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Abstract: The existence, uniqueness, and various forms of Ulam-Hyers (UH)-type stability results
for nonlocal pantograph equations are developed and extended in this study within the frame of
novel psi-piecewise Caputo fractional derivatives, which generalize the piecewise operators recently
presented in the literature. The required results are proven using Banach’s contraction mapping and
Krasnoselskii’s fixed-point theorem. Additionally, results pertaining to UH stability are obtained
using traditional procedures of nonlinear functional analysis. Additionally, in light of our current
findings, a more general challenge for the pantograph system is presented that includes problems
similar to the one considered. We provide a pertinent example as an application to support the
theoretical findings.
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1. Introduction

Fractional calculus (FC) has received great interest from researchers due to its wide
range of applications in various scientific fields. The crucial concepts and definitions of FC
have been presented [1,2]. In [3,4], the authors introduced some fundamental history of
fractional calculus and its applications to engineering and different areas of science.

Many classes of fractional differential equations (FDEs) have been extensively studied
and analyzed in the past decades; for example, theories involving the existence of unique
solutions have been documented [5-10]. Numerical and analytical methods have been
developed with the aim of solving such equations [11-14]. These equations have been
tracked as useful in modeling some real-world problems with incredible acheivements.

The qualitative properties of solutions address a vital part of the theory of FDEs. The
previously aforementioned region has been studied well for standard differential equations.
In any case, for FDEs, there are numerous aspects and perspectives that require further
research and surveying. The consideration of the existence and uniqueness has been
particularly considered by using Riemann-Liouville (R-L), Caputo, Hilfer, and other FDs
(see [15-23] and the references therein).

Recently, many generalizations of classical FDs above have been presented by Kil-
bas et al. [2], Almeida in [24], and Sousa-Oliveira [25]. These derivatives are called the
yp-Reiman-Liouville, i-Caputo, and -Hilfer FDs.

Another significant class of FDEs is the pantograph equations (PEs), which have not
been as thoroughly investigated in the frame of novel FDs. PEs are an important category
of delay equations that give changes in the dependent worth at a past time [26], and they
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are applied in deterministic situations. A pantograph is basically a tool used for measuring
and drawing. This tool is currently used in electric trains and electric cells [27-29].

In 1971 Ockendon and Taylor [30] discussed how electric flow is collected by the
pantograph of an electric train using the following delay equation

V' (3¢) = av(sx) + bv(Asx), »€[0,T],0<A<1, 1
{ v(0) = vo @

which is currently called PE. Since that time, many researchers have studied and included
it in different mathematical and scientific fields such as number theory, probability, electro-
dynamics, and medication (see [30-32] and the references therein).

The analytical and numerical methods of (1) have been deliberated by several au-
thors [33-35]. Derfel and Iserels [36,37], extensively studied the PEs. The following type of
nonlinear PE

V' (3¢) = f(se,0(3), 0(A ), ..., v(Aw3e)), 2 €[0,T, 0 <A <--- <Ay <1,
{ v(0) = vo @

was studied by Liu et al. [38], whereas the nonlinear neutral PE

{v'(%)—f(%,v( ), v( A ()(,)):( %)), #>0,0<A<1, 3)

was considered by Sezer et al. [39].

Many studied have been conducted on fractional PEs because of their significance
to numerous areas of exploration. For example, Balachandran et al. [40], discussed the
existence of solutions for the following Caputo-type pantograph problem

{ DS, v(3) = f(s5,0(3),v(Ax)), %€ [0,T)],0<8<1, )

0(0) = vo + (V).

In this regard, Atangana and Araz [41] introduced the concept of the piecewise deriva-
tive with the aim of modeling real-world problems following multiple processes. Motivated
by the above works and by [41], we consider the following piecewise Caputo pantograph
problems (PCPPs):

{ PCDO+U( ) (P(%’U(%),U()H%),...,U(/\m%)), (5)
v(0) = vo +g(v),

and
%;
PCDHu(30) = @(52,0(50), v(A152), ..., 0(Am32)), ©)
v(0) = vo +g(v),
where 0 < 9 <1, € J:=1[0,b,v0 eR, 0< A; <1, fori=1,2,...,m and PCDg+,
and P C]D)gip represent the piecewise and y-piecewise Caputo FD of order ¢, respectively,
defined by

_ [ &S G if s Dl
DG, f(30) = { dCquf(%):if %6[1%1"7]'

and
1 d »
DY f(5¢) = (7= )d@)f(’ﬁ Hif € [0,50],
&) wf(%) tif x € [51,b],
where PC]D)g . and PCDgﬁ/’ are classical (or generalized) derivative on 0 < s < 7 and

Caputo (or -Caputo) FDon sy < 2 < b, ¢ : J x RxR"” — Rand g: C(J,R) — Rare
given functions, (m € N).



Fractal Fract. 2023, 7,162

30f17

It is essential to note that the utilization of nonlinear condition v(0) = vy + g(v) in
physical issues yields a better impact than the initial condition v(0) = vy (see [42]).

We pay attention to the topic of novel piecewise operators. To the best of our knowl-
edge, no results in the literature address the qualitative aspects of the aforesaid problems
using the -piecewise FC. Consequently, to close this gap and enrich the literature, we
developed and extended the existence, uniqueness, and Ulam-Hyers stability results of
p-piecewise Caputo pantograph problems (5) and (6) based on known fixed-point theo-
rems of the Banach type and Krasnoselskii type. Furthermore, we present a more general
problem as a system that covers the problems at hand.

Remark 1.

(i) If y(5¢) = ¢, then problem (6) reduces to problem (5).

(ii) If Y(5¢) = scand m = 1, then for > € [311,b), the problem (6) reduces to problem (4)
considered in [40].

(iii) If P(»2) = 3, ¢ = 0and m = 2, then for » € |0, sr1], the problem (6) reduces to
problem (3) for an implicit term [39].

(iv) If (32) = scand g = 0, then for s € [0, 51|, the problem (6) reduces to (2), see [38].

(v) Our current results for problem (6) stay available for problem (5).

This paper is arranged as follows: Section 2 provides some required results and
fundamentals about piecewise FC. Our major outcomes for problems (5) and (6) are proved
in Section 3. A comprehensive example verifying the validity of the theories is presented in
Section 4. The conclusions of our study are summarized in the final section.

2. Primitive Results

In this section, we provide some notions and basic results of a piecewise FC. Let
C:=C(J,R) = {cD J =R o] = maj]<|co(%)|}
S

C is a Banach space under the norm ||-||.

Definition 1 ([41]). Let @ > 0and @ : J — R be continuous. Then, the piecewise RL fractional
integral is given by

Iw(sc), if » , 71,
PRLIS, @ (5¢) = { RL]IZ(@()%)Zfif 5[60 [%ﬂb]-

where 1o (3¢) = [ @(t)dt is the classical integral on [0,5¢] and RIS @ () = 5 [7

r(ﬁ) Pl
(32— t))*~Y@(t)dt is the RL fractional integral on [s¢, b)].

Definition 2 ([41]). Let 0 < @ < 1and @ : J — R be continuous. Then, the piecewise Caputo
FD is given by
Dwo(x), if »x€[0,:4],
PCyd —
Do+ () = { C]D)‘ZH(D(%) if € [5,b],

where Do (3) = ﬁa)(%) is the classical derivative on [0, 3] and C]DDf,ch(%) = ﬁ fJZ

(3 —t))~%@' (t)dt is a Caputo FD on [5¢, b).
Lemma 1 ([41]). For a given function @ : J — R, and 0 < ¢ < 1. Then, the following PC-FDE

DY a(x) = f(5)

(D(O) =
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has the following solution

0(0) = 0) + [ @(3¢)ds, if s €[0,34],
a ( )+%f%( — 1) l@(t)dt if € [q,b].

The following definition is the mainstay of our results, so we present the piecewise
version of the ¢-fractional derivative and integral as follows:

Definition 3. Let 0 < ¢ < 1,1 = [a, ] be a finite or infinite interval, @ : I — R be an integrable
function, and € C'(I) be an increasing function such that (3¢) # 0, for all sc € 1. Then, the
piecewise version of Y-Caputo FD is given by

PC O _ | DlaCe), if x <€ [0l
D, @ ( )_{ DY @(x), if x€ [s,b], v

where D' @ (5) = i:gﬁ , and CD%P@(%) is a P-Caputo FD defined by Almeida [24]), that is

cmy 2) = 1 * W(t) /
Dot = =57 ., 5o — g e

The associated y-piecewise fractional integral by

Ly H
PRL7S¥ _ ) DPa(t), if x€[0,:a],

Iy @ = . 8
o+ @) { RLIOY @ (5), if s € [sa1,b], ®)
where T (t = J, “Ly' (H)(t)dt represents classical integral with respect to ¢ on [0, > and

PRL®® _ 1 (= 40
I a)(%) = 0 f%l We@( )dt is a ¢-RL fractional integral (see [2]).

We recall the definitions of Ulam-Hyers (UH) stability and generalized Ulam-Hyers
(GUH) stability.

Definition 4 ([43]). ¢-PCPP (6) is UH stable if there exists a x, > 0 such that ¥V e > 0, and for
each solution w & C of the inequality

‘PCDgﬂlpw(%) - qo(%,w(%),w(/\lz),...,w()\mz))’ <e x€e], 9)
there exists a solution v € C of p-PCPP (6) satisfies
|w(3¢) = v()| < Xyt (10)
Additionally, if there exists a nondecreasing function ¢ : RT™ — R with ¢(0) = 0 such that
() —v()| < xpp(e), >€],
then the concerned solution is GUH stable.

For our forthcoming analysis, we need Banach’s contraction map [44] and Krasnosel-
skii’s fixed-point theorem [45].

3. Main Results

In this section, we provide some qualitative analyses of the -piecewise Caputo pantograph
FDE (6). First, certain crucial results are provided for the benefit of the upcoming analysis.
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Remark 2.
(i) If (5¢) = 5, then (7) reduces to a piecewise Caputo FD [41].
(ii) If Y (32) = ¢, then (8) reduces to a piecewise RL fractional integral [41].

Lemma 2. Let ¢ € (0,1] and for a given function @ € C. Then,

; ; WDV @ (3) = @(39) — @(0), if s € [0, 3]
PRLy%:Y PCy &9 ) I 1 ’ 71,

I D, @ = . . 11
0F o+ @) { RLHZTP CD%P@(%) =@(xn) —@(s9),if » € [s,b], ()

and
DY W@ (3¢) = @(3), if 3 € [0,)],

D8 M8 o) = (50), if e b, O

PCDgip PRL]Ig;f @(x) = {

Proof. For s € [5¢, b], the proof can be accomplished following similar kinds of steps as in
the proof for Theorem 4 presented by Almeida [24].
For s € [0, 5] in (11), we have from (8) and (7) that

@'(t)
¥ (t)
For s € [0, 2] in (12), using the Lemma 2.4 [2], forn —1 < ¢ <n € Nand @ € C,

then D% 1%%@(5¢) = @ ().
As a special case for ¢ = 1, then DT @ (5) = @w(3). O

IADW o (5) = /0 L (D W o (t)dt = /0 oy S gy /0 7 0 (Hdt = @(5a) — @(0).

Lemma3. Let 0 <9 <1, 0< A < - <Ap<land o : JxRxR" - R, g:C — Rbe
continuous. Then, the {-PCPP (6) is equivalent to

vo +g(v +fo "(t)g(t,v ) (/\1f) ,o(Amt))dt, if € (0,54,
v(s) =3 Vs +8(0) + f,f (H(p(2) — (1)) (13)
xo(t, U() v(A1t), ..., 0(Am t)) , if € [39,b].

Proof. Let us assume we have the (-PCPP (6) and show that v € C satisfies (13). By
Definition 3, we have

1 / L
oo - | T <0
D v(5) if € [50,b],

In view of Lemma 2, we have

PRLyO:p PCr 85 _ Hl'lle'%( ) =v(5a) —v(0), if € [0,4],
hor Dov() = { RL DI 0(5e) = v(se) — v(o1) if € b,
Applying P RLTY ot on (6), we have
PRL 19¢PC S I v(t),v(At), ..., 0(Amt))dt, if s €[0,5¢],
foe Dv(e) = { PRL]I ( v(t), v(At), ..., 0(Amt)), if 3¢ € [3q,b]. 15)

Comparing (14) and (15), we obtain
Case 1: For s € (0,57,

)+ / ;o) ., 0(Amt))dt.
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PC]D)

LA
ot vl

Case 2: For s € [»,b],

1 b
v() = v(3a) + gy /%1 () 2) — (D))"t v(t), v(Aat), ..., v(Awt))dt.
Using the condition in both cases, we obtain

vo +g(v +fo "(H)g(t, o ) (Alf) (Amt))dt, if € [0,50],
— L _ -1
9= oa +5) ¢ g [ ¥ p(t)
<glt, v( o < >>dt if € [sa,b],
which is (13).
Let v € C satisfy (13), and we prove that (6) holds. Applying ” C]D)O " on (13), we have

e )d%(vo+g +f0 to(t),v(Mt), ..., v(Aut))dt ) if s € [0,5],
DL (v +8(v) + RLL,l (p( 0(t),0(Ast),.-, v(Ant)) ), if 5 € 52, b],

From the fact that classical derivative and Caputo derivative of any constant function
are zero, Lemma 2 shows that

(16)

w, i / UML), 0(At) )t
= (p(%,v( ), 0(A150), ..., 0(Ap32)), on 0 < 3¢ < 319,
and
CDLY RLIYY (3¢, v(5¢), v(As¢))
= @ v(x),v(Mx),...,0(Amx)), on 3¢ < 3 < b.
Hence

PC]D)O+ v(s) = (s, 0(5),0(A15),...,0(Ay3x)), for each s € ]J.
Moreover, v(0) = vg + g(v) on [0, 211 ], and v(s¢1) = v, + g(v), on [5¢1,b]. O

Remark 3. Let m = 1 in Lemma 3. Then, we have the following -piecewise Caputo pantograph
problem (y-PCPP):

{ PCng:/’v(%) :(O(g(%,v(i),zi())\%)), xel], (17)
v(0) = vy + g(v).

In particular, if we replace CID)g+ instead of C]D)gip with () = », then (17) reduces to (4),
which was considered by Balachandran et al. [40].

Corollary 1. Let0 < 9 <1, 0 <A< 1l,and ¢:JxR xR —= R, g:C — R be continuous.
Then, the {-PCPP (17) is equivalent to

vo +g(v +f0 > v(A)))dt, if € [0,5a],
0(3) = { Vs +g(v f,m (3) —p(1)*! (18)
x<g(t, v() < 1))dt, zf%e[m,b]-

As per Lemma 3, we define an operator K : C — C by

_ [ (Kwo)(x), if x€0,5a],
(Kv)(5) = { (;Clzv)(%) if xe [%1,11],
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|(K10) (5]

where
(K10)(5) = vg + g(v) + /0% Y (et v(t), v(At), ..., v(Awt))dt, if s €0,3],

(K2v) (32) = 2+ 8(0) + gy S ¥ (D) ($(5¢) — (1))
x@(t,v(t),v(At), ..., v(Apt))dt, if s € [54,b].

Note that problem (6) has solutions if and only if the operator K has fixed points, i.e.,

(Kv)(2) = v(5).

The uniqueness result is based on the Banach contraction map [44].

Theorem 1. Assume that:

(H1). There exists Lo, L; > 0 (i =1,2,...,m) such that

7

m
lp(c, 0,00, .-, 00,) — @t w,wa, - wy, )| < Lolv —w|+ ) Lijoy, — wy,
i=1

foreach s € J,v,v),w), €R;
(H2). There exists Ly > 0such that 0 < Lg < 1and |g(v) — g(w)| < Lg|v — w|, for v,w € C. If

m
R, = Lg—i-é%l(Lo—i-ZLi) <1,

i=1

<¢<b>—¢<m>>ﬁ< o )
N, = L L L; 1, 19
2 st T+ °+l.; < (19)

then the {-PCPP (6) has a unique solution on J.

Proof. Let sup_j|¢(5,0,0,...,0)] = My < oo, and sup_y|g(0)] = My < co. Becaue
i € C1, there exists a { such that sup,_;|¢'()| < {. Choose r > 0 such that

‘UO|+M§;f/I¢§%1, on [0/ %1]1
> @) —y(4))? (20)
B |vs [+Mg+Myp— 911

jEmy U on [, b].

Now, we show that KB, C B,, where B, = {v € C: ||v|| < r}. Forany v € B,, and
» € [0, 511], we have

< sup Lol 1)+ WO, 00), 0000 00
#€[0,54] J0
< ool + I3+ [ W Ol o), o(Aat) . o(Ant) e
< ool + Ig(0) ~ O + Mg+ [y (Mt + [ 9/()
x|(t,v(t), v(A1t), ..., v(Aut)) — @(£,0,0,...,0)|dt
< |vo+Lgv|+Mg+M(p§%1+/0%llp/(t)<Lo|v+2Li|v(Ait)|>dt
i=1
< |vo+Lg||v||+Mg+M(pzx1+5m<Lo||vn+2Li||v|>
i=1
< |U0+Mg+Mq,§%1+(Lg+§%1(Lo+iL,')>r
i=1
< (1=R)r+Xyr=r. (21)
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|(Kav) ()]

For any v € By, and » € [, b], we have

IN

sup {10 ]+180)| + g7 [ 9006 ~9(0)*?

%€ [32,b]
x|t v(t), v(At),..., v(Amt))|dt}

1 b ! 9-1
way L, ¥ 0@~ p)
x|p(tv(t),v(At),..., (At ))|dt

o+ g(0) = 5O+ Mg+ = [ 9/ )* 1 Myt

IN

Vs | + 18 (v)[ +

IN

+/u ¥ (t i 1|(p(t v(t),v(Ah),. .., v(Amt)) — ¢(£,0,0,...,0)|dt

(p(b) —9(>a))°
T(6+1)

((b) —y()° (L ol ST )
g | Lol + S Ll

—9())?
< |v;,1|+Mg+M¢—(¢(br)wf(l)l)) +(Lg+(lp(b)(ﬂf(1) Lo+ZL>

< (1-=Np)r4+Xr=r. (22)

IN

[Usq | + Lg o]l + Mg + Mg

Equations (21) and (22) show that KB, C B;,.
Next, let v,v € C. Then
Case 1: For s € [0, 5],

[(Kqv) (32) — (K10) (52 )|

< lg(v) |+/

x|g(t, v(t ) v(Agt), . (/\mt)) —¢(t,0(t),v(Mt), ..., 0(Amt))|dt

<Lﬂu—uy+/ <u|( |+2:L|A¢ (mﬂ)dt
L¢ + (o (Lo +3) Li>‘| lv—"1]l¢
i=1

=Ryfjo — 7 (23)

<

Case 2: For 5 € [5,b],

| (Kav) () — (K2v) (5)|
<lg(0) = 50)| + gy [ ¥/ OI@0) (e
x|@(t,v(t),v(At),..., v(Amt)) — @(t,0(t), 0(A1t),.. ., U(Amt))|dt

<Lelo =0+ g5 [ OG0 —9(0)"!

X <L0|v(t) —o(t)| + i Lilv(Ajt) —O(Ast) ) dt

i=1

(
)~

2 19 m
<Lg||v—v||c+<()< pind <L0+§Li>|v—v||c

m
< 4 =
>~ (Lg l9+1 < +121L1)>||U UHC

=Na[|v —V|¢- (24)
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It follows from (23) and (24) that

Ry[lv=70lle, on € [0, 5],

— Ko, <
K0l < { N0 o bt

Because Ry, Ry < 1, K is a contraction map. Therefore, we deduce from the Banach
contraction map that -PCPP (6) has a unique solution existing on J. [

Next, we provide existence results based on Krasnoselskii’s fixed-point theorem [45].

Theorem 2. Let ¢ : ] x R x R™ — R, and g : C — R be continuous, satisfying (H1) and (H2).
In addition, we assume that:

H3) |g(t,v,05,...,00,)| < pg(5¢) foreach >« € J,v,v), € R, and py € C.
(H4) |g(v)| < pglvl, forv e C, ug > 0.
If0 # pg < 1, then -PCPP (6) has a least one solution on J.

Proof. Choose
ﬁ (|U0| + y’(;,g}rl), on s € [0, 5],

r> *((b)— %)‘9
i (1l + SRR, o e o b,

where p, = sup |y (5)|, and sup, |9’ (t)]

<z
Consider the operators P, O : C(J, B;) — C(J,

B,) defined by

B +g(v), if x € [0,51],
(Po)(>) = { o+ 8(0), i € L )

and

(Ov)(3) = o P (et o(t), v(Mt), ..., v(Amt))dt, if s € [0,5a],
— ﬁ S (@) — () ot u(t), v(Mt),...,0(Amt))dt, if » € [54,0],

where (Pv+ Ov)(x) = (Kv) ().
For any v, w € B;, we have
Case 1: For s € (0,7,

[(Po+00)()| < [(Pv)(>)| +[(Ov) ()|

< Jool+ 130+ [ 1 O)lp(tv(6), v(Aat), ..., (At
< Jool +uglol+ [ 19 ()]lg(®)]at

< Jool + pgllvlle + 1o

< \vo|+y§;§%1+ygr

< r.
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Case 2: For s € [51,b],
[(Pu+0v)()| < [(Pv)(>)]+[(Ov) ()]
< o+ 1g(0))]
by [ YO0~ 90 gl 0l0), oD, .. o)
< o pslol [0 () g (1)
Cw(oa))?
< o+ pgllole + iy P00
_w0a))?
< .

Dy, (5) 1= @(3¢,0n(5¢), vn (A1), ...,

|Ovy(5)

— Ov(x)|

IN

Hence, we deduce that [|[Pv + Ovl|, < 7.
Next, for any » € J and v, w € B;, we have

Thus, ||Pv — Pw||e < Lg|lv — wl/¢. As Ly < 1, P is a contraction map.

[Pu(>)

— Pw(x)|

<

IN

s

Finally, we show that O is continuous and compact.
Initially, we show that O is continuous.
Let {vn}n21 in B, such that v, — v in B,. Then, ®,, () — ®y(32) n — co, where

Un(Am)) and @y (32) := @(5¢,v(), v(A15),.. .,

For each », we have

fo |<I>u,l t) —
{ f}ql/f ((5) —
{ Jo v
f,qw

The continuity of ¢ and ¥ implies that |Ov, (5) —

||<I>v () -
((>) —

Dy (t

Dy (-

)
¥(t)

)
¥(t)

|dt, if € 0,5],

|
) 09—

@y, (1) -

dt, if x€ [O s,
@y (-)[|dt, if s € [0,54].

Y@y, () -

Next, O is uniformly bounded on B, as

[(Ov) ()] < {

RUIUST P )

‘uzgxl, if €0,

T(0+1)

—g(w)|, if 2 € [0, 1],
—g(w)|, if 5 € [59,0],

Lg\v—w|, if 22 € [0, 5],
Le¢lv — w, if 5 € [51,b].

v(Am)).

O, (t)|dt, if 2 €]0,],

Ov(sx)| — 0,as n — oo.

At last, we show the compactness of O. Let s € [0, »r1] with 3¢ < 3¢5 € [0, 211]. Then,

[(Ov)(

) —

(Ov)(

)|

IN

IN

(305 — %e)gl‘:;-

/:5 P (et v(t),v(At), ...,
/:5W(t)||fl)(t/v(t),v(ht), .,

v

U(Apt

Aut))dt

)ldt

(25)
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Let ¢ € [5¢1, b] with sc < 3¢5 € [511,]]. Then,

~ 57 [ PO — 9 e
< gy [, VO] @0) = 90)° ! = @) = 9(0)* | |@ue)ldt

g L P OW0) =9 (0) ()
< r(ﬁl) [((2) = 9())? = (@) = (o))" +2(9 () = p(55))° |- (26)
From (25) and (26), we obtain
(O0)(52) = (O0) ()] 0, as 325 — ¢ 0.

Thus, O is equicontinuous. As per the previous steps, O is relatively compact on
B;. Consequently, the Arzela—Ascoli lemma shows that O is compact on B,. From to
Krasnoselskii’s theorem [45], the -PCPP (6) has a least one solutionon J. [

UH Stability Analysis
In this part, we provide the UH and GUH stability of {-PCPP (6).

Remark 4. w € C satisfies (9) if there exists ¢ € C with
(i) |g(x)| <¢xel;
(ii) For all 5 € ],

o;
PeD Y w(50) = (5, w(56), w(Ar32), . .., w(Ame)) + g (). 27)
Lemma4. Let 0 < ¢ < 1,and w € C is a solution of (9). Then, w satisfies

|w(3e) = Wo — [5 ¥ (D) Pu (t)dt| < Tsaie, if € [0,54],
W) = Wi = gl [Z 9/ ()((50) — 9(6)° Do ()| < L, if s € [pay b,

where @, (t) = @(t,w(t),w(Mt),...,w(Ant)), Wo = wq + g(w), T is a constant with
suptej]hl]/(t” < C,and Wy = w,, +g( ).

Proof. Let w be a solution of (9). It follows from (ii) of Remark 4 that
9;
PCDEY w(30) = @5, w(6), w(Ar32), ..., w(Amse)) + ¢ (5¢) 28)
w(0) = wo + g(w).

Then, the solution of problem (28) is

w(x) = W0+f0 (Dw( ) c(t)]dt, if »x€[0,sn],
Wi+ 15 fyl Y ()G = 9(0))" @) +6(D)]dt,  if € [a,b].

Once more, by (i) of Remark 4, we obtain

|w(3) — WO — fo% ’(t)@w(t Jt| < [y (8)|(t)|dt < eCse1, for ¢ € [0,54],
() - i f:; O O o )at|
< gy S ¥ — () g(t)dt < LR e for s € [, b).
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O

Theorem 3. Under the hypotheses of Theorem 1. Then, the solution of the -PCPP (6) is UH and
GUH stable.

Proof. Letw € C be a solution of (9),and v € C be a unique solution of the following problem

[ e
v(0) = w(0).

From Lemma 1, we have

_ Vo+ Jo 9 (H®o(b)dt, if € [0,5a],
v(>) = { Vit p [2 9 (D(04) — ()0 @ (0)dt, if 2 € [3a,b), @9

where Vy = vp+ g(v) and Vi = v, + g(v). Clearly, if v(0) = w(0), then vy = v,
Vo = Wy, and V; = W;. Hence, (29) becomes

v(3) = Wo + fO% IP}:(t)q)v(t)dt/ if »x€l0,], (30)
Wi+ gy S ¥ ()@ (0) — (1) * 71y (D)dt, if 2 € [50,b].
Using Lemma 4 and (H1), for s € [0, 711 ], we have

|w(3¢) = v()]

w0 - [Ty e

<fot) - o~ [y o]+ [y Ol@u) - @0l
<{e+ Q/O% <Lo|v(t) —w(t)]+ i Lilv(Ait) — w()\ﬁ))dt
i=1
<Caet g/O%(Lo|v(t) — w(B)] + Lio(Aat) — @(ab)| + - -+ Lusfo(Amt) — w(Amb)])dt
<Cme+{(Lo+ L+ + L) /O%|v(t) — w(b)dt.

Using classical Gronwall’s Lemma [46], we obtain

w() — ()| < rmeexp (/()%é(Lo Lyt Lm)>dt

gmeexp(C(Lo+Li+ -+ L)) == 87(2,. (31)
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For s € [5,b], we have

~ [0 =M= 5 [ OW0) — 90 et
) = Wo = g5 [ ¥ O006) = 90 )]

‘ -
X

— 2 8 *
< W})wf(nm et r(lﬂ) L v ©we —pm)

X (Lo\v(t) —w(t)| + i Lilv(Ait) — w(}\it)|>dt
i=1
—W())? »
WOy s [ W60 -y

!

X

(Lolv(t) — w(t)| + Li|v(At) — w(Art)| + - - - + Lin|[o(Amt) — w(Amt)|)dt
(p(b) — ¢(%1))08+ (Lo+Li+---+4 L)
T(o+1) T(9)

< W6 = 9 ole) - o)t

1

IN

Using the generalized fractional Gronwall’s Lemma [47], we obtain

($(0) = 9())®  (Lo+Lit - +Ln)
r(0+1) r(0+1)

<1 LV OE) =90 0 (E) — g e

(#’(b) _ 17[](%1))198 I (L() + L4+ Lm)s(lp(b) _ 4](%1))20
r@+1) r(9+1) r(9+1)
- 2 4 e m
= WG (1 Bt i (o) - g o) )

= SX%o- (32)

IN

It follows from (31) and (32) that

ex5y, for » € [0, 5]

sx}[,,for » € [5q,b] (33)

|w(s) —v(x)] < {
where
Xy = aexp(f(Lo+Li+ -+ Lu)), and
_ (p(0) —p(4))° (Lo+Li+--+Lu)
= W (4 ot e ) (p4) — yoa))?).

Hence, the y-PCPP (6) is UH stable in C.
Moreover, from Definition 4, there exists a nondecreasing function ¢ : Rt — R such
that ¢(€) = €. Then, from (33), we have

xX2¢(€), for » € [0, 3],
|w(3¢) — v(5)| < { Xi;(’)(e),for% € Debl,

with ¢(0) = 0, which proves that y-PCPP (6) is GUH stablein C. [
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Remark 5. Consider a more general problem as a system that contains a number of problems similar
to our current problem (6) as follows:

{ PeDgvi(2) = i (2,010, (20), 02, (), . O () ), € 0,0,

(34)
0;(0) =vgi+g(v;), i=1,...,n,j=1,...,m,
where ) < 9; < 1,0 < /\j <1,7F C]D)gﬁw is the generalized piecewise FD of order 8;, and
Ulr/\j (%) = U (%), U1 (Al%), ey Ul()\m%),
UZ,AJ-(%) = Uz(%), Uz()\l%), ceey Uz()\m%),
Un,/\j(%) = x, Un(%)/ Un (/\1%)/ ceey Un()\m%)'
The pantograph system (34) can be written as:
PCDO¥Y (30) = (5, V()), = € [0,b], 3)
V(0) =V +g(V),
where
v1(5) ¢1(52, U1,Aj(%))
vy (5¢) @2(2,02,1,(5))
V(x) = ) , P, Vy(x)) = o , and
Un(%) q)n(%/ U}"l,)\j(%))
v1(0) Uo1 51
02(0) vo2 )
V(O) = s VO - 7 Q=
Un (O) Uon Oy
Using Lemma 1, system (35) has the following solution:
b0y = [ Yo 8O+ W O@OAD)L, if € (0,5, | o)
Voa +8(V) + oy Jo ¥/ (D@ () — (1)) @(t, Vi(1))dt, if 5 € [34,0].

Remark 6. Following the approaches of proof used in the preceding, we can obtain the same results
(Theorems 1-3) for the nonlinear pantograph system (35) in view of formula (36).

4. Example

In this portion, we present an exhaustive example to illustrate the reported results.
Consider the following -PCPP

{ PEDIZEE o(30) = g(36,0(2), v(M130), v(Aa)), > € [0,1],

(37)
U(O) =07+ Z?:l civ(%i),

or

025 () = (56, 0(3¢), 0(Ar132), v(Ag32), if o € [0.5,1],

U(0.5) =08+ E?:l Civ(%,‘),



Fractal Fract. 2023, 7,162

15 of 17

where 8 = 0.25, ¥(3¢) = e%, vg = 0.7,0,,, =0.8,0 < 3 =05 < --- < 35, < 1=b,and ¢;
are positive constants with } ! ; ¢; < % Setm =2 (/\1 = %,)\2 = %),

(52, 0(30), V(A1 52), V(Aac)) = sinv 9+;%”(§)’ C‘f'f(zi)',
for s € [0,1], v € [0,00), and
g(v) = Y civ(oa), v € [0,0)

i=1

(I) Let v, w € [0,00), 3¢ € [0,1]. Then

(7, v( ) ()»1%), (A22)) = 9 (5, w(x), w(Ar1), w(A25) )|

_ sin|v(s) + v(%)| N cos|v(%)| B sin|w() + w(%)| B COS’W(Z)‘|
9—1—2% 4+ 2 9+ 2 4+ 2
<575 (l69 + 0] - w0 + D) + 7755 (\“%)f—\‘“(%)\)’

1

§9+12%(|”(”)_“’(”)|+’0(5)_“’(3 D 4+2%’ g ’

1 1 %
<= — (%) —w(= I
_9\1)(%) w() +9’v(3) w(3 ‘ ik w(4)‘
Thus, (Hy) holds with Ly = Ly = § and L, = }1. Additionally, for v,w € [0,00),
we have

n

éciv(%i) — Y ciw(s5)

i=1

L 3
<Y cilv—w| < g|v—w|.
i=1

§(v) = g(w)| =

Therefore, (Hy>) holds with Ly = % To fulfill condition (19), we have sup_ 0,1]

[y (3)| = sup%e[o,l]’%e%‘ = % < 1:={.Hence, ¥; = 3% < 1,and N, ~ 0.64 < 1. Thus,
Theorem 1 shows that ¢-PCPP (37) has a unique solution [0, 1].

(II) For &€ > 0 with X?o = %e% > 0, and X}o ~ 1.20 > 0. It follows from Theorem 3 that
the y-PCPP (37) is HU and GUH stable.
(IT) For 5 € [0,1] and v € [0, %), we obtain

1 1
<

and

ig(v)| =

éciv(%i)

Consequently, (Hys) and ((Hyy) hold with py(5) = ﬁ + 44_%, Mo = 36/ and
Hg = % < 1. Thus, all the assumptions of Theorem 2 are satisfied. Hence, {-PCPP (37) has
a solution on [0, 1].

n 3
<Y iyl < g|”|~
i—1

5. Conclusions

Atangana and Araz [41] suggested the idea of piecewise derivatives. In this regard,
we created and expanded the existence, uniqueness, and UH-GUH stability results for
nonlocal pantograph equations under y-piecewise Caputo FDs as an additional contribu-
tion to this subject. Based on the fixed-point theorems of Banach and Krasnoselskii, we
offered numerous new results of existence and uniqueness. Moreover, results pertaining to
UH/GUH stability were obtained utilizing traditional methodologies of nonlinear func-
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tional analysis. An example to validate the theoretical findings was provided. In light of
our recent discoveries, a more general problem for the pantograph system that includes
problems related to the study’s subject was presented. In the future, it will be interesting to
study the current pantograph systems under piecewise FDs in the Caputo Fabrizio, and
Atangana-Baleanu sense [41,48,49].
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