
Citation: Rovenski, V.; Patra, D.S.

Characteristics of Sasakian Manifolds

Admitting Almost ∗-Ricci Solitons.

Fractal Fract. 2023, 7, 156. https://

doi.org/10.3390/fractalfract7020156

Academic Editor: Carlo Cattani

Received: 14 December 2022

Revised: 1 February 2023

Accepted: 2 February 2023

Published: 4 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Characteristics of Sasakian Manifolds Admitting Almost
∗-Ricci Solitons
Vladimir Rovenski 1,* and Dhriti Sundar Patra 2

1 Department of Mathematics, University of Haifa, Mount Carmel, Haifa 3498838, Israel
2 Department of Mathematics, Indian Institute of Technology, Hyderabad 502285, India
* Correspondence: vrovenski@univ.haifa.ac.il

Abstract: This article presents some results of a geometric classification of Sasakian manifolds (SM)
that admit an almost ∗-Ricci soliton (RS) structure (g, ω, X). First, we show that a complete SM
equipped with an almost ∗-RS with ω 6= const is a unit sphere. Then we prove that if an SM has an
almost ∗-RS structure, whose potential vector is a Jacobi vector field on the integral curves of the
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Keywords: sasakian manifold; (almost) ∗-Ricci soliton; ∗-Einstein manifold; infinitesimal contact
transformation; conformal vector field

MSC: 53C25; 53C21; 53D15

1. Introduction

Nonlinear systems that support solitons can generate self-similarity and fractals on
successively smaller scales. Very often, the solitons of a given system are all self-similar to
each other, see [1].

Several authors study Ricci solitons (RS) in contact metric geometry, where Sasakian
manifolds (SM) are especially important. SM, which are odd-dimensional analogues of
K’́ahler manifolds, are used to build geometrical examples, e.g., manifolds of special
holonomy, Einstein manifolds (EM), K’́ahler manifolds and orbifolds. The geometry of
SM (in particular, η-EM and Sasaki–Einstein manifolds) attracts much attention from
mathematicians. We refer the reader to [2–4] for the latest developments in the theory of
these manifolds.

Many tools for K’́ahler manifolds have analogues for contact manifolds, among them
the ∗-Ricci tensor, introduced in [5] for almost Hermitian manifolds. In [6], the ∗-Ricci
tensor was applied to a real hypersurface in a non-flat complex space form. Namely, for an
almost contact manifold M2n+1(ϕ, ζ, η, g) and any vector fields Y1, Y2, Y3 on M2n+1, we get

Ric∗g(Y1, Y2) =
1
2

traceg

{
Y3 → R(Y1, ϕ Y2)ϕY3

}
. (1)

If Ric∗g vanishes identically then such M2n+1 is called ∗-Ricci flat. A ∗-RS structure has
been introduced in [7], using Ric∗g instead of the Ricci tensor in the equation of RS,

£ X g + 2 Ric∗g = 2 ω g. (2)

Here, £ is the Lie derivative. If ω in (2) belongs to C∞(M) and is not a constant, then
we get an almost ∗-RS, the triple (g, ω, X). An almost ∗-RS is shrinking for ω > 0, steady
for ω = 0 and expanding for ω < 0. Observe that a ∗-RS is ∗-EM (i.e., the ∗-Ricci tensor
and the metric tensor are homothetic) if X is a Killing vector field (KVF), see [8]. Thus, it
is a generalization of a ∗-EM. In particular, if X = ∇ f (the gradient of f ∈ C∞(M)) in (2),
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then we obtain a gradient almost ∗-RS. Some generalizations of RS were studied by several
authors, see [9–15].

Ghosh-Patra [16] first studied ∗-RS and gradient almost ∗-RS on a contact metric man-
ifold, in particular, on an SM and (k, µ)-contact manifolds. Later on, ∗-RS were studied on
almost contact manifolds in [15,17–20]. Wang [20] proved that “if the metric of a Kenmotsu
3-manifold represents a ∗-RS, then the manifold is locally the hyperbolic space H3(−1)”,
and it was proved in [18] that “if a non-Kenmotsu (k, µ)′-almost Kenmotsu manifold has a
∗-RS structure, then it is locally isometric to Hn+1(−4)×R under some restrictions”.

There is a natural question: “under what conditions a (gradient) almost RS is a unit sphere”?
Several affirmative answers to this question on Riemannian and contact metric manifolds,
are given in [9,10,12–14,21,22]. An almost ∗-RS is a generalization of ∗-RS and ∗-EM; thus
we ask a question: “under what conditions a (gradient) almost ∗-RS is a unit sphere?”

In [16], they answered this question by showing that “if a complete SM admits a gradient
almost ∗-RS, then it is a unit sphere”. Here, we consider non-gradient almost ∗-RS in the case
of SM, and we are looking for conditions under which SM having an almost ∗-RS structure
is a unit sphere. Our main achievement is the following.

Theorem 1. If a complete SM M2n+1(ϕ, ζ, η, g) of dimension greater than three has an almost
∗-RS structure (g, ω, X) with ω 6= const, then it is the unit sphere S2n+1.

The following question arises: “under what conditions an almost RS is an RS, or, EM”?
Several answers to this question can be found in [14,22–24]. An almost ∗-RS generalizes
∗-RS and ∗-EM; so the following question arises:

“when an almost ∗-RS is a ∗-RS, for example, an ∗-EM ?”

In [16], they found such a condition on an SM, and this question on a Kenmotsu
manifold was studied in [15]. In this regard, we are interested in characterizing those SM
represented as almost ∗-RS, which are ∗-RS or are ∗-EM. In the following theorem, we
assume that the potential vector field is a Jacobi vector field on the integral curves of the
Reeb vector field.

Theorem 2. If an SM M2n+1(ϕ, ζ, η, g) has an almost ∗-RS structure (g, ω, X) such that X is a
Jacobi field on the ζ-integral curves, then (g, ω, X) is a ∗-RS on M.

Now, we recall some definitions, e.g., [3]. A SM M2n+1(ϕ, ζ, η, g) is an η-EM if

Ricg = α1 g + α2 η ⊗ η,

where functions α1 and α2 belong to C∞(M). For K-contact manifolds (for example, SM)
of dimension ≥ 4, α1, α2 are real constants, see [25], thus, the scalar curvature is constant.
An η-Einstein SM is a null-SM when α1 = −2 and α2 = 2n + 2, and is a positive-SM when
α1 > −2, see [3]. Using ([16], Theorem 8), we get the following consequence of Theorem 2.

Corollary 1. If an SM M2n+1(ϕ, ζ, η, g) has an almost ∗-RS structure (g, ω, X) such that X is a
Jacobi vector field on the ζ-integral curves, then M is positive SM and X is KVF (and g is ∗-EM),
or M is null-SM and ϕ is invariant under X.

Remark 1. Observe from [24] that if an SM has an almost RS structure, whose potential field is a
Jacobi vector field on the ζ-integral curves, then the manifold is null-SM with the expanding RS.

A vector field Y on a contact manifold (M, η) that preserves the contact form η is
called an infinitesimal contact transformation, see [26,27], i.e.,

£Yη = ν η, (3)
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for some ν ∈ C∞(M); and if ν = 0, then Y is said to be strict. A vector field Y preserving
ϕ, ζ, η and g on a contact metric manifold is called an infinitesimal automorphism. In [16],
they addressed the question by showing that “if an SM represents an almost ∗-RS such that
the potential vector field is an infinitesimal contact transformation, then it is a ∗-RS”. We improve
this result in the following statement.

Theorem 3. Let an SM represent an almost ∗-RS (g, ω, X) such that X is an infinitesimal
contact transformation. Then X leaves ϕ invariant, and the manifold is η-EM of scalar curvature
(ω + 4n)n.

Assuming compactness we get one more sufficient condition for g to be ∗-Ricci flat
(e.g., ∗-EM).

Theorem 4. Let a compact SM M2n+1(ϕ, ζ, η, g) admit an almost ∗-RS (g, ω, X) such that X is
an infinitesimal contact transformation. Then the soliton is steady (ω = 0), X is an infinitesimal
automorphism, and g is ∗-Ricci flat of scalar curvature 4n2.

Finally, we show that the property “potential vector field and the characteristic vector
field are parallel” provides “∗-Ricci flat” (e.g., ∗-EM).

Theorem 5. Let an SM M2n+1(ϕ, ζ, η, g) admit an almost ∗-RS (g, ω, X) such that X is parallel
to ζ. Then the soliton is steady (ω = 0), V is KVF, and g is ∗-Ricci flat of scalar curvature 4n2.

Remark 2. Observe from [14] that if a compact SM has an almost RS structure (g, ω, X) such
that X is an infinitesimal contact transformation, then the soliton is shrinking (ω = 2n), X is strict
and leaves ϕ invariant, and the manifold is EM of scalar curvature 2n(2n + 1). By Theorem 4, the
soliton is steady (ω = 0), X is strict and leaves ϕ, ζ and η invariant, and the manifold is ∗-EM of
scalar curvature 4n2. In addition, note that an SM considered as an RS or an almost RS with X
parallel to ζ, is an EM of scalar curvature 2n(2n + 1), and X is a KVF, see [28].

Within the framework of Theorems 3–5, we not only find sufficient conditions for ∗-EM, but
also characterize the structural tensor fields and the potential vector field.

2. Preliminaries

Here, we recall some properties of SM, see [2,26]. We suppose that all manifolds
are smooth and connected. The curvature tensor R on a Riemannian manifold (M, g) is
given by

R(Y1, Y2) = [∇Y1 ,∇Y2 ]−∇[Y1,Y2]
, Y1, Y2 ∈ X (M), (4)

where ∇ is the Levi-Civita connection and X (M) is the space of vector fields on M. They
define the Ricci operator Q by

g(QY1, Y2) = Ricg(Y1, Y2) = traceg
{

Y3 → R(Y3, Y1)Y2
}

, Y1, Y2, Y3 ∈ X (M)

is a symmetric (1, 1)-tensor. Then r = traceg Q is the scalar curvature. We get the following
formula (follows from twice contracted second Bianchi identity, see, e.g., [29]):

1
2

g(Y1,∇r) = (div Q)(Y1) = ∑ i g((∇Ei Q)Y1, Ei), Y1 ∈ X (M), (5)

where {Ei} is any local orthonormal basis on M.
For the Lie derivative of f ∈ C∞(M) along Y1 ∈ X (M) we have

£Y1 f = Y1( f ) = g(Y1,∇ f ),
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where the Hessian of f is defined by

Hess f (Y1, Y2) = ∇2 f (Y1, Y2) = (∇Y1∇ f )Y2 = Y1Y2( f )− (∇Y1Y2)( f ), Y1, Y2 ∈ X (M).

The hessian Hess f is symmetric and g(∇Y1∇ f , Y2) = g(∇Y2∇ f , Y1) is true, so it is a
section of T∗M⊗ T∗M. A vector field Y on (M, g) is conformal if

£ Y g = f g

for some f ∈ C∞(M). Such Y is called homothetic if f = constant, and Y is said to be KVF
if f = 0.

A manifold M2n+1 is a contact manifold if η ∧ (dη)n 6= 0 for some global 1-form
η. In this case, ζ satisfying dη(ζ, ·) = 0 and η(ζ) = 1 is called a characteristic vector
field. Polarization of dη on D≡ = ker η allows to find a (1, 1)-tensor ϕ and a Riemannian
structure g satisfying

ϕ2 = −idTM + η ⊗ ζ, η = g(ζ, ·), (6)

dη(· , ·) = g(· , ϕ ·). (7)

They call such M2n+1(ϕ, ζ, η, g) a contact metric manifold with associated metric g.
By (6), we get

ϕ(ζ) = 0, η ◦ ϕ = 0, and rank(ϕ) = 2n.

Further, a contact metric manifold is called SM if the following condition is valid,
see [3,26]:

[ϕY1, ϕY2] = −2 dη(Y1, Y2)ζ, Y1, Y2 ∈ X (M).

The curvature tensor of an SM satisfies

R(Y1, Y2)ζ = η(Y2)Y1 − η(Y1)Y2, Y1, Y2 ∈ X (M). (8)

Recall that if ζ is KVF, then M is called a K-contact manifold. A SM is K-contact, the
converse is valid in dimension 3 only, see ([26], p. 87). SM satisfy the following, see ([26],
p. 113):

∇Y1 ζ = −ϕ Y1, Y1 ∈ X (M), (9)

Q ζ = 2 n ζ. (10)

According to ([16], Lemma 2.1):

∇ζ Q = Q ϕ− ϕ Q;

therefore, ∇ζ Q = 0, as ϕ and the Ricci operator commute on an SM, see [26]. Using (9) we
find the derivative of (10) in the direction of Y1 ∈ X (M),

(∇Y1 Q)ζ = QϕY1 − 2n ϕY1. (11)

The ∗-Ricci tensor Ric∗g on an SM has the view (see [16], Lemma 5):

Ric∗g(Y1, Y2) = Ricg(Y1, Y2)− (2n− 1) g(Y1, Y2)− η(Y1)η(Y2), Y1, Y2 ∈ X (M). (12)

Thus, we can write the ∗-RS structure (2) on an SM as

(£ V g)(Y1, Y2) + 2 Ricg(Y1, Y2) = 2 (ω + 2n− 1) g(Y1, Y2) + 2 η(Y1)η(Y2) (13)

for all Y1, Y2 ∈ X (M).
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Remark 3. Contracting the derivative of (8) using a local orthonormal basis {Ei}1≤i≤2n+1 on M
and using (9), we get the following:

(div R)(Y1, Y2)ζ − g(R(Y1, Y2)ϕEi, Ei) = −2g(ϕY1, Y2).

Contracting the second Bianchi identity, they reduce the above equation to the following:

g((∇Y1 Q)Y2 − (∇Y2 Q)Y1, ζ)− g(R(Y1, Y2)ϕEi, Ei) = −2g(ϕY1, Y2). (14)

Using (11), from (14) we obtain

g(R(Y1, Y2)ϕEi, Ei) = g(QϕY1, Y2) + g(ϕQY1, Y2)− 2(2n− 1)g(ϕY1, Y2).

Replacing Y2 by ϕY2 in the preceding equation and using the definition (1), we represent the
∗-Ricci tensor of an SM in the form (12).

To prove Theorems 1 and 2, we need the following three results.

Proposition 1. If an SM admits an almost ∗-RS structure, then we get the following:

(£ X∇)(Y1, ζ) + 2 QϕY1 = 2(2n− 1) ϕY1 + Y1(ω)ζ + ζ(ω)Y1 − η(Y1)∇ω, Y1 ∈ X (M). (15)

Proof. Using the derivative of (13) for an arbitrary Y3 ∈ X (M) and (9), gives

(∇Y3 £X g)(Y1, Y2) + 2 (∇Y3 Ricg)(Y1, Y2) = 2 Y3(ω) g(Y1, Y2)

− 2 η(Y1) g(Y2, ϕ Y3)− 2 η(Y2) g(Y1, ϕ Y3) (16)

for Y1, Y2 ∈ X (M). Following Yano ([30] p. 23), for Y1, Y2, Y3 ∈ X (M) we write

(£X∇Y3 g−∇Y3 £X g−∇[X,Y3]
g)(Y1, Y2) = −g((£X∇)(Y3, Y1), Y2)− g((£X∇)(Y3, Y2), Y1).

Inserting (16) in the above relation and using ∇g = 0 yields the following:

g((£X∇)(Y3, Y1), Y2) + g((£X∇)(Y3, Y2), Y1) + 2 (∇Y3 Ricg)(Y1, Y2)

= 2
{

Y3(ω) g(Y1, Y2)− η(Y1) g(Y2, ϕ Y3)− η(Y2) g(Y1, ϕ Y3)
}

.

Due to the symmetry (£X∇)(Y1, Y2) = (£X∇)(Y2, Y1), using cyclical permutations of
Y1, Y2, Y3 in the preceding equation, we get

g((£X∇)(Y1, Y2), Y3) = (∇Y3 Ricg)(Y1, Y2)− (∇Y1 Ricg)(Y2, Y3)− (∇Y2 Ricg)(Y3, Y1)

+ Y1(ω) g(Y2, Y3) + Y2(ω) g(Y3, Y1)−Y3(ω) g(Y1, Y2)

− 2 η(Y2) g(ϕ Y1, Y3)− 2 η(Y1) g(ϕ Y2, Y3). (17)

Since the Ricci operator Q is self-adjoint, using ∇ζ Q = 0 and (11), and replacing Y2
by ζ in (17), we get (15).

Proposition 2. Let an SM represent an almost ∗-RS and ζ leave ω invariant. Then we get

R(Y1, Y2)∇ω− g(R(Y1, Y2)∇ω, ζ)ζ = 4
{
(∇Y1 Q)Y2−(∇Y2 Q)Y1

}
− 2
{

Y1(ω)Y2−Y2(ω)Y1
}

+ 2
{

Y1(ω) η(Y2)ζ −Y2(ω) η(Y1)ζ
}
+ 2(ω− 2)

{
2 g(Y1, ϕ Y2)ζ

+ η(Y1) ϕY2 − η(Y2) ϕY1
}
+ η(Y2)∇Y1∇ζ∇ω− η(Y1)∇Y2∇ζ∇ω

+ 2 g(ϕ Y2, Y1)∇ζ∇ω + g(ϕ Y2,∇Y1∇ω)ζ − g(ϕ Y1,∇Y2∇ω)ζ

+ g(ζ,∇Y1∇ω) ϕ Y2 − g(ζ,∇Y2∇ω) ϕY1, Y1, Y2 ∈ X (M). (18)
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Proof. Applying the Lie derivative for R(Y1, ζ)ζ = Y1 − η(Y1)ζ for all Y1 ∈ X (M) (follows
from (8)) along X and using (8), yields

(£ XR)(Y1, ζ)ζ + R(Y1, ζ)£ Xζ + η(£Xζ)Y1 + (£ X g)(Y1, ζ)ζ + g(Y1, £ Xζ)ζ = 0. (19)

Replacing (Y1, Y2) by (Y1, ζ) in (13) and using (10), we acquire the following:

(£X g)(Y1, ζ) = 2ωη(Y1).

Plugging it into the Lie derivative of η(Y1) = g(Y1, ζ) and η(ζ) = 1, we find
η(£Xζ) = −ω and (£Xη)(ζ) = ω. Thus, in view of (8), Equation (19) gives us

(£ XR)(Y1, ζ)ζ = 2ω
{

Y1 − η(Y1)ζ
}

, Y1 ∈ X (M). (20)

By conditions, ζ(ω) = 0 is valid, thus (15) reduces to the following:

(£ X∇)(Y1, ζ) + 2 QϕY1 = 2(2n− 1) ϕY1 + Y1(ω)ζ − η(Y1)∇ω, Y1 ∈ X (M). (21)

Using ζ-derivative of (21), gives

(∇ζ£ X∇)(Y1, ζ) = g(Y1,∇ζ∇ω)ζ − η(Y1)∇ζ∇ω, (22)

where equalities ∇ζ Q = ∇ζ ζ = ∇ζ ϕ = 0 for an SM were used. On the other hand, using
Y1 = ζ in (21), then differentiating along Y1 and using (9) and the symmetry of £X∇, we get

(∇Y1(£ X∇))(ζ, ζ) = 2 (£ X∇)(ϕY1, ζ)−∇Y1∇ω. (23)

Next, differentiating g(ζ,∇ω) = 0 along Y1 ∈ X (M) and using (6), gives (ϕY1)(ω) =
g(ζ,∇Y1∇ω); therefore, it suffices to combine (6), (10), (21) and (23) to arrive at the result

(∇Y1£ X∇)(ζ, ζ) = 4 QY1 − 4(2n− 1)Y1 − 4 η(Y1)ζ + 2g(ζ,∇Y1∇ω)ζ −∇Y1 ∇ω. (24)

We need the following commutation result, see ([30], p. 23):

(£XR)(Y1, Y2)Y3 = (∇Y1£X∇)(Y2, Y3)− (∇Y2£X∇)(Y1, Y3). (25)

Next, replacing both Y2 and Y3 by ζ in (25) and then plugging the values of (£ XR)(Y1, ζ)ζ,
(∇ζ£ X∇)(Y1, ζ) and (∇Y1£ X∇)(ζ, ζ) from (20), (22) and (24), respectively, we get

∇Y1∇ω = 4 QY1 − 2
{

ω + 2(2n− 1)
}

Y1 + 2(ω− 2) η(Y1)ζ + g(ζ,∇X∇ω)ζ + η(Y1)∇ζ∇ω (26)

for Y1 ∈ X (M). Using (9) in the Y2-derivative of (26), we acquire

∇Y2∇Y1∇ω = 4
{
(∇Y2 Q)Y1+Q(∇Y2Y1)

}
−2Y2(ω)

{
Y1−η(Y1)ζ

}
−2
{

ω + 2(2n− 1)
}
∇Y2Y1

+ 2(ω− 2)
{

η(∇Y2Y1)ζ − g(Y1, ϕY2)ζ − η(Y1)ϕY2
}
+
{

η(∇Y2Y1)

− g(Y1, ϕY2)
}
∇ζ∇ω + η(Y1)∇Y2∇ζ∇ω− g(ϕY2,∇Y1∇ω)ζ

+ g(ζ,∇Y2∇Y1∇ω)ζ − g(ζ,∇Y1∇ω)ϕY2.

Since Hessω is symmetric and ϕ is skew-symmetric, using (26) and the above equation
in (4) completes the proof of (18).

Recall that the contact metric structure commutes with the Ricci operator, i.e., Qϕ = ϕQ,
e.g., [26]. Its covariant derivative and (5) provide the following.

Lemma 1 (see [12]). For an SM M and all Y1 ∈ X (M), we have

(i) ∑2n+1
i=1 g((∇ϕY1 Q) ϕ Ei, Ei) = 0, (ii) ∑2n+1

i=1 g((∇ϕ Ei Q) ϕY1, Ei) = −
1
2

Y1(r),
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where {Ei}1≤i≤2n+1 is a local orthonormal basis on M.

3. Proof of Results

Proof of Theorem 1. Since the characteristic vector field is KVF, £ζ g = 0 = £ζ Ricg is valid.
Applying this to the Lie derivative of (13) along ζ, and using £ Y1 £ Y2 g− £ Y2 £ Y1 g = £ [Y1,Y2]

g,
e.g., [30], we get

£ [X,ζ] g = −2 ζ(ω) g. (27)

By (27), [X, ζ] is a conformal vector field. This gives us the following alternatives:
(I) [X, ζ] is non-homothetic, (II) [X, ζ] is homothetic.

Okumura [31] proved that “if a complete SM of dimension > 3 has a non-Killing conformal
vector field, then it is a unit sphere”. Applying this theorem for (I), we conclude that (M, g) is
a unit sphere.

We will finish the proof by showing a contradiction for case (II). Sharma [32] proved
the following: “a homothetic vector field on an SM (more generally, K-contact manifold) is
necessarily a KVF”. So, (27) implies that ζ leaves ω invariant. Thus, (18) holds. Contracting
it over Y1 and then using (5), (8), we obtain

Ricg(Y2,∇ω) = 4 g(ϕ Y2,∇ζ∇ω) + η(Y2) div(∇ζ∇ω)

− g(ζ,∇Y2∇ζ∇ω)− 2 g(Y2,∇r) + 2(2n− 1) g(Y2,∇ω), (28)

where we used traceg ϕ = 0 = ϕζ, the skew-symmetry of ϕ and symmetry of Hessω.
Differentiating the equality g(ζ,∇ζ∇ω) = 0 along Y2 ∈ X (M) and using (9), gives

g(ζ,∇Y2∇ζ∇ω) = g(ϕ Y2,∇ζ∇ω).

Thus, (28) can be rewritten as

Ricg(Y2,∇ω) = 3 g(ϕ Y2,∇ζ∇ω) + η(Y2) div(∇ζ∇ω)− 2 Y2(r) + 2(2n− 1)Y2(ω) (29)

for all Y2 ∈ X (M). Next, recall the following result for SM, see [26]:

R(ϕY2, ϕY1)Y3 = R(Y2, Y1)Y3 + g(Y2, Y3)Y1 − g(Y1, Y3)Y2 − g(Y2, Y3)Y1 + g(Y1, Y3)Y2

for all Y1, Y2, Y3 ∈ X (M). Substituting Y1 = ϕ Y1 and Y2 = ϕ Y2 in (18) and using the last
formula, in view of (6), ϕ ζ = 0 and the skew-symmetry of ϕ, we obtain

R(Y1, Y2)∇ω− g(R(Y1, Y2)∇ω, ζ)ζ = 4
{
(∇ϕY1 Q)ϕY2 − (∇ϕY2 Q)ϕY1

}
+ Y2(ω)

{
2Y1−η(Y1)ζ

}
−Y1(ω)

{
2Y2−η(Y2)ζ

}
+ 4(ω− 2) g(Y1, Y2)ζ + 2 g(Y1, Y2)∇ζ∇ω

+ 2 η(Y2) g(ζ,∇Y1∇ω)ζ − 2 η(Y1) g(ζ,∇Y2∇ω)ζ − g(Y2,∇Y1∇ω)ζ

− g(Y1,∇Y2∇ω)ζ + g(ζ,∇Y2∇ω)Y1 − g(ζ,∇Y1∇ω)Y2. (30)

On the other hand, contracting (30) over Y1 and applying (8), (5), (29) and Lemma 1,
we find

η(Y2)div(∇ζ∇ω) + 2(n− 1)
{

Y2(ω)− g(ϕY2,∇ζ∇ω)
}
= 0, (31)

where we have used the symmetry of Hessω and that ζ leaves ω invariant. Next, replacing
Y2 by ϕY2 in (31), noting that (6) and using g(ζ,∇ζ∇ω) = 0, we acquire

2(n− 1)
{

g(ϕY2,∇ω) + g(Y2,∇ζ∇ω)
}
= 0, Y2 ∈ X (M). (32)

Furthermore, differentiating g(ζ,∇ω) = 0 along Y2 ∈ X (M) and using (9), we achieve

g(ζ,∇Y2∇ω) = g(ϕY2,∇ω).
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Thus, (32) for n > 1 gives us g(ϕY2,∇ω) = 0; consequently, ∇ω = 0. Hence, ω is
constant – a contradiction with the conditions of the theorem.

Proof of Theorem 2. Applying Proposition 1 to the well-known formula:

∇Y1∇Y2 X−∇∇Y1
Y2 X− R(Y1, X)Y2 = (£X∇)(Y1, Y2),

see ([30], p. 23), we acquire

∇Y1∇ζ X−∇∇Y1
ζ X− R(Y1, X)ζ = −2QϕY1 + 2(2n− 1)ϕY1 + Y1(ω)ζ + ζ(ω)Y1 − η(Y1)∇ω. (33)

By conditions, X is a Jacobi vector field on the ζ-integral curves, see [33], i.e.,

∇ζ∇ζ X + R(X, ζ)ζ = 0.

Using Y1 = ζ in (33) and ∇ζ ζ = 0 (that is a consequence of (9)), we achieve the
equality ∇ω = 2 ζ(ω)ζ, or, using the exterior derivative,

dω = 2 ζ(ω) η.

Applying exterior derivative, the Poincaré lemma (d2 = 0), and the wedge product
with η, we acquire ζ(ω) η ∧ dη = 0; thus, ζ(ω) = 0, as η ∧ dη is nowhere zero on a contact
manifold. Thus, dω = 0, i.e., ω = constant.

Corollary 4 follows from ([16], Theorem 8) and our Theorem 2.

Proof of Theorem 3. Using d ◦ £ X = £ X ◦ d (d commutes with the Lie derivative) and
applying the operator d to (3), gives

(£ Xdη)(Y1, Y2) =
1
2

{
Y1(ν) η(Y2)−Y2(ν) η(Y1)

}
+ ν dη(Y1, Y2) (34)

for a function ν ∈ C∞(M) and any Y1, Y2 ∈ X (M). Applying the Lie derivative of (7) in
the X-direction and using (2), (3) and (34), we obtain

2(£X ϕ)(Y1) + 2(2ω− ν + 2(2n− 1)) ϕY1 = 4QϕY1 + η(Y1)∇ν−Y1(ν) ζ. (35)

From the first equality of (6), for Y1 ∈ X (M) we get

(£X ϕ)(ϕY1) + ϕ(£X ϕ)(Y1) = (£Xη)(Y1)ζ + η(Y1)£Xζ. (36)

As a result of (10), ∗-RS Equation (2) gives us

(£X g)(Y1, ζ) = 2ω η(Y1).

Taking into account this, as well as (3), it suffices to show that

g(£ Xζ, Y1) = (ν− 2ω) η(Y1). (37)

By direct calculation using ϕζ = 0 we get (£X ϕ)(ζ) = 0; hence, (35) gives∇ν = ζ(ν) ζ.
Thus, by (9) we get

Hessν(Y1, Y2) = Y1(ζ(ν)) η(Y2)− ζ(ν) g(ϕY1, Y2). (38)

Since ϕ is skew-symmetric and Hessν is symmetric, by (7) and (38), for Y1, Y2 orthogo-
nal to ζ we achieve

ζ(ν) dη(Y1, Y2) = 0.
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Thus, ζ(ν) = 0, as dη is nonzero; hence, ∇ν = 0. Thus, ν is constant. Combining (2),
(37) and η(ζ) = 1, we get ν = ω. Substituting this and (10) in (35), gives

(£X ϕ)(ϕY1) = ϕ(£X ϕ)(Y1) = −2 QY1 + (ω + 2(2n− 1))Y1 − (ω− 2) η(Y1)ζ, (39)

where the equality Qϕ = ϕQ (for an SM) has been used, see ([26], p. 116). Now, by (3), (36),
(37), (39) and ν = ω, we obtain the relation

2 Ricg = (ω + 2(2n− 1)) g− (ω− 2) η ⊗ η. (40)

Hence, (M, g) is an η-EM of scalar curvature n(ω + 4n). Substituting (40) into (35),
we find £X ϕ = 0; thus, X leaves ϕ invariant.

Proof of Theorem 4. The volume form Ω on a contact metric manifold satisfies Ω = η ∧
(dη)n 6= 0; therefore, its Lie derivative in the X-direction and (3) give

£ XΩ = (n + 1)ν Ω.

Proceeding, we obtain the equality £XΩ = (div X)Ω, from which we deduce
div X = (n + 1)ν. Applying the Divergence theorem (for compact M), this gives ν = 0;
consequently, ω = 0 by the proof of Theorem 3. Thus, (3) and (37), respectively, follows
from the condition that X leaves η and ζ invariant. Moreover, Equation (40) becomes

Ricg = (2n− 1) g + η ⊗ η. (41)

Thus, from (12) we conclude that (M, g) is ∗-Ricci flat of zero ∗-scalar curvature r∗.
Using (2), we find that X is KVF. Applying Theorem 3, completes the proof.

Proof of Theorem 5. By conditions, X = σ ζ, where σ is a non-zero smooth function. By
the skew-symmetry of ϕ and (9), we obtain

(£ X g)(Y1, Y2) = g(∇Y1 X, Y2) + g(∇XY2, Y1) = Y1(σ)η(Y2) + Y2(σ)η(Y1). (42)

Thus, (13) becomes

Y1(σ)η(Y2) + Y2(σ)η(Y1) + 2 Ricg(Y1, Y2) = 2(ω + 2n− 1) g(Y1, Y2) + 2 η(Y1)η(Y2). (43)

Using Y2 = ζ in (43) and (10), yields

Y1(σ) = (2ω− ζ(σ))η(Y1), Y1 ∈ X (M). (44)

Again, using Y1 = ζ and Y2 = ζ in (43) and applying (10), we get ζ(σ) = ω; hence,
from (44) it follows that Y1(σ) = ζ(σ) η(Y1), for Y1 ∈ X (M). By the above argument, we
get that σ is constant. By (42), X is KV, and using (44) we get ω = 0. The above reduces (43)
to (41), and therefore, g is ∗-Ricci flat (follows from (12)) and of constant scalar curvature
4n2.

4. Conclusions

A modern geometrical concept of an almost ∗-RS can be important in differential
geometry and theoretical physics. We study the interaction of this structure on a smooth
manifold with the well-known Sasakian structure and prove some results of geometric
classification. Theorem 1 contains a condition for a complete SM equipped with an almost
∗-RS to be a unit sphere. Theorems 2–5 having local character, contain conditions, ensuring
that an SM equipped with an almost ∗-RS structure is a ∗-RS, e.g., a ∗-EM. Using the fact
that an almost ∗-Ricci tensor on an SM can be written as (12), an almost ∗-RS reduces to the
form (13), which is less general than the almost η-RS equation for an SM:

1
2

£X g + Ricg +ω g + δ η ⊗ η = 0. (45)



Fractal Fract. 2023, 7, 156 10 of 11

In connection with the above, the following question arises: “are our Theorems 1–5
true under the condition (45) instead of (13), where ω and δ are arbitrary smooth functions
on M?”
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