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Abstract: In this study, we propose new illustrative and effective modeling to point out the behaviors
of the Hepatitis-B virus (Hepatitis-B). Not only do we consider the mathematical modeling, equilibria,
stabilities, and existence–uniqueness analysis of the model, but also, we make numerical simulations
by using the Adams–Bashforth numerical scheme. However, we apply the parameter estimation
method to determine our model parameters and find the curve that best fits the model. Additionally,
in this study, the stability analysis of the aforementioned model is considered, and also the sensitivity
analysis of R0 is examined. The results point out that the order of the fractional derivative has an
essential effect on the dynamical process of the constructed model for Hepatitis-B.

Keywords: Hepatitis-B virus; fractional-order modeling; parameter estimation; existence–uniqueness;
numerical simulation

1. Introduction

Recently, studies of infectious disease research have increased in the literature. It is
increasingly difficult to control the spread of infectious diseases among humans. A notable
disease caused by liver infection is an infection caused by the Hepatitis-B virus, which is
widespread worldwide. In some people, Hepatitis-B can survive in the body after infection
without causing illness. In some people, although the disease is cured, the virus cannot
be eliminated from the body. Although the virus does not cause any symptoms in these
people, the person remains a carrier, and the risk of transmitting the infection continues.
Hepatitis-B disease is divided into acute and chronic. Acute Hepatitis-B is a short-term
disease that occurs within the first 6 months after exposure to the Hepatitis-B virus. Acute
Hepatitis-B disease causes symptoms such as fever, fatigue, loss of appetite, nausea or
vomiting, jaundice (yellow skin or eye color, dark urine, and clay-colored stools), and
muscle, joint, and stomach pain. Chronic Hepatitis-B, on the other hand, is the form of
Hepatitis-B virus that cannot enter the body for more than 6 months and can cause bad
consequences, such as liver damage (cirrhosis), liver cancer, and death [1]. There is no
known cure for acute Hepatitis-B. However, chronic Hepatitis-B can be controlled using
medication.

Hepatitis-B infection is transmitted from person to person both horizontally and
vertically. Being contagious from one person to another, it can be re-transmitted through
blood or water via sexual contact or the reuse of unsafe syringes or needles. This type of
transmission is known as horizontal transmission. A mother infected with Hepatitis-B
also transmits the virus to her newborn baby, and this is called vertical transmission. In
the acute stage, most people cannot show any symptoms. Common ways of transmission
of Hepatitis-B include percutaneous (parenteral) transmission, early childhood infection,
sexual transmission, contaminated water or food, blood transfusion, unsafe infection,
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occupational exposure of healthcare workers, and other transmission routes and risk
groups [2].

When the history of medicine is examined, it is seen that jaundice diseases are men-
tioned for the first time in the documents belonging to ancient Greece and the Romans. Viral
hepatitis was first described by Hippocrates as epidemic (infectious) jaundice, described
in the 5th century BC. While probably most of these are due to the Hepatitis-A virus, the
epidemic transmission of Hepatitis-B has begun to be observed in places where the use of
blood and blood products is common [3]. The hepatitis form transmitted directly with blood
and blood products was first described by Lurman in 1883. The importance of Hepatitis-B
infection to society was first revealed during a vaccination campaign against smallpox
in Bremen, Germany [4,5]. In 1947, the terms Hepatitis-A and -B were introduced by
Mccallum and Bauer to distinguish between infectious (epidemic) and serum hepatitis [6].
These terms were adopted in 1973 by the scientific group of the World Health Organization
(WHO) working on viral hepatitis. At the National Institutes of Health (USE), Blumberg et
al. showed that the serum of an Australian person has a precipitating antigen on agar gel
with the serum of a patient with multiple blood transfusions; this protein is now known as
“Hepatitis-B surface antigen HBsAg”, and they called the protein “Australian antigen-Au
antigen”. Over time, it became clear that this protein is associated with type B hepatitis. In
1968, researchers led by Prince, Okochi, and Murakam showed that Au antigen (hepatitis B
surface antigen) was found only in the serum of patients infected with type B hepatitis [7].
Viral hepatitis is a serious public health infection that is common all over the world and
is very closely related to the economies of the country. July 28 is designated as World
Hepatitis Day to draw attention to hepatitis, as the disease throughout the world shows
symptoms in the late period and the majority of those infected are not aware of their
diseases. According to World Health Organization (WHO) data, more than 250 million
people globally live with chronic Hepatitis-B infection, and cost the lives of approximately
900,000 people each year. Therefore, the Hepatitis-B epidemic continues to threaten public
health globally [8]. The WHO Western Pacific Region and WHO African Region have the
highest Hepatitis-B prevalence rates, with 6.2% and 6.1% of the adult population afflicted,
respectively. According to estimates, 3.3%, 2.0%, and 1.63% of the general population in the
WHO Eastern Mediterranean Region, WHO Southeast Asia Region, and WHO European
Region, respectively, are infected. In the WHO Americas Region, 0.7% of the population is
infected [8].

WHO divided countries into low (<2%), medium (2–8%) and high (>8%) endemic
regions in terms of Hepatitis-B infection carrier rates [9]. The Hepatitis-B virus can last for
at least 7 days outside the body. During this time, the virus can still cause infection if it
enters the body of a person who has not received the vaccine. Hepatitis-B virus incubation
lasts, on average, 75 days, but it can last anywhere between 30 and 180 days. The virus
can persist and cause chronic Hepatitis-B, and it can be found within 30 to 60 days of
infection [8]. The Hepatitis-B virus (Hepatitis-B), which has a circular genome that is
partially composed of double-stranded DNA, reproduces through an RNA intermediate
form by reverse copying [9–12]. In other words, although Hepatitis-B is a DNA virus, it
encodes the “reverse transcriptase” enzyme and, thanks to this enzyme, replicates through
the RNA mediator. It is found in the nucleus of an infected cell as a mini chromosome.
Replication and all transcriptions occur through a DNA chain that has the feature of a
mediator molecule, called covalently linked circular DNA [13]. For chronic Hepatitis-B
carriers, there is no readily accessible, efficient treatment. The most crucial preventative
step is Hepatitis-B vaccination [14]. Based on the utilization of a viral envelope protein,
several vaccines have been created to prevent Hepatitis-B infection (HBsAg). From infants
to adults, the vaccination offers protection to 85–90% of those who receive it [14]. Base
vaccines consist of the three-dose HB vaccine and the HB birth dose (that is, within 24 h after
birth). WHO recommended in 1991 that Hepatitis-B vaccination be a part of the national
immunization program in all nations with HBsAg carrier prevalence rates of 8% or above



Fractal Fract. 2023, 7, 165 3 of 24

by 1995 and in all nations by 1997. By 2002, 154 nations had routine HB immunization
programs in place [15].

Epidemiological study plays an important role in understanding the impact of in-
fectious diseases on society. Understanding the mechanics of disease can be facilitated
by mathematical models. Mathematical modeling is widely utilized in the social sciences
(including economics, psychology, sociology, and political science), in the natural sciences
(including physics, biology, earth science, meteorology), and engineering fields (including
computer science and artificial intelligence). Additionally, to explain and analyze nonlinear
processes, mathematicians are frequently used by physicists, engineers, statisticians, op-
erations research analysts, and economists [16–43]. The model can help explain a system,
examine the effects of different components, and make predictions about the behavior of a
real-life problem. In mathematical modeling, we investigate models by creating models,
estimating parameters, checking the precision of models with variable parameters, and
calculating numerical simulations. This type of research helps to understand the spread of
disease in the population and to control its parameters. These types of disease patterns are
often referred to as infectious diseases (disease passed from one person to another) [9,10].
Many researchers have studied the directions of the propagation of Hepatitis-B in various
regions and the immune response during infection with mathematical models. Anderson
and May illustrated the consequences of the transmission of Hepatitis-B in carriers using a
straightforward mathematical model [16,17]. A variable combination of sexual activity and
age is included in Anderson’s and Williams’ descriptions of models of sexual transmission
of Hepatitis-B [18]. The link between the age of Hepatitis-B infection and the emergence of
the carrier state was demonstrated by Edmunds et al. [19]. A feedback mechanism model
developed by Medley et al. connects the likelihood of carrier-class creation following
infection to the rate of transmission, the average age of infection, and the prevalence of
infection [20]. To forecast chronic hepatitis-B infection in New Zealand, Thornley et al.
used the Medley model [21] and Din and Abidin [22] modeled a vaccinated Hepatitis-B
epidemic with the Mittag–Leffler kernel.

The spread of Hepatitis-B differs from that in industrialized countries in developing
nations. Edmunds et al. modeled the transmission rate of childhood Hepatitis-B as the
main determinant of epidemic level and sexual contact rates in developing countries [23].
Little is known about sexual contact rates in developing countries. McLean, Blumberg,
and Edmunds studied Hepatitis-B transmission patterns in developing countries, and
Williams described a Hepatitis-B model in the UK [17,24,25]. To study acute Hepatitis-B
infection, the timing of effector cell activation and progression, and the function of pre-
existing or vaccine-induced antibodies in preventing Hepatitis-B infection, Coupe et al.
developed a typical immune response model [26–28]. While Gourley et al. produced a
time-delayed extension of this model, Min et al. employed a conventional model function
rather than a mass action to explain vulnerability to Hepatitis-B infection [29,30]. For
the Hepatitis-B population, Hews et al. applied a logistical growth and standard model
to improve the model’s representation of the available data and achieve more accurate
baseline reproduction number estimates [34].

It has been proved that mathematical models created by using ordinary differential
equations of integer order are not sufficient in understanding the propagation of biolog-
ical systems. Using fractional-order mathematical models for biological systems gives
closer results because it gives more comprehensive results than integer-order mathemati-
cal models. The use of fractional derivative and partial differential equations, especially
fractional-order derivatives, which are included in important applications of mathematics
that are intertwined with real life, has become widespread. Recently, many scientists
have turned their studies to real-life problems [35–39]. This trend ranges from new model
structures to real-life problems and the application of fractional-order differential equa-
tions. The orders of differential equations specifying physical events determine the rate
of change of the physical event in question. Additionally, fractional-order differential
equations play an important role in filling some deficiencies in explaining some nonlinear
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phenomena and in understanding physical phenomena [40–42,44–46]. The concepts of the
fractional derivative and fractional integral have many applications in applied sciences,
engineering, finance, geology, thermal sciences, seismology, fluid fluids, elastic theory,
thermodynamics, and hydrodynamics [47–52]. On the other hand, the earliest systematic
studies in this area were performed by Liouville, Riemann, and Holmgren in the 19th
century [40]. Apart from Leibniz, many famous mathematicians, such as Riemann, Euler,
Liouville, Laplace, and Fourier, have also worked on the fractional analysis. Different
fractional derivatives, such as Riemann–Liouville, Caputo, and Grünwald–Letnikov, are
used according to the properties of these processes and systems in obtaining the fractional
mathematical models of physical processes and systems because each fractional derivative
has different properties and advantages over the others [53]. The integer-order derivative
provides local modeling, and the fractional-order derivative provides global modeling.
Therefore, different studies have been performed by using differential equation models
that include fractional derivatives [54–56]. The commonly used derivatives related to
fractional derivatives in literature are Caputo and Riemann–Liouville fractional deriva-
tives. These derivative definitions have been effectively applied to many real-life problems,
such as substance transport, fluid mechanics, population models, control systems, and
financial changes. The motivation for this study came from the aforementioned conversa-
tion. Our objective is to analyze a fractional-order mathematical model and support it by
demonstrating that it fits the real data more closely than the integer-order model. In this
context, we propose a fractional-order mathematical model that describes the dynamics of
Hepatitis-B in Section 3. Although fractional-order derivative definitions are widely used
in the literature, there are some shortcomings arising from definitions. Caputo–Fabrizio
(2015) and Atangana–Baleanu (2016) derivative definitions were introduced to eliminate
the inadequate aspects of fractional-order derivatives [57–65]. These derivative definitions
were created by modifying the core function.

The sections in the paper are arranged as follows: In Section 2, we present the most
important definitions of fractional calculus. The fractional model is given in Section 3.
The existence and uniqueness of the model solution, positivity and boundedness of the
solution and the stability of the equilibrium points of the proposed model are given in
Section 4. Additionally, the basic reproduction number is calculated. The sensitivity
analysis is investigated according to the parameters to study the extent of its effect on the
reproduction number in Section 5. The parameter estimation method is studied in Section 6.
The numerical method of the proposed model is given in Section 7. In Section 8, the
numerical solutions for our model are presented by using the Adams–Bashforth Moulton
method for the fitted parameter values in Table 1. Finally, a summary of the present work
is presented in Section 9.

2. Preliminary Results

This section will focus on some and basic concepts that will be used throughout the study.

Definition 1. The one-parameter Mittag–Leffler function Eα(y) is defined by [58]

Eα(y) =
∞

∑
k=0

yk

Γ(αk + 1)
, (y ∈ C). (1)

Definition 2. The two-parameter Mittag–Leffler function Eα,β(y) is defined by [58]

Eα,β(y) =
∞

∑
k=0

yk

Γ(αk + β)
, (y ∈ C). (2)

where α, β > 0.
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Definition 3. The Riemann–Liouville form of fractional integral operator of order α > 0 of a
function f : (0, ∞)→ R is defined by [41]

RL
0 D

−α

t f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, t > 0, (3)

or
RL
0 Iϑ

t f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, t > 0, (4)

where α > 0 and Γ(.) is a Gamma function.

Definition 4. The Riemann–Liouville fractional derivative of order α for a given f : (0, ∞)→ <,
is stated as [41]

RL
0 Dα

t f (t) =

{
1

Γ(n−α)
( d

dt )
n ∫ t

0
f (τ)

(t−τ)α−n+1 dτ, 0 ≤ n− 1 < α < n, n = [α], n ∈ N,

( d
dt )

n
f (t), α = n, n ∈ N.

(5)

Definition 5. The Caputo fractional derivative of order α for a given f : (0, ∞) → <, is stated
as [41]

C
0 Dα

t f (t) =

 1
Γ(n−α)

∫ t
0

( d
dτ )

n
f (τ)

(t−τ)α−n+1 dτ, 0 ≤ n− 1 < α < n, n = [α],

( d
dt )

n
f (t), α = n, n ∈ N.

(6)

Remark 1. The Laplace transform (LT) of the Caputo operator of f (t) order α > 0 is given as [63]

L
[

C
0 Dα

t f (t)
]
= sαF(s)−

n−1

∑
k=0

f k(0)sα−k−1. (7)

Theorem 1. The Laplace transform of the function tα1−1Eα,α1(±λtα) is defined as [63]

L
[

tα1−1Eα,α1(±λtα)

]
=

sα−α1

sα ∓ λ
, (8)

where Eα,α1 is the two-parameter Mittag–Leffler function with α, α1 > 0.

3. Model Formulation

In this study, the host population has been divided into six epidemiological groups:
the first compartment is susceptible to infection, the second one is latently infected, and the
third compartment is individuals with acute infections. Individuals in this population are
infected individuals who recover in a short time after exposure to Hepatitis-B disease or
can infect susceptible individuals. Individuals in this group may also be exposed to death
from Hepatitis-B. There are carrier individuals in the fourth compartment (carriers). In the
fifth compartment (Recovered) are individuals who have recovered from Hepatitis-B. In the
sixth compartment (vaccination), there are immunized individuals after vaccination. Very
few of these individuals can be exposed to the disease again. The model is then presented
by the following ODEs [66]:
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dS
dt

= λρ(1− κA) + ηV − (τ + βA + ωβC + γ)S,

dL
dt

= (βA + ωβC)S− (τ + ψ)L,

dA
dt

= ψL + (λρκ − τ − τH − q− r)A, (9)

dC
dt

= qA− ϕC− τC,

dR
dt

= rA− τR + ϕC,

dV
dt

= λ(1− ρ) + γS− τV − ηV,

where the parameters are given in Table 1. In this context, the total population can be
considered as N(t) = S(t) + L(t) + A(t) + C(t) + R(t) + V(t). We assume that in the
Hepatitis-B acute group, the newborn virus population is less than the sum of the deaths
of individuals with acute disease and the sum of the population from acute to immune
state [62,66].

Otherwise, as long as there is an infection, individuals with acute disease will continue
to increase rapidly. So, it becomes dA/dt > 0 for C 6= 0 , A 6= 0 and t ≤ 0.

Most of the studies modeling the biological systems are restricted to integer-order
ordinary differential equations. Mathematical models, using ordinary differential equations
with integer order, have been proved valuable in understanding the dynamics of diseases.
However, models with fractional-order differential equations provide more advantages
than integer-order mathematical models. The fractional-order models include a memory
effect unlike the integer-order models. This special property will be convenient because of
the fact that the essential features of the immune system also involve memory. Moreover,
in the fractional systems, dimensional consistency is a very important tool, in which the
units of measurement from the left- and right-hand sides of the equations are coherent.
This consistency can be provided by modifying the parameters involved in the right-hand
side of the equations, e.g., raising them to power α. In this context, we extended Model (9)
to the fractional order, which is presented in the following system:

C
0 Dα

t S(t) = λαρα(1− κα A) + ηαV − (τα + βα A + ωαβαC + γα)S,
C
0 Dα

t L(t) = (βα A + ωαβαC)S− (τα + ψα)L,
C
0 Dα

t A(t) = ψαL + (λαρακα − τα − τα
H)A− qα A− rα A, (10)

C
0 Dα

t C(t) = qα A− ϕαC− ταC,
C
0 Dα

t R(t) = rα A− ταR− ϕαC,
C
0 Dα

t V(t) = λα(1− ρα) + γαS− ταV − ηαV,

subject to the initial conditions,

S(0) = S0, L(0) = L0, A(0) = A0, C(0) = C0, R(0) = R0, V(0) = V0, (11)

where 0 < α ≤ 1, ((S(t), L(t), A(t), C(t), R(t), V(t)) ∈ R6
+ and if α = 1, then System (10)

turns into an integer-order one (9). In the Equation (10) system, S(t), L(t), A(t), C(t), R(t),
V(t) functions and Caputo fractional derivatives are assumed to be continuous when t ≥ 0

λρκ < τ + τH + r. (12)



Fractal Fract. 2023, 7, 165 7 of 24

Table 1. Estimated values of the parameters.

Parameter Parameter Meaning Value Reference Unit

λ Birth Rate 0.0121 [66] year−1

τ Natural mortality rate 0.000034857 [8] year−1

τH Hepatitis-B related mortality rate 0.1019 Fitted year−1

β Transmission coefficient of the disease 0.00014334 Fitted year−1

ψ
Transition rate from Latent population to Acute
population 0.1989 Fitted year−1

q Transition rate of individuals with Acute infection
to carrier-class 0.3387 Fitted year−1

ϕ Recovery rate of individuals in the carrier class 0.0741 Fitted year−1

γ Vaccination rate 0.8569 Fitted year−1

ρ Rate of births without successful vaccination 0.00043102 Fitted year−1

κ Infected rate of mothers with HB Acute virus 0.0137 Fitted year−1

η
The rate of decrease in immunity with the effect of
vaccine 0.9472 Fitted year−1

ω Reduced transmission rate compared to Acute 0.7534 Fitted year−1

r Recovery rate of individuals with Acute infection 0.0277 Fitted year−1

4. Analysis of the Model
4.1. Existence, Uniqueness, Positivity and Boundedness

Let R6
+ =

{
χ(t) ∈ R6 : χ(t) ≥ 0} and χ(t) = [S(t), L(t), A(t), C(t), R(t), V(t)]T .

We will review the following lemma (generalized mean value theorem [60]) in order to
demonstrate the proof of the basic theorem regarding the non-negativity of the solutions
for Model (10).

Lemma 1. Suppose that f (t) ∈ C[a, b] and Caputo fractional derivative C
0 Dα

t f (t) ∈ C(a, b] for
0 < α ≤ 1, then

f (t) = f (ω) +
1

Γ(α)
C
0 D

α

t f (τ)(t−ω)α,

with 0 ≤ τ ≤ t, ∀ t ∈ (a, b].

Remark 2. If f (t) ∈ C[0, b] and C
0 Dα

t f (t) ∈ (0, b] for 0 < α ≤ 1. It is clear from Lemma 1 that if
C
0 Dα

t f (t) ≥ 0, ∀ t ∈ (0, b], then f (t) is non-decreasing and if C
0 Dα

t f (t) ≤ 0, ∀ t ∈ (0, b], then f (t)
is non-increasing for all t ∈ [0, b] [61].

Theorem 2. The solution of Model (10) with the initial Conditions (11) is unique and inR6
+.

Proof. Lemma 1 and Remark 2 can be used to demonstrate the existence and uniqueness
of the solution of Systems (10) and (11) on the time interval (0, ∞). Following the method
of [60], we now explain that the non-negative region R6

+, is a positively invariant zone.
From Model (10), we find

C
0 Dα

t S(t)|S=0 = λαρα(1− κα A) + ηαV ≥ 0,
C
0 Dα

t L(t)|L=0 = (βα A + ωαβαC)S ≥ 0,
C
0 Dα

t A(t)|A=0 = ψαL ≥ 0, (13)
C
0 Dα

t C(t)|C=0 = qα A ≥ 0,
C
0 Dα

t R(t)|R=0 = rα A + ϕαC ≥ 0,
C
0 Dα

t V(t)|V=0 = λα − λαρα + γαS ≥ 0.

For further reading, one can see [62]. Since (1− ρα) indicates the successful vaccine
birth rate, the expression λα − λαρα is always positive or zero.

If (S(0), L(0), A(0), C(0), R(0), V(0)) ∈ R6
+, then according to Equation (13) and Re-

mark 2, the solution (S(t), L(t), A(t), C(t), R(t), V(t)) cannot escape from the hyperplanes
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S ≥ 0, L ≥ 0,≥ 0, A ≥ 0, C ≥ 0, R ≥ 0, V ≥ 0. Additionally, on each hyperplane enclosing
the non-negative orthant, the vector field points intoR6

+, meaning that the domainR6
+ is a

positively invariant set.

Theorem 3. Taking into account the positive invariant setR6
+, the solution of System (10)

A =
{
(S(t), L(t), A(t), C(t), R(t), V(t)) ∈ R6

+| 0 < S(t) + L(t) + A(t)

+C(t) + R(t) + V(t) ≤ λα

τα

}
is a positive invariant set for System (10).

Proof. We then search for situations where trajectories are confined to a compact set and do
not “escape to infinity”. This boundedness, which in biology denotes that no population may
develop indefinitely, allows the model to accurately represent the dynamics. Take a look at
the new function N = S + L + A + C + R + V, which stands for the total population of the 6D
system. Therefore, the Caputo fractional derivative of the total population (N) is as follows:

C
0 Dα

t N(t) = λα − ταN − τα
H A.

From here, we have a total population (N) as follows:

C
0 Dα

t N(t) ≤ λα − ταN. (14)

Applying the Laplace transform to Equation (14), we obtain

sαÑ(s)− sα−1N(0) ≤ λα

s
− ταÑ(s).

It also has the following form:

Ñ(s) ≤ s−1

sα + τα
λα +

sα−1

sα + τα
N(0).

In the last equation, if we take the inverse Laplace transform, then we have the following:

N(t) ≤ λαtαEα,α+1(−ταtα) + Eα,1(−ταtα)N(0)

≤ λα

τα
(ταtαEα,α+1(−ταtα)) + Eα,1(−ταtα) ≤ λα

τα

1
Γ(1)

≤ λα

τα
.

4.2. Equilibria and Stability

By equating the right side of System (10) to zero, the equilibrium points are obtained:

λαρα(1− κα A) + ηαV − (τα + βα A + ωαβαC + γα)S = 0,

(βα A + ωαβαC)S− (τα + ψα)L = 0,

ψαL + λαρακα A− τα A− τα
H A− qα A− rα A = 0, (15)

qα A− ϕαC− ταC = 0,

rα A− ταR + ϕαC = 0,

λα(1− ρα) + γαS− ταV − ηαV = 0.

After simplification, the disease-free equilibrium (DFE), namely E0 = (S0, 0, 0, 0, 0, V0), where

S0 =
λα(ρατα + ηα)

τα(τα + γα + ηα)
, V0 =

λα(τα + γα − ταρα)

τα(τα + γα + ηα)
, (16)
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The endemic equilibrium (EE) E∗ = (S∗, L∗, A∗, C∗, R∗, V∗), where

S∗ =
(−λαρακα + τα + τα

H + qα + rα)(τα + ψα)(ϕα + τα)

ψα + βα(ϕα + τα + ωαqα)
=

S0

R0
,

L∗ =
(−λαρακα + τα + τα

H + qα + rα)(ϕα + τα)(τα + ηα)S0(λ
αρα − S∗(τα + γα))

ψα(τα + ηα)S0(S∗βα((ϕα + τα) + ωαqα) + (ϕα + τα)λαρακα)

+
ηα(ϕα + τα)(λα − S0(λ

αρα + γα))

ψα(τα + ηα)S0(S∗βα((ϕα + τα) + ωαqα) + (ϕα + τα)λαρακα)
,

A∗ =
(ϕα + τα)(τα + ηα)S0(λ

αρα − S∗(τα + γα)) + ηα(ϕα + τα)(λα − S0(λ
αρα + γα))

(τα + ηα)S0(S∗βα((ϕα + τα) + ωαqα) + (ϕα + τα)λαρακα)
, (17)

C∗ =
qα(τα + ηα)S0(λ

αρα − S∗(τα + γα)) + ηα(ϕα + τα)(λαρα + γα))

(τα + ηα)S0(S∗βα(ϕα + τα) + ωαqα) + (ϕα + τα)λαρακα)
,

R∗ =
r(ϕα + τα)(τα + ηα)S0(λ

αρα − S∗(τα + γα)) + ηα(ϕα + τα)(λα − S0(λ
αρα + γα))

(τα + ηα)S0(S∗βα((ϕα + τα) + ωαqα) + (ϕα + τα)λαρακα)

+
ϕαqα(τα + ηα)S0(λ

αρα − S∗(τα + γα)) + ηα(ϕα + τα)(λαρα + γα))

τα(τα + ηα)S0(S∗βα(ϕα + τα) + ωαqα) + (ϕα + τα)λαρακα)
,

V∗ =
λα − λαρα + γαS∗

τα + ηα
.

4.3. Basic Reproduction Number

For the local stability of the disease-free equilibrium, we first compute the basic
reproduction number by using the next-generation matrix method [65]. It is defined as
the number of cases occurring in a population that is fully susceptible to any infectious
individual. In biological models, if R0 < 1, infection disappears, if R0 > 1, there is
infection and the disease continues. To determine R0, which is considered the spectral
radius of the next-generation matrix FV−1, we assemble the compartments which are
infected from System (10) and decompose the right-hand side as F − V , where F is the
transmission part, expressing the production of a new infection, and V is the transition part
which describes the change in the state. Therefore,

F (χ) =



0
(βα A + ωαβαC)S

0
0
0
0

, V(χ) =



−λαρα(1− κα A)− ηαV + P1S
(τα + ψα)L

−ψαL− λαρακα A + P2 A
−qα A + ϕαC + ταC
ταR− rα A− ϕαC

V(ηα + τα)− λα(1− ρα)− γαS

,

where P1 = τα + βα A + ωαβαC + γα and P2 = τα + τα
H + qα + rα. By the next-generation

matrix method [65], the matrices F and V at the disease-free equilibrium point E0 are

obtained by F =

[
∂Fi(E0)

∂χj

]
and V =

[
∂Vi(E0)

∂χj

]
, 1 ≤ i, j ≤ 3, where χ represents the number

of individuals in each compartment. This implies

F =

 0 βαS0 ωαβαS0
0 0 0
0 0 0

, V =

 τα + ψα 0 0
−ψα τα + τα

H + qα + rα − λαρακα 0
0 −qα ϕα + τα

.

The expression forR0 is the spectral radius of the matrix FV−1 and is written as follows:

R0 =
λαβαψα(τα + ϕα + ωαqα)(ηα + ρατα)

τα(τα + ψα)(τα + ϕα)(ηα + γα + τα)(τα + τα
H + qα + rα − καλαρα)

. (18)
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4.4. Stability of Equilibria

We present the local stability findings of equilibrium points as theorems with justifica-
tions in this subsection.

Theorem 4. The suggested fractional-order Hepatitis-B epidemic model’s disease-free equilibrium
E0 is locally asymptotically stable ifR0 < 1 and unstable ifR0 > 1.

Proof. The Jacobian matrix at E0 is

J (E0) =



−(τα + γα) 0 −λαρακα −ωαβαS0 0 ηα

0 −(τα + ψα) βαS0 ωαβαS0 0 0
0 ψα λαρακα − (τα + τα

H + qα + rα) 0 0 0
0 0 qα −(ϕα + τα) 0 0
0 0 rα ϕα −τα 0

γα 0 0 0 0 −(τα + ηα)

.

The characteristic equation is

P(λα) = (λα + τα)2(λα + γα + ηα + τα)((λα)3 + A(λα)2 + Bλα + C) = 0,

where

A = 2τα + ϕα + ψα − λαρακα + P2,

B = (τα)2 − (λαρακα + P2)(2τα ϕα + ψα) + τα ϕα + ταψα + ϕαψα − βαλα(ταρα + ηα)

τα(τα + γα + ηα)
ψα,

C = − βαλα(ταρα + ηα)

τα(τα + γα + ηα)
ηα(τα + ϕα + ωαqα)− (λαρακα + P2)((τ

α)2 + τα + ϕα + ταψα + ϕαψα),

in which

A = 2τα + ϕα + ψα − λαρακα + τα + τα
H + qα + rα > 0,

C = (1−R0)(λ
αρακα − (τα + τα

H + qα + rα))((τα)2 + τα ϕα + ταψα + ϕαψα) > 0,

AB− C = ((τα)2 − (λαρακα + P2)(2τα ϕα + ψα) + τα ϕα + ταψα + ϕαψα − βαλα(ταρα + ηα)

τα(τα + γα + ηα)
ψα)

×(2τα + ϕα + ψα − λαρακα + P2) + (
βαλα(ταρα + ψα)

τα(τα + γα + ηα)
ηα(τα + ϕα + ωαqα)

+(λαρακα + P2)((τ
α)2 + τα + ϕα + ταψα + ϕαψα)) > 0.

Therefore, by Routh–Hurwitz criteria, all roots of P(λα) have negative real parts, and E0 is
stable. Furthermore, ifR0 > 1, we have A < 0 and E0 is unstable.

Remark 3. The endemic equilibrium E∗ of the suggested Hepatitis-B model of fractional order is
locally asymptotically stable ifR0 > 1 and is unstable ifR0 < 1.

5. Sensitivity Analysis

In this section, we examine the sensitivity ofR0 according to parameters that impact
the reproduction number. In these analyses, only the effects of βα, λα, ωα, κα, ψα, ϕα, ρα,
γα, ηα and qα, rα parameters on the relevant reproduction number values are taken into
account. We apply the same method as in [67] and obtain the following:



Fractal Fract. 2023, 7, 165 11 of 24

∂R0

∂βα
=

λαψα(τα + ϕα + ωαq)(ηα + ρατα)

τα(τα + ψα)(τα + ϕα)(ηα + γα + τα)(τα + τα
H + qα + rα − καλαρα)

> 0,

∂R0

∂λα
=

(τα + ϕα + ωαqα)(ηα + ρατα)βαψα

τα(τα + ψα)(τα + ϕα)(ηα + γα + τα)(τα + τα
H + qα + rα − καλαρα)

+
λαβαψακαρα(τα + ϕα + ωαqα)(ηα + ρατα)

(τα + τα
H + qα + rα − καλαρα)

> 0,

∂R0

∂ωα
=

λαqαβαψα(ηα + ρατα)

τα(τα + ηα)(τα + ϕα)(ηα + γα + τα)(τα + τα
H + qα + rα − καλαρα)

> 0,

∂R0

∂κα
=

λα2ψαραβα(τα + ϕα + ωαqα)(ηα + ρατα)

τα(τα + ψα)(τα + ϕα)(ηα + γα + τα)(τα + τα
H + qα + rα − καλαρα)2 > 0,

∂R0

∂ψα
=

λαβαψα(τα + ϕα + ωαqα)
(

1− (ηα + ρατα)
)

τα(τα + ψα)(τα + ϕα)(ηα + γα + τα)2(τα + τα
H + qα + rα − καλαρα)

> 0,

∂R0

∂ϕα
= − λαβαψαωαqα(ηα + ρατα)(

(τα + ϕα)
)2
(τα + ψα)(ηα + γα + τα)(τα + τα

H + qα + rα − καλαρα)
< 0, (19)

∂R0

∂ηα
=

λαβα (τα + ϕα + ωαqα)(ηα + ρατα)

(τα + ϕα)
(
(τα + ψα)

)2
(ηα + γα + τα)(τα + τα

H + qα + rα − καλαρα)
> 0,

∂R0

∂ρα
=

λαβαηατα(τα + ϕα + ωαqα)

τα(τα + ψα)(τα + ϕα)(ηα + γα + τα)(τα + τα
H + qα + rα − καλαρα)

> 0,

∂R0

∂γα
= − λαβαψα(τα + ϕα + ωαqα)(ηα + ρατα)

τα(τα + ψα)(τα + ϕα)(ηα + γα + τα)2(τα + τα
H + qα + rα − καλαρα)

< 0,

∂R0

∂qα
=

λαβαψα(ηα + ρατα)(ωα − τα(τα + ψα)(τα + ϕα)(ηα + γα + τα)(τα + ϕα + ωαqα)

τα(τα + ψα)(τα + ϕα)(ηα + γα + τα)(τα + τα
H + qα + rα − καλαρα)

> 0,

∂R0

∂rα
= − λαβαψα(ηα + ρατα)(τα + ϕα + ωαqα)

τα(τα + ψα)(τα + ϕα)(ηα + γα + τα)(τα + τα
H + qα + rα − καλαρα)2 < 0.

In the sensitivity analysis, one can obtain that the values ofR0 increase and decrease in
proportion to the growth of βα, λα, ωα, κα, ψα, ηα, ρα, qα and ϕα, γα, rα values, respectively.
In addition, Figure 1a shows the changes of the reproduction number according to the
rate of decrease in immunity with the vaccination strategy (ηα) versus the transition rate
of individuals with acute infection to carrier class (qα). Moreover, Figure 1b depicts the
changes of the reproduction number according to the vaccination rate (γα) versus the
infected rate of mothers with the HB acute virus (κα).

(a) (b)

Figure 1. Sensitivity analysis of reproduction number according to the model parameters for (a) η

and q, (b) γ and κ.
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The variables are taken into account in the analysis of the pertinent reproduction
number within the established bounds. After considering the analyses and visuals, it is
determined that reasonable actions should be taken to stop the disease from spreading by
reducing the conditions that make the derivative of reproduction numbers positive and
increasing the ones that make it negative.

6. Parameter Estimation

An essential component of an epidemiological model’s validation is the fitting of its
parameters. This improves the model’s accuracy to better understand the transmissions of
the epidemic and predict the future directions of diseases. Therefore, in this section, we aim
to explain the determining of parameters with the least squares curve-fitting technique. A
total of 13 different parameters are stated in the proposed model for Hepatitis-B infectious
disease. We have taken two of these parameters (τ = 1/(78.6× 365) and λ = 0.0121) from
the literature, and the rest of them ensure the best estimation based on the real Hepatitis-B
cases in Türkiye. The initial conditions are determined by dividing the individuals in each
compartment by N(t) (to the total population). In this context, the initial conditions are
S(0) = 0.8565, L(0) = 0.0122363, A(0) = 0.1067495, C(0) = 0.0048945, R(0) = 0.0073417
and V(0) = 0.0122363. With the help of the least square curve-fitting method, there are 13
biological parameters predicted, and as shown in Figure 2, they ensure that the solution of
the proposed HB model best fits the real pandemic cases. The ideal values of the pertinent
parameters are reached to minimize the mean absolute relative error between Hepatitis-B
cases and the model’s solution for the infectious class. Real HB cases are shown with
solid red circles, while the model’s best-fit curve is shown with a blue line. The biological
parameters that are taken into account for the model are presented in Table 1 along with
the best estimates that could be made using the least squares method.
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Figure 2. The yearly Hepatitis-B cases time series in Türkiye from 1999 to 2019 and the proposed
model’s best-fitted curve.

7. Numerical Technique

To approximate the Caputo fractional derivative of order α, the fractional variant of the
Adams–Bashforth approach is discussed in this section. The two-step Lagrange polynomial
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and the fundamental theorem of fractional calculus are combined to create this numerical
approach [68]. Take into account the Caputo fractional-order system as

C
0 Dα

t f (t) = G(t, f (t)), f (0) = f0, 0 < t < T < ∞, (20)

By using the fundamental theorem of fractional calculus, Equation (20) may be trans-
formed into an integral type to obtain

f (t)− f (0) =
1

Γ(α)

∫ t

0
g(τ, f (τ))(t− τ)α−1dτ. (21)

At t = tn+1, n = 0, 1, 2, . . . , we have

f (tn+1)− f (0) =
1

Γ(α)

∫ tn+1

0
g(τ, f (τ))(tn+1 − τ)α−1dτ. (22)

Similarly, at t = tn, n = 0, 1, 2, . . . , we obtain

f (tn)− f (0) =
1

Γ(α)

∫ tn

0
g(τ, f (τ))(tn − τ)α−1dτ. (23)

Further simplification is achieved by applying the Lagrange interpolation on g(τ, f (τ))
and removing Equation (23) from Equation (22). This results in

f (tn+1) = f (tn) +
1

Γ(α)

∫ tn+1

0
g(τ, f (τ))(tn+1 − τ)α−1dτ − 1

Γ(α)

∫ tn

0
g(τ, f (τ))(tn − τ)α−1dτ. (24)

As a result, the final approximation scheme is as follows:

f (tn+1) = f (tn) +
g(tn, fn)

hΓ(α)

{
2htα

n+1
α
−

tα+1
1 n + 1

α + 1
+

htα
n

α
− tα+1

n
α

}

+
g(tn−1, fn−1)

hΓ(α)

{
htα

n+1
α
−

tα+1
1 n + 1

α + 1
+

tα
n

α + 1

}
. (25)

For the numerical approximation of the Caputo derivative, this method is referred to as
the two-step fractional Adams–Bashforth method [68–72]. The suggested model Equation (10)
can be solved using the fractional Adams–Bashforth approach as explained above.

8. Numerical Analysis and Results

The results of such biological studies should be presented numerically. We will
discuss the biological significance of the stable equilibrium points of the system given
by Equation (10) and examine the behavior of the results obtained in this section. The
numerical parameter values of the α = (0, 1] fractional-order system given by Equation (10)
are given in Table 1.

Additionally, the initial value conditions of System (10) are S(0) = 0.8565, L(0) = 0.01223,
A(0) = 0.10675, C(0) = 0.00489, R(0) = 0.00734 and V(0) = 0.01224. In Figures 3–8, the behavior
of System (10) for order values α = 0.85, α = 0.90, α = 0.95 and α = 1 is obtained.

In Figures 3–8 for fractional order α values, the time-dependent variation of the popu-
lation of the disease compartments in susceptible, latent, acute, carrier, recovered and vaccinated
individuals, respectively, is discussed, and the future course is tried to be estimated. In
Figure 3, it is seen that, as the order of α decreases in the long run, there are more susceptible
individuals in the case of fractional derivatives than in the case of integer derivatives. In
Figures 4 and 5, it is observed that the number of latent individuals and acute individuals
decreases over time, and there are more individuals in the case of fractional derivatives in
the long run. In addition, it is seen that fractional cases and integer-order cases approach
each other and become stable over time. According to Figure 6, the peak seen in carrier
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individuals occurred between about 4 and 6 years for the α = 1 value, while it occurred in
earlier years for the fractional values of α. For example, for α = 0.85, carrier individuals
seem to have peaked before the 4th year. It can be said that this is because fractional deriva-
tives have a memory effect. In Figures 7 and 8, changes over time in recovered and vaccinated
individuals are examined for the fractional case and the integer-order case, respectively.
Up to the 10th year, it is observed that the number of recovered individuals decreases as
the α level increases, whereas in the long term, as the α increases, the number of recovered
individuals increases. In Figure 8, there is a noticeable increase in the number of vaccinated
individuals in the long term. The estimated number of vaccinated individuals for the
fractional case appears to be higher than the number of vaccinated individuals for the
integer-order case.
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Figure 3. Behavior of S class for different α values.
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Figure 4. Behavior of L class for different α values.
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Figure 5. Behavior of A class for different α values.
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Figure 6. Behavior of C class for different α values.
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Figure 7. Behavior of R class for different α values.
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Figure 8. Behavior of V class for different α values.

In Figure 9, the variation of the population of susceptible individuals over time have
been investigated for the values of β = 0.00014334, β = 0.3, β = 0.4 and β = 0.5. Here, the
most appropriate β value for the real data is calculated as β = 0.00014334 by the parameter
estimation method. According to this value, it is observed that the number of susceptible
individuals increased over time compared to other values of β in the simulation. Similarly,
in Figures 10–14, for different β =0.00014334, β = 0.3, β = 0.4 and β = 0.5 values of β, which is
the transmission coefficient of the disease, the time-dependent variation of the population
in susceptible, latent, acute, carrier, recovered and vaccinated individuals have been examined,
respectively. The estimated number of latent individuals for the β = 0.00014334 value
obtained by the parameter estimation method is less than the estimated latent individuals
for the β = 0.3, β =0.4, β = 0.5, values. Additionally, for the value β = 0.00014334, the
number of latent individuals appears to be more stable than the others. It is observed that
the number of acute individuals is also significantly less for the value of β = 0.00014334
compared to other values and approaches to zero at the end of the simulation period.
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Figure 9. Behavior of S class for different β values.
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Figure 10. Behavior of L class for different β values.
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Figure 11. Behavior of A class for different β values.
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Figure 12. Behavior of C class for different β values.
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Figure 13. Behavior of R class for different β values.
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Figure 14. Behavior of V class for different β values.

In Figures 12 and 13, it is seen that the estimated number of carrier and recovered
individuals for β = 0.00014334 is less than the estimated number of carrier and recovered
individuals for other β values. According to Figure 14, it is seen that the number of
vaccinated individuals increases as the β value increases.

In Figure 15, for different values of γ (γ = 0.8569, γ = 0.6, γ = 0.5 and γ = 0.4) which is
the vaccination rate in the (10) system, the variation over time in susceptible individuals is
considered. Here, it is observed that the number of susceptible individuals in the population
for different γ values at the beginning is close to each other, and as the γ value increases
in the following years, the number of susceptible individuals in the population decreases.
This situation can be interpreted as individuals who have never been infected with the
disease (susceptible) getting full protection against the HB virus (effective vaccine) as a result
of vaccination. Similarly, the variation of latent individuals in the population over time
is investigated for different γ values in Figure 16. According to Figure 16, it is observed
that γ has no significant effect on the latent population. This is interpreted as a result of
the vaccination not being applied to latent individuals. In Figure 17, the time-dependent
variation of vaccinated individuals in the population for different γ values is examined.
Here, it is seen that as the value of γ increases, the number of vaccinated individuals in the
population increases. This can be interpreted as the vaccine being effective against the HB
virus and providing full protection.



Fractal Fract. 2023, 7, 165 19 of 24

0 2 4 6 8 10 12 14 16 18 20

Time (Year)

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

S
u

s
c
e

p
ti
b

le
 i
n

d
iv

id
u

a
ls

 (
S

)

 = 0.8569 (Baseline value)

 = 0.6

 = 0.5

 = 0.4

Figure 15. Behavior of S class for different γ values.
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Figure 16. Behavior of L class for different γ values.
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Figure 17. Behavior of V class for different γ values.

In Figure 18, the time variation of susceptible individuals for different ψ = 0.1989,
ψ = 0.3, ψ = 0.4 and ψ = 0.5 values of ψ is examined. Here, ψ = 0.1989 is the value obtained
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after applying the parameter estimation method. It is seen that as the value of ψ increases,
the number of latent individuals in the population decreases.

In Figures 19 and 20 for different values of η which is the failed vaccination rate,
η = 0.9472, η = 0.2, η =0.3, and η =0.4, the population time in susceptible individuals’ related
variation is studied. Here, the most appropriate η value for the real data is calculated
as η = 0.9472 by parameter estimation method. According to Figure 19, it is observed
that as the η value increases, the number of susceptible individuals in the population also
increases. Similarly, in Figure 20, the time variation of the number of vaccinated individuals
for different η values is examined. According to the simulation results, as η values increase
over time, the number of vaccinated individuals also decreases. Here, the opposite of the
situation observed in Figure 19 is expected to occur. In other words, an increase in η values
(increasing number of failed vaccines) will cause a decrease in the number of vaccinated
individuals and increase the number of susceptible individuals.
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Figure 19. Behavior of S class for different η values.
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Figure 20. Behavior of V class for different η values.

9. Concluding Remarks

In this study, mathematical analysis of a developed new Hepatitis-B mathematical
model is made using Caputo fractional derivative, and the parameter values of this model
are estimated with real data from Türkiye. Numerical simulations are carried out using
the estimated parameter values for Equation (10) system and the future processes of the
Hepatitis-B epidemic are tried to be predicted. In this part of the paper, the results and
recommendations obtained throughout the study are presented.

• A new mathematical structure modeling Hepatitis-B disease is developed by using
appropriate parameters, and the efficiency and accuracy of this model are examined.
The structured model consists of susceptible (S), carrier (C) and recovered (R) individuals,
which are considered to be the most basic components of Hepatitis-B disease, as well
as latent (L), includes acute (A) and vaccinated (V) individuals. In this sense, it can be
said that the model created is a very effective and productive model for Hepatitis-B.
It is seen that the model created as a result of the examination intuitively models the
processes of the Hepatitis-B disease and provides predictions about its future course.

• In order to make a more detailed analysis of the developed model and to take into
account the memory effect, the fractional derivative is used to account for the memory
effect. Considering the results obtained with the help of graphical methods, it is seen
that the fractional derivative gives more meaningful results than the classical (integer)
order. Thus, the connection between the fractional and integer orders in terms of the
future course of Hepatitis-B disease is revealed.

• The non-negative solution region and the limitations of the model’s compartments
are discussed to show the biological significance of the system forming the model.
In addition, the existence and uniqueness of the solution of the relevant system are
examined. Thus, the necessary conditions are obtained in the system created for the
solution to exist and be unique.

• The model’s equilibrium points for diseased (endemic) and disease-free states are
computed, and an investigation of their stability is performed. Thus, it is established
under which circumstances the system’s disease-free equilibrium points are stable.

• The fundamental reproduction number, also referred to as the secondary infection
rate in epidemics, is calculated to be R0 = 0.000000035447 and provides crucial
information about how the disease will develop in the future.

• The parameters of the Hepatitis-B model are estimated by the “least squares curve
fitting” method. Numerical simulations are run in accordance with these estimated
values using actual data from Türkiye. Numerical simulations are used to forecast
how the Hepatitis-B disease would progress in the future and to determine how the
parameters affect each compartment.
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The following suggestions can be offered to guide researchers in future similar studies:

• Prediction course of Hepatitis-B can be considered by using different fractional deriva-
tive operators, such as Riemann–Liouville, Caputo–Fabrizio or Atangana–Baleanu
instead of the Caputo fractional derivative operator, which is already used in the study.
Thus, the relationship between different derivative operators can be revealed.

• More data sets can be used for parameter estimation on different types of biological
models. In addition to the least squares curve-fitting method, other methods, such as
maximum likelihood, can be used.
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interaction related to Lung cancer with real data. Eur. Phys. J.Plus 2022, 137, 1–28. [CrossRef]
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