). Figure 5 shows SPA
versus α. As depicted in Figure 5a, a peak and a valley are seen in SPA(α), which indicates
that GSR and reverse SR phenomena take place. Furthermore, in Figure 5a, the valley lifts;
meanwhile, the peak decreases as β increases. It is obviously seen from Figure 5b that
SPA(α) displays a valley and a flat resonance peak. Figure 5b also demonstrates that the
valley lifts; meanwhile, the peak increases in parallel with q increasing, while the valley
position and the peak position are almost unchanged.
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Figure 5. GSR behaviors of SPA(α) in (35) for different (a) β and (b) q. (a)γ̄ = 0.1, δ = 1.65, τ = 0.1,
a2 = 0.2, q = 0.3, λ = 0.6, ω0 = 1, Ω = 2, µ = ν = 0.8; (b) β = 0.2, γ̄ = 0.1, δ = 1.65, τ = 0.1,
a2 = 0.2, λ = 0.6, ω0 = 1, Ω = 2, µ = ν = 0.8.

Figure 6 shows GSR for SPA in Equation (35) versus β. In Figure 6a, SPA(β) presents
a peak for about α < 0.9, while SPA(β) displays a valley for about α > 0.9. Figure 6a
exhibits the peak decreases and moves to the right as α increases at the beginning. The peak
disappears while a valley emerges; then, the valley lifts if α continues to increase. Figure 6b
demonstrates that a peak appears in SPA(β) for about δ < 1, while a valley appears in
SPA(β) for about δ > 1. Figure 6b also depicts that the peak decreases as δ increases at
first. The peak disappears and a valley emerges in its left side; then, the valley lifts if δ
continues increasing.
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Figure 6. GSR behaviors of SPA(β) in (35) for different (a) α and (b) δ. (a) γ̄ = 0.1, δ = 1.65, τ = 0.1,
a2 = 0.2, q = 0.3, λ = 0.6, ω0 = 1, Ω = 2, µ = ν = 0.8; (b) γ̄ = 0.1, α = 1.2, τ = 0.1, a2 = 0.2,
q = 0.3, λ = 0.6, ω0 = 1, Ω = 2, µ = ν = 0.8.

Figure 7 demonstrates material resonance behaviors of SPA in Equation (35) versus
δ. Figure 7a displays that SPA(δ) is monotonous for about α < 0.2. Furthermore, a valley
appears in SPA(δ) for about 0.2 < α < 0.6, while a peak and a valley appear in SPA(δ) for
about 0.6 < α < 1, which means that the GSR phenomenon and reverse SR phenomenon
take place, respectively. There are a peak and two valleys in SPA(δ) for about 1 < α < 1.3,
and there are two or three peaks in the curve for about α ≥ 1.4, which means that SMR
phenomena occur. Figure 7b plots that there are a peak and two valleys for about β < 1,
and there are two peaks and a valley for about β > 1. Figure 7b also depicts that the valleys
lift and the resonance peaks decrease as β increases.
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Figure 7. GSR behaviors of SPA(δ) in (35) for distinct (a) α and (b) β. (a) γ̄ = 0.1, β = 0.4, τ = 0.2,
a2 = 0.6, q = 0.3, λ = 0.6, ω0 = 1, Ω = 2, µ = ν = 0.8; (b) γ̄ = 0.1, α = 1.2, τ = 0.2, a2 = 0.2,
q = 0.3, λ = 0.6, ω0 = 1, Ω = 2, µ = ν = 0.8.

Figure 8 depicts SPA with Equation (35) versus the fractional order µ. In Figure 8a,
SPA(µ) exhibits a valley for about ν < 0.6, which indicates that a reverse SR phenomenon
takes place; SPA(µ) exhibits a resonance peak for about ν ≥ 0.6, which indicates that the
GSR appears. Furthermore, in Figure 8a, the maximum increase and its position moves to
the left as ν increases. As depicted in Figure 8b, a peak appears in SPA(µ) for various q and
the peak increases, while its position remains almost unchanged as q increases.
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Figure 8. GSR behaviors of SPA(µ) in (35) for different (a) ν and (b) q. (a) γ̄ = 0.1, α = 1.2, β = 0.2,
δ = 1.6, τ = 0.2, λ = 0.6, a2 = 0.6, q = 0.3, Ω = 2, ω0 = 1; (b) ν = 0.8, α = 1.2, β = 0.2,
γ̄ = 0.1, δ = 1.6, τ = 0.2, λ = 0.6, a2 = 0.6, Ω = 2, ω0 = 1.

Figure 9 exhibits GSR for SPA in Equation (35) versus the fractional order ν. In
Figure 9a, a resonance peak appears in SPA(ν) for various τ and the maximum decreases;
meanwhile, its position remains almost unchanged as τ increases. In Figure 9b, SPA(ν)
exhibits a resonance peak for various λ, while the maximum decreases and moves to the
right as λ increases.
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Figure 9. GSR behaviors of SPA(ν) in (35) for distinct (a) τ and (b) λ. (a) α = 1.2, β = 0.2, γ̄ = 0.1,
δ = 1.6, µ = 0.8, a2 = 0.6, λ = 0.6, q = 0.3, ω0 = 1, Ω = 2; (b) α = 1.2, β = 0.2, γ̄ = 0.1,
δ = 1.6, µ = 0.8, τ = 0.2, a2 = 0.6, q = 0.3, ω0 = 1, Ω = 2.

Figure 10 displays the GSR for SPA with Equation (35) versus a2. In Figure 10a, a peak
appears in SPA(a2) for various β, and the peak increases as β increases. Figure 10b shows
that SPA(a2) exhibits a peak for various τ, and the peak decreases and moves slightly to the
right as τ increases.

Figure 11 presents GSR behaviors for SPA in Equation (35) versus λ. Figure 11a
displays that SPA(λ) exhibits a resonance peak in for various τ. Furthermore, in Figure 11a,
the peak decreases, while its position is almost unchanged as τ increases. In Figure 11b,
SPA(λ) also exhibits a resonance peak for various q and the maximum increases, while its
position is almost unchanged as q increases.
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Figure 10. GSR behaviors of SPA(a2) in (35) for different (a) β and (b) τ. (a) α = 1.2, γ̄ = 0.1, δ = 1.6,
τ = 0.3, q = 0.3, λ = 0.6, ω0 = 1, Ω = 2, µ = ν = 0.8; (b) α = 1.2, β = 0.2, γ̄ = 0.1,
δ = 1.6, q = 0.3, λ = 0.6, ω0 = 1, Ω = 2, µ = ν = 0.8.
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Figure 11. GSR behaviors of SPA(λ) in (35) for distinct (a) τ and (b) q. (a) α = 1.2, β = 0.2, γ̄ = 0.1,
δ = 1.6, a2 = 0.6, q = 0.3, ω0 = 1, Ω = 2, µ = ν = 0.8; (b) α = 1.2, β = 0.2, γ̄ = 0.1,
δ = 1.6, τ = 0.3, a2 = 0.6, ω0 = 1, Ω = 2, µ = ν = 0.8.

6. Summary

To conclude, in this work we have explored the GSR behaviors of an FGLE with
fluctuating mass, fluctuating frequency, and GML noise involving three parameters. One
of the main parts of our work is that the noise spectral of the GML noise involving three
parameters has been discussed. By using the LT technique, the exact expression of SPA of
the FGLE has been found. The various resonance behaviors of SPA have been extensively
studied. Importantly, some results of significance are found. For instance, the GSR, reverse
SR phenomenon, and SMR phenomena have been found. Furthermore, there are some
results that could be deserved as follows.

(i) GSR for the FGLE could be only influenced by GML noise involving three parame-
ters. GSR and reverse SR could be observed in the behavior of SPA only under the effect of
GML noise. In particular, SMR can only be influenced by the parameter δ of GML noise.

(ii) GSR for the FGLE could be influenced by two types of noise. Resonance behaviors
of the FGLE under the synergy between extrinsic multiplicative noise and GML noise
maintain the GSR behaviors of the FGLE. In addition, the parameters a2, λ, and q of
multiplicative noise could induce the GSR phenomenon.

(iii) The GSR phenomenon could be induced by the fractional orders µ or ν of the
FGLE. It could be found that GSR phenomena in the FGLE have many more material results
than GSR in GLE.

Refs. [27–29,34] mainly focused on anomalous diffusion phenomena, which were
described by the FGLE with various types of ML noise or GML noise. In some special
background, fluctuating parameters may also influence the physical performance of the
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systems. In this work, GSR induced by fluctuating parameters together with thermal noise,
which was described by a GML noise, has been addressed. Ref. [12] studied the FGLE with
random frequency and a two-parameter GML noise. Different from previous studies, the
main contribution of this work is the investigation of various behaviors of GSR influence
by random mass, random frequency, and a three-parameter GML noise.

On account of three-parameter ML noise involving different kinds of noise, three-
parameter ML noise can be used to describe anomalous dielectrics, disturbance of the
electron temperature and density, disordered materials, and heterogeneous systems. More-
over, it has been proved that the FGLE is suitable for characterizing various anomalous
diffusion phenomena. Thus, we believe that our work presents theoretical significance for
diffusion theory, and it also provides applications for plasma physics, as well as mechanical
and electrical engineering.
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