

Article Characteristics of Sasakian Manifolds Admitting Almost *-Ricci Solitons

Vladimir Rovenski ^{1,*} and Dhriti Sundar Patra²

- ¹ Department of Mathematics, University of Haifa, Mount Carmel, Haifa 3498838, Israel
- ² Department of Mathematics, Indian Institute of Technology, Hyderabad 502285, India
- * Correspondence: vrovenski@univ.haifa.ac.il

Abstract: This article presents some results of a geometric classification of Sasakian manifolds (SM) that admit an almost *-Ricci soliton (RS) structure (g, ω , X). First, we show that a complete SM equipped with an almost *-RS with $\omega \neq$ const is a unit sphere. Then we prove that if an SM has an almost *-RS structure, whose potential vector is a Jacobi vector field on the integral curves of the characteristic vector field, then the manifold is a null or positive SM. Finally, we characterize those SM represented as almost *-RS, which are *-RS, *-Einstein or *-Ricci flat.

Keywords: sasakian manifold; (almost) *-Ricci soliton; *-Einstein manifold; infinitesimal contact transformation; conformal vector field

MSC: 53C25; 53C21; 53D15

1. Introduction

Nonlinear systems that support solitons can generate self-similarity and fractals on successively smaller scales. Very often, the solitons of a given system are all self-similar to each other, see [1].

Several authors study Ricci solitons (RS) in contact metric geometry, where Sasakian manifolds (SM) are especially important. SM, which are odd-dimensional analogues of K'ahler manifolds, are used to build geometrical examples, e.g., manifolds of special holonomy, Einstein manifolds (EM), K'ahler manifolds and orbifolds. The geometry of SM (in particular, η -EM and Sasaki–Einstein manifolds) attracts much attention from mathematicians. We refer the reader to [2–4] for the latest developments in the theory of these manifolds.

Many tools for K'ahler manifolds have analogues for contact manifolds, among them the *-Ricci tensor, introduced in [5] for almost Hermitian manifolds. In [6], the *-Ricci tensor was applied to a real hypersurface in a non-flat complex space form. Namely, for an almost contact manifold $M^{2n+1}(\varphi, \zeta, \eta, g)$ and any vector fields Y_1, Y_2, Y_3 on M^{2n+1} , we get

$$\operatorname{Ric}_{g}^{*}(Y_{1}, Y_{2}) = \frac{1}{2}\operatorname{trace}_{g}\left\{Y_{3} \to R(Y_{1}, \varphi Y_{2})\varphi Y_{3}\right\}.$$
(1)

If $\operatorname{Ric}_{g}^{*}$ vanishes identically then such M^{2n+1} is called *-*Ricci flat*. A *-*RS* structure has been introduced in [7], using $\operatorname{Ric}_{g}^{*}$ instead of the Ricci tensor in the equation of RS,

$$\pounds_X g + 2\operatorname{Ric}_g^* = 2\,\omega\,g. \tag{2}$$

Here, *f* is the Lie derivative. If ω in (2) belongs to $C^{\infty}(M)$ and is not a constant, then we get an *almost* *-*RS*, the triple (g, ω, X) . An almost *-RS is *shrinking* for $\omega > 0$, *steady* for $\omega = 0$ and *expanding* for $\omega < 0$. Observe that a *-RS is *-*EM* (i.e., the *-Ricci tensor and the metric tensor are homothetic) if X is a Killing vector field (KVF), see [8]. Thus, it is a generalization of a *-EM. In particular, if $X = \nabla f$ (the gradient of $f \in C^{\infty}(M)$) in (2),

Citation: Rovenski, V.; Patra, D.S. Characteristics of Sasakian Manifolds Admitting Almost *-Ricci Solitons. *Fractal Fract.* **2023**, *7*, 156. https:// doi.org/10.3390/fractalfract7020156

Academic Editor: Carlo Cattani

Received: 14 December 2022 Revised: 1 February 2023 Accepted: 2 February 2023 Published: 4 February 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). then we obtain a *gradient almost* *-*RS*. Some generalizations of RS were studied by several authors, see [9–15].

Ghosh-Patra [16] first studied *-RS and gradient almost *-RS on a contact metric manifold, in particular, on an SM and (k, μ) -contact manifolds. Later on, *-RS were studied on almost contact manifolds in [15,17–20]. Wang [20] proved that "if the metric of a Kenmotsu 3-manifold represents a *-RS, then the manifold is locally the hyperbolic space $\mathbb{H}^3(-1)$ ", and it was proved in [18] that "if a non-Kenmotsu (k, μ) '-almost Kenmotsu manifold has a *-RS structure, then it is locally isometric to $\mathbb{H}^{n+1}(-4) \times \mathbb{R}$ under some restrictions".

There is a natural question: "*under what conditions a (gradient) almost RS is a unit sphere*"? Several affirmative answers to this question on Riemannian and contact metric manifolds, are given in [9,10,12–14,21,22]. An almost *-RS is a generalization of *-RS and *-EM; thus we ask a question: "under what conditions a (gradient) almost *-RS is a unit sphere?"

In [16], they answered this question by showing that "*if a complete SM admits a gradient almost *-RS, then it is a unit sphere*". Here, we consider non-gradient almost *-RS in the case of SM, and we are looking for conditions under which SM having an almost *-RS structure is a unit sphere. Our main achievement is the following.

Theorem 1. If a complete SM $M^{2n+1}(\varphi, \zeta, \eta, g)$ of dimension greater than three has an almost *-RS structure (g, ω, X) with $\omega \neq \text{const}$, then it is the unit sphere \mathbb{S}^{2n+1} .

The following question arises: "under what conditions an almost RS is an RS, or, EM"? Several answers to this question can be found in [14,22–24]. An almost *-RS generalizes *-RS and *-EM; so the following question arises:

"when an almost *-RS is a *-RS, for example, an *-EM?"

In [16], they found such a condition on an SM, and this question on a Kenmotsu manifold was studied in [15]. In this regard, we are interested in characterizing those SM represented as almost *-RS, which are *-RS or are *-EM. In the following theorem, we assume that the potential vector field is a Jacobi vector field on the integral curves of the Reeb vector field.

Theorem 2. If an SM $M^{2n+1}(\varphi, \zeta, \eta, g)$ has an almost *-RS structure (g, ω, X) such that X is a Jacobi field on the ζ -integral curves, then (g, ω, X) is a *-RS on M.

Now, we recall some definitions, e.g., [3]. A SM $M^{2n+1}(\varphi, \zeta, \eta, g)$ is an η -EM if

$$\operatorname{Ric}_{g} = \alpha_{1} g + \alpha_{2} \eta \otimes \eta,$$

where functions α_1 and α_2 belong to $C^{\infty}(M)$. For *K*-contact manifolds (for example, SM) of dimension ≥ 4 , α_1 , α_2 are real constants, see [25], thus, the scalar curvature is constant. An η -Einstein SM is a *null-SM* when $\alpha_1 = -2$ and $\alpha_2 = 2n + 2$, and is a *positive-SM* when $\alpha_1 > -2$, see [3]. Using ([16], Theorem 8), we get the following consequence of Theorem 2.

Corollary 1. If an SM $M^{2n+1}(\varphi, \zeta, \eta, g)$ has an almost *-RS structure (g, ω, X) such that X is a Jacobi vector field on the ζ -integral curves, then M is positive SM and X is KVF (and g is *-EM), or M is null-SM and φ is invariant under X.

Remark 1. Observe from [24] that if an SM has an almost RS structure, whose potential field is a Jacobi vector field on the ζ -integral curves, then the manifold is null-SM with the expanding RS.

A vector field *Y* on a contact manifold (M, η) that preserves the contact form η is called an *infinitesimal contact transformation*, see [26,27], i.e.,

$$\mathcal{L}_{Y}\eta = \nu \,\eta,\tag{3}$$

Theorem 3. Let an SM represent an almost *-RS (g, ω, X) such that X is an infinitesimal contact transformation. Then X leaves φ invariant, and the manifold is η -EM of scalar curvature $(\omega + 4n)n$.

Assuming compactness we get one more sufficient condition for g to be *-Ricci flat (e.g., *-EM).

Theorem 4. Let a compact SM $M^{2n+1}(\varphi, \zeta, \eta, g)$ admit an almost *-RS (g, ω, X) such that X is an infinitesimal contact transformation. Then the soliton is steady $(\omega = 0)$, X is an infinitesimal automorphism, and g is *-Ricci flat of scalar curvature $4n^2$.

Finally, we show that the property "potential vector field and the characteristic vector field are parallel" provides "*-Ricci flat" (e.g., *-EM).

Theorem 5. Let an SM $M^{2n+1}(\varphi, \zeta, \eta, g)$ admit an almost *-RS (g, ω, X) such that X is parallel to ζ . Then the soliton is steady ($\omega = 0$), V is KVF, and g is *-Ricci flat of scalar curvature $4n^2$.

Remark 2. Observe from [14] that if a compact SM has an almost RS structure (g, ω, X) such that X is an infinitesimal contact transformation, then the soliton is shrinking $(\omega = 2n)$, X is strict and leaves φ invariant, and the manifold is EM of scalar curvature 2n(2n + 1). By Theorem 4, the soliton is steady $(\omega = 0)$, X is strict and leaves φ , ζ and η invariant, and the manifold is *-EM of scalar curvature $4n^2$. In addition, note that an SM considered as an RS or an almost RS with X parallel to ζ , is an EM of scalar curvature 2n(2n + 1), and X is a KVF, see [28].

Within the framework of Theorems 3–5, we not only find sufficient conditions for *-EM, but also characterize the structural tensor fields and the potential vector field.

2. Preliminaries

Here, we recall some properties of SM, see [2,26]. We suppose that all manifolds are smooth and connected. The curvature tensor *R* on a Riemannian manifold (M, g) is given by

$$R(Y_1, Y_2) = [\nabla_{Y_1}, \nabla_{Y_2}] - \nabla_{[Y_1, Y_2]}, \quad Y_1, Y_2 \in \mathcal{X}(M),$$
(4)

where ∇ is the Levi-Civita connection and $\mathcal{X}(M)$ is the space of vector fields on *M*. They define the Ricci operator *Q* by

$$g(QY_1, Y_2) = \operatorname{Ric}_{g}(Y_1, Y_2) = \operatorname{trace}_{g} \{Y_3 \to R(Y_3, Y_1)Y_2\}, \quad Y_1, Y_2, Y_3 \in \mathcal{X}(M)$$

is a symmetric (1, 1)-tensor. Then $r = \text{trace}_g Q$ is the scalar curvature. We get the following formula (follows from twice contracted second Bianchi identity, see, e.g., [29]):

$$\frac{1}{2}g(Y_1, \nabla r) = (\operatorname{div} Q)(Y_1) = \sum_i g((\nabla_{E_i} Q)Y_1, E_i), \quad Y_1 \in \mathcal{X}(M),$$
(5)

where $\{E_i\}$ is any local orthonormal basis on *M*.

For the Lie derivative of $f \in C^{\infty}(M)$ along $Y_1 \in \mathcal{X}(M)$ we have

$$\pounds_{Y_1} f = Y_1(f) = g(Y_1, \nabla f),$$

where the Hessian of f is defined by

$$\operatorname{Hess}_{f}(Y_{1},Y_{2}) = \nabla^{2} f(Y_{1},Y_{2}) = (\nabla_{Y_{1}} \nabla f) Y_{2} = Y_{1} Y_{2}(f) - (\nabla_{Y_{1}} Y_{2})(f), \quad Y_{1},Y_{2} \in \mathcal{X}(M).$$

The hessian Hess_f is symmetric and $g(\nabla_{Y_1} \nabla f, Y_2) = g(\nabla_{Y_2} \nabla f, Y_1)$ is true, so it is a section of $T^*M \otimes T^*M$. A vector field Y on (M, g) is conformal if

$$\mathcal{L}_Y g = f g$$

for some $f \in C^{\infty}(M)$. Such *Y* is called homothetic if f = constant, and *Y* is said to be KVF if f = 0.

A manifold M^{2n+1} is a contact manifold if $\eta \wedge (d\eta)^n \neq 0$ for some global 1-form η . In this case, ζ satisfying $d\eta(\zeta, \cdot) = 0$ and $\eta(\zeta) = 1$ is called a characteristic vector field. Polarization of $d\eta$ on $\mathcal{D}_{\equiv} = \ker \eta$ allows to find a (1,1)-tensor φ and a Riemannian structure g satisfying

$$\varphi^2 = -id_{TM} + \eta \otimes \zeta, \quad \eta = g(\zeta, \cdot), \tag{6}$$

$$d\eta(\cdot, \cdot) = g(\cdot, \varphi \cdot). \tag{7}$$

They call such $M^{2n+1}(\varphi,\zeta,\eta,g)$ a contact metric manifold with associated metric *g*. By (6), we get

$$\varphi(\zeta) = 0$$
, $\eta \circ \varphi = 0$, and $\operatorname{rank}(\varphi) = 2n$.

Further, a contact metric manifold is called SM if the following condition is valid, see [3,26]:

$$[\varphi Y_1, \varphi Y_2] = -2 d\eta (Y_1, Y_2) \zeta, \quad Y_1, Y_2 \in \mathcal{X}(M).$$

The curvature tensor of an SM satisfies

$$R(Y_1, Y_2)\zeta = \eta(Y_2)Y_1 - \eta(Y_1)Y_2, \quad Y_1, Y_2 \in \mathcal{X}(M).$$
(8)

Recall that if ζ is KVF, then *M* is called a *K*-contact manifold. A SM is *K*-contact, the converse is valid in dimension 3 only, see ([26], p. 87). SM satisfy the following, see ([26], p. 113):

$$\nabla_{Y_1}\zeta = -\varphi Y_1, \quad Y_1 \in \mathcal{X}(M), \tag{9}$$

$$Q\zeta = 2\,n\,\zeta.\tag{10}$$

According to ([16], Lemma 2.1):

$$\nabla_{\zeta} Q = Q \varphi - \varphi Q;$$

therefore, $\nabla_{\zeta} Q = 0$, as φ and the Ricci operator commute on an SM, see [26]. Using (9) we find the derivative of (10) in the direction of $Y_1 \in \mathcal{X}(M)$,

$$(\nabla_{Y_1}Q)\zeta = Q\varphi Y_1 - 2n\,\varphi Y_1. \tag{11}$$

The *-Ricci tensor $\operatorname{Ric}_{g}^{*}$ on an SM has the view (see [16], Lemma 5):

$$\operatorname{Ric}_{g}^{*}(Y_{1}, Y_{2}) = \operatorname{Ric}_{g}(Y_{1}, Y_{2}) - (2n-1)g(Y_{1}, Y_{2}) - \eta(Y_{1})\eta(Y_{2}), \quad Y_{1}, Y_{2} \in \mathcal{X}(M).$$
(12)

Thus, we can write the *-RS structure (2) on an SM as

$$(\pounds_V g)(Y_1, Y_2) + 2\operatorname{Ric}_g(Y_1, Y_2) = 2(\omega + 2n - 1)g(Y_1, Y_2) + 2\eta(Y_1)\eta(Y_2)$$
(13)

for all $Y_1, Y_2 \in \mathcal{X}(M)$.

Remark 3. Contracting the derivative of (8) using a local orthonormal basis $\{E_i\}_{1 \le i \le 2n+1}$ on M and using (9), we get the following:

$$(\operatorname{div} R)(Y_1, Y_2)\zeta - g(R(Y_1, Y_2)\varphi E_i, E_i) = -2g(\varphi Y_1, Y_2).$$

Contracting the second Bianchi identity, they reduce the above equation to the following:

$$g((\nabla_{Y_1}Q)Y_2 - (\nabla_{Y_2}Q)Y_1, \zeta) - g(R(Y_1, Y_2)\varphi E_i, E_i) = -2g(\varphi Y_1, Y_2).$$
(14)

Using (11), from (14) we obtain

$$g(R(Y_1, Y_2)\varphi E_i, E_i) = g(Q\varphi Y_1, Y_2) + g(\varphi QY_1, Y_2) - 2(2n-1)g(\varphi Y_1, Y_2)$$

Replacing Y_2 by φY_2 in the preceding equation and using the definition (1), we represent the *-Ricci tensor of an SM in the form (12).

To prove Theorems 1 and 2, we need the following three results.

Proposition 1. If an SM admits an almost *-RS structure, then we get the following:

$$(\pounds_X \nabla)(Y_1, \zeta) + 2 Q \varphi Y_1 = 2(2n-1) \varphi Y_1 + Y_1(\omega)\zeta + \zeta(\omega)Y_1 - \eta(Y_1) \nabla \omega, \quad Y_1 \in \mathcal{X}(M).$$
(15)

Proof. Using the derivative of (13) for an arbitrary $Y_3 \in \mathcal{X}(M)$ and (9), gives

$$(\nabla_{Y_3} \pounds_X g)(Y_1, Y_2) + 2 (\nabla_{Y_3} \operatorname{Ric}_g)(Y_1, Y_2) = 2 Y_3(\omega) g(Y_1, Y_2) - 2 \eta(Y_1) g(Y_2, \varphi Y_3) - 2 \eta(Y_2) g(Y_1, \varphi Y_3)$$
(16)

for $Y_1, Y_2 \in \mathcal{X}(M)$. Following Yano ([30] p. 23), for $Y_1, Y_2, Y_3 \in \mathcal{X}(M)$ we write

$$(\pounds_X \nabla_{Y_3} g - \nabla_{Y_3} \pounds_X g - \nabla_{[X,Y_3]} g)(Y_1,Y_2) = -g((\pounds_X \nabla)(Y_3,Y_1),Y_2) - g((\pounds_X \nabla)(Y_3,Y_2),Y_1).$$

Inserting (16) in the above relation and using $\nabla g = 0$ yields the following:

$$g((\pounds_X \nabla)(Y_3, Y_1), Y_2) + g((\pounds_X \nabla)(Y_3, Y_2), Y_1) + 2(\nabla_{Y_3} \operatorname{Ric}_g)(Y_1, Y_2) = 2\{Y_3(\omega)g(Y_1, Y_2) - \eta(Y_1)g(Y_2, \varphi Y_3) - \eta(Y_2)g(Y_1, \varphi Y_3)\}.$$

Due to the symmetry $(\pounds_X \nabla)(Y_1, Y_2) = (\pounds_X \nabla)(Y_2, Y_1)$, using cyclical permutations of Y_1, Y_2, Y_3 in the preceding equation, we get

$$g((\pounds_X \nabla)(Y_1, Y_2), Y_3) = (\nabla_{Y_3} \operatorname{Ric}_g)(Y_1, Y_2) - (\nabla_{Y_1} \operatorname{Ric}_g)(Y_2, Y_3) - (\nabla_{Y_2} \operatorname{Ric}_g)(Y_3, Y_1) + Y_1(\omega) g(Y_2, Y_3) + Y_2(\omega) g(Y_3, Y_1) - Y_3(\omega) g(Y_1, Y_2) - 2 \eta(Y_2) g(\varphi Y_1, Y_3) - 2 \eta(Y_1) g(\varphi Y_2, Y_3).$$
(17)

Since the Ricci operator *Q* is self-adjoint, using $\nabla_{\zeta} Q = 0$ and (11), and replacing Y_2 by ζ in (17), we get (15). \Box

Proposition 2. Let an SM represent an almost *-RS and ζ leave ω invariant. Then we get

$$R(Y_{1}, Y_{2})\nabla\omega - g(R(Y_{1}, Y_{2})\nabla\omega, \zeta)\zeta = 4\{(\nabla_{Y_{1}}Q)Y_{2} - (\nabla_{Y_{2}}Q)Y_{1}\} - 2\{Y_{1}(\omega)Y_{2} - Y_{2}(\omega)Y_{1}\} + 2\{Y_{1}(\omega)\eta(Y_{2})\zeta - Y_{2}(\omega)\eta(Y_{1})\zeta\} + 2(\omega - 2)\{2g(Y_{1}, \varphi Y_{2})\zeta + \eta(Y_{1})\varphi Y_{2} - \eta(Y_{2})\varphi Y_{1}\} + \eta(Y_{2})\nabla_{Y_{1}}\nabla_{\zeta}\nabla\omega - \eta(Y_{1})\nabla_{Y_{2}}\nabla_{\zeta}\nabla\omega + 2g(\varphi Y_{2}, Y_{1})\nabla_{\zeta}\nabla\omega + g(\varphi Y_{2}, \nabla_{Y_{1}}\nabla\omega)\zeta - g(\varphi Y_{1}, \nabla_{Y_{2}}\nabla\omega)\zeta + g(\zeta, \nabla_{Y_{1}}\nabla\omega)\varphi Y_{2} - g(\zeta, \nabla_{Y_{2}}\nabla\omega)\varphi Y_{1}, \quad Y_{1}, Y_{2} \in \mathcal{X}(M).$$
(18)

Proof. Applying the Lie derivative for $R(Y_1, \zeta)\zeta = Y_1 - \eta(Y_1)\zeta$ for all $Y_1 \in \mathcal{X}(M)$ (follows from (8)) along X and using (8), yields

$$(\pounds_X R)(Y_1,\zeta)\zeta + R(Y_1,\zeta)\pounds_X\zeta + \eta(\pounds_X\zeta)Y_1 + (\pounds_Xg)(Y_1,\zeta)\zeta + g(Y_1,\pounds_X\zeta)\zeta = 0.$$
(19)

Replacing (Y_1, Y_2) by (Y_1, ζ) in (13) and using (10), we acquire the following:

$$(\pounds_X g)(Y_1, \zeta) = 2\omega \eta(Y_1).$$

Plugging it into the Lie derivative of $\eta(Y_1) = g(Y_1, \zeta)$ and $\eta(\zeta) = 1$, we find $\eta(\pounds_X \zeta) = -\omega$ and $(\pounds_X \eta)(\zeta) = \omega$. Thus, in view of (8), Equation (19) gives us

$$(\pounds_X R)(Y_1,\zeta)\zeta = 2\omega\{Y_1 - \eta(Y_1)\zeta\}, \quad Y_1 \in \mathcal{X}(M).$$

$$(20)$$

By conditions, $\zeta(\omega) = 0$ is valid, thus (15) reduces to the following:

$$(\pounds_X \nabla)(Y_1, \zeta) + 2 Q \varphi Y_1 = 2(2n-1) \varphi Y_1 + Y_1(\omega)\zeta - \eta(Y_1) \nabla \omega, \quad Y_1 \in \mathcal{X}(M).$$
(21)

Using ζ -derivative of (21), gives

$$(\nabla_{\zeta} \pounds_X \nabla)(Y_1, \zeta) = g(Y_1, \nabla_{\zeta} \nabla \omega)\zeta - \eta(Y_1) \nabla_{\zeta} \nabla \omega,$$
(22)

where equalities $\nabla_{\zeta} Q = \nabla_{\zeta} \zeta = \nabla_{\zeta} \varphi = 0$ for an SM were used. On the other hand, using $Y_1 = \zeta$ in (21), then differentiating along Y_1 and using (9) and the symmetry of $\pounds_X \nabla$, we get

$$(\nabla_{Y_1}(\pounds_X \nabla))(\zeta, \zeta) = 2\,(\pounds_X \nabla)(\varphi Y_1, \zeta) - \nabla_{Y_1} \nabla \omega.$$
⁽²³⁾

Next, differentiating $g(\zeta, \nabla \omega) = 0$ along $Y_1 \in \mathcal{X}(M)$ and using (6), gives $(\varphi Y_1)(\omega) = g(\zeta, \nabla_{Y_1} \nabla \omega)$; therefore, it suffices to combine (6), (10), (21) and (23) to arrive at the result

$$(\nabla_{Y_1} \pounds_X \nabla)(\zeta, \zeta) = 4 Q Y_1 - 4(2n-1)Y_1 - 4 \eta(Y_1)\zeta + 2g(\zeta, \nabla_{Y_1} \nabla \omega)\zeta - \nabla_{Y_1} \nabla \omega.$$
(24)

We need the following commutation result, see ([30], p. 23):

$$(\pounds_X R)(Y_1, Y_2)Y_3 = (\nabla_{Y_1} \pounds_X \nabla)(Y_2, Y_3) - (\nabla_{Y_2} \pounds_X \nabla)(Y_1, Y_3).$$
(25)

Next, replacing both Y_2 and Y_3 by ζ in (25) and then plugging the values of $(\pounds_X R)(Y_1, \zeta)\zeta$, $(\nabla_{\zeta} \pounds_X \nabla)(Y_1, \zeta)$ and $(\nabla_{Y_1} \pounds_X \nabla)(\zeta, \zeta)$ from (20), (22) and (24), respectively, we get

$$\nabla_{Y_1} \nabla \omega = 4 Q Y_1 - 2 \{ \omega + 2(2n-1) \} Y_1 + 2(\omega-2) \eta(Y_1) \zeta + g(\zeta, \nabla_X \nabla \omega) \zeta + \eta(Y_1) \nabla_\zeta \nabla \omega$$
⁽²⁶⁾

for $Y_1 \in \mathcal{X}(M)$. Using (9) in the Y_2 -derivative of (26), we acquire

$$\begin{split} \nabla_{Y_2} \nabla_{Y_1} \nabla \omega &= 4 \big\{ (\nabla_{Y_2} Q) Y_1 + Q(\nabla_{Y_2} Y_1) \big\} - 2Y_2(\omega) \big\{ Y_1 - \eta(Y_1)\zeta \big\} - 2 \big\{ \omega + 2(2n-1) \big\} \nabla_{Y_2} Y_1 \\ &+ 2(\omega-2) \big\{ \eta(\nabla_{Y_2} Y_1)\zeta - g(Y_1, \varphi Y_2)\zeta - \eta(Y_1)\varphi Y_2 \big\} + \big\{ \eta(\nabla_{Y_2} Y_1) \\ &- g(Y_1, \varphi Y_2) \big\} \nabla_{\zeta} \nabla \omega + \eta(Y_1) \nabla_{Y_2} \nabla_{\zeta} \nabla \omega - g(\varphi Y_2, \nabla_{Y_1} \nabla \omega)\zeta \\ &+ g(\zeta, \nabla_{Y_2} \nabla_{Y_1} \nabla \omega)\zeta - g(\zeta, \nabla_{Y_1} \nabla \omega)\varphi Y_2. \end{split}$$

Since Hess_{ω} is symmetric and φ is skew-symmetric, using (26) and the above equation in (4) completes the proof of (18). \Box

Recall that the contact metric structure commutes with the Ricci operator, i.e., $Q\varphi = \varphi Q$, e.g., [26]. Its covariant derivative and (5) provide the following.

Lemma 1 (see [12]). *For an SM M and all* $Y_1 \in \mathcal{X}(M)$ *, we have*

(i)
$$\sum_{i=1}^{2n+1} g((\nabla_{\varphi Y_1} Q) \varphi E_i, E_i) = 0$$
, (ii) $\sum_{i=1}^{2n+1} g((\nabla_{\varphi E_i} Q) \varphi Y_1, E_i) = -\frac{1}{2} Y_1(r)$,

where $\{E_i\}_{1 \le i \le 2n+1}$ is a local orthonormal basis on M.

3. Proof of Results

Proof of Theorem 1. Since the characteristic vector field is KVF, $\pounds_{\zeta} g = 0 = \pounds_{\zeta}$ Ric_g is valid. Applying this to the Lie derivative of (13) along ζ , and using $\pounds_{Y_1} \pounds_{Y_2} g - \pounds_{Y_2} \pounds_{Y_1} g = \pounds_{[Y_1, Y_2]} g$, e.g., [30], we get

$$\pounds_{[X,\zeta]} g = -2\zeta(\omega) g.$$
⁽²⁷⁾

By (27), $[X, \zeta]$ is a conformal vector field. This gives us the following alternatives: (I) $[X, \zeta]$ is non-homothetic, (II) $[X, \zeta]$ is homothetic.

Okumura [31] proved that "if a complete SM of dimension > 3 has a non-Killing conformal vector field, then it is a unit sphere". Applying this theorem for (I), we conclude that (M, g) is a unit sphere.

We will finish the proof by showing a contradiction for case (II). Sharma [32] proved the following: "*a homothetic vector field on an SM (more generally, K-contact manifold) is necessarily a KVF*". So, (27) implies that ζ leaves ω invariant. Thus, (18) holds. Contracting it over Y_1 and then using (5), (8), we obtain

$$\operatorname{Ric}_{g}(Y_{2},\nabla\omega) = 4 g(\varphi Y_{2},\nabla_{\zeta}\nabla\omega) + \eta(Y_{2}) \operatorname{div}(\nabla_{\zeta}\nabla\omega) - g(\zeta,\nabla_{Y_{2}}\nabla_{\zeta}\nabla\omega) - 2 g(Y_{2},\nabla r) + 2(2n-1) g(Y_{2},\nabla\omega),$$
(28)

where we used trace_g $\varphi = 0 = \varphi \zeta$, the skew-symmetry of φ and symmetry of Hess_{ω}. Differentiating the equality $g(\zeta, \nabla_{\zeta} \nabla \omega) = 0$ along $Y_2 \in \mathcal{X}(M)$ and using (9), gives

$$g(\zeta, \nabla_{Y_2} \nabla_{\zeta} \nabla \omega) = g(\varphi Y_2, \nabla_{\zeta} \nabla \omega).$$

Thus, (28) can be rewritten as

$$\operatorname{Ric}_{g}(Y_{2},\nabla\omega) = 3 g(\varphi Y_{2},\nabla_{\zeta}\nabla\omega) + \eta(Y_{2}) \operatorname{div}(\nabla_{\zeta}\nabla\omega) - 2 Y_{2}(r) + 2(2n-1) Y_{2}(\omega)$$
(29)

for all $Y_2 \in \mathcal{X}(M)$. Next, recall the following result for SM, see [26]:

$$R(\varphi Y_2, \varphi Y_1)Y_3 = R(Y_2, Y_1)Y_3 + g(Y_2, Y_3)Y_1 - g(Y_1, Y_3)Y_2 - g(Y_2, Y_3)Y_1 + g(Y_1, Y_3)Y_2$$

for all $Y_1, Y_2, Y_3 \in \mathcal{X}(M)$. Substituting $Y_1 = \varphi Y_1$ and $Y_2 = \varphi Y_2$ in (18) and using the last formula, in view of (6), $\varphi \zeta = 0$ and the skew-symmetry of φ , we obtain

$$R(Y_{1}, Y_{2})\nabla\omega - g(R(Y_{1}, Y_{2})\nabla\omega, \zeta)\zeta = 4 \left\{ (\nabla_{\varphi Y_{1}}Q)\varphi Y_{2} - (\nabla_{\varphi Y_{2}}Q)\varphi Y_{1} \right\} + Y_{2}(\omega) \left\{ 2Y_{1} - \eta(Y_{1})\zeta \right\} - Y_{1}(\omega) \left\{ 2Y_{2} - \eta(Y_{2})\zeta \right\} + 4(\omega - 2) g(Y_{1}, Y_{2})\zeta + 2 g(Y_{1}, Y_{2})\nabla_{\zeta}\nabla\omega + 2 \eta(Y_{2}) g(\zeta, \nabla_{Y_{1}}\nabla\omega)\zeta - 2 \eta(Y_{1}) g(\zeta, \nabla_{Y_{2}}\nabla\omega)\zeta - g(Y_{2}, \nabla_{Y_{1}}\nabla\omega)\zeta - g(Y_{1}, \nabla_{Y_{2}}\nabla\omega)\zeta + g(\zeta, \nabla_{Y_{2}}\nabla\omega)Y_{1} - g(\zeta, \nabla_{Y_{1}}\nabla\omega)Y_{2}.$$
(30)

On the other hand, contracting (30) over Y_1 and applying (8), (5), (29) and Lemma 1, we find

$$\eta(Y_2)\operatorname{div}(\nabla_{\zeta}\nabla\omega) + 2(n-1)\{Y_2(\omega) - g(\varphi Y_2, \nabla_{\zeta}\nabla\omega)\} = 0, \tag{31}$$

where we have used the symmetry of Hess_{ω} and that ζ leaves ω invariant. Next, replacing Y_2 by φY_2 in (31), noting that (6) and using $g(\zeta, \nabla_{\zeta} \nabla \omega) = 0$, we acquire

$$2(n-1)\{g(\varphi Y_2, \nabla \omega) + g(Y_2, \nabla_{\zeta} \nabla \omega)\} = 0, \quad Y_2 \in \mathcal{X}(M).$$
(32)

Furthermore, differentiating $g(\zeta, \nabla \omega) = 0$ along $Y_2 \in \mathcal{X}(M)$ and using (9), we achieve

$$g(\zeta, \nabla_{Y_2} \nabla \omega) = g(\varphi Y_2, \nabla \omega).$$

Thus, (32) for n > 1 gives us $g(\varphi Y_2, \nabla \omega) = 0$; consequently, $\nabla \omega = 0$. Hence, ω is constant – a contradiction with the conditions of the theorem. \Box

Proof of Theorem 2. Applying Proposition 1 to the well-known formula:

$$\nabla_{Y_1}\nabla_{Y_2}X - \nabla_{\nabla_{Y_1}Y_2}X - R(Y_1, X)Y_2 = (\pounds_X \nabla)(Y_1, Y_2),$$

see ([30], p. 23), we acquire

$$\nabla_{Y_1}\nabla_{\zeta}X - \nabla_{\nabla_{Y_1}\zeta}X - R(Y_1, X)\zeta = -2Q\varphi Y_1 + 2(2n-1)\varphi Y_1 + Y_1(\omega)\zeta + \zeta(\omega)Y_1 - \eta(Y_1)\nabla\omega.$$
(33)

By conditions, X is a Jacobi vector field on the ζ -integral curves, see [33], i.e.,

$$\nabla_{\zeta}\nabla_{\zeta}X + R(X,\zeta)\zeta = 0.$$

Using $Y_1 = \zeta$ in (33) and $\nabla_{\zeta} \zeta = 0$ (that is a consequence of (9)), we achieve the equality $\nabla \omega = 2\zeta(\omega)\zeta$, or, using the exterior derivative,

$$d\omega = 2\zeta(\omega)\eta$$

Applying exterior derivative, the Poincaré lemma ($d^2 = 0$), and the wedge product with η , we acquire $\zeta(\omega) \eta \wedge d\eta = 0$; thus, $\zeta(\omega) = 0$, as $\eta \wedge d\eta$ is nowhere zero on a contact manifold. Thus, $d\omega = 0$, i.e., $\omega = constant$. \Box

Corollary 4 follows from ([16], Theorem 8) and our Theorem 2.

Proof of Theorem 3. Using $d \circ \pounds_X = \pounds_X \circ d$ (*d* commutes with the Lie derivative) and applying the operator *d* to (3), gives

$$(\pounds_X d\eta)(Y_1, Y_2) = \frac{1}{2} \Big\{ Y_1(\nu) \,\eta(Y_2) - Y_2(\nu) \,\eta(Y_1) \Big\} + \nu \,d\eta(Y_1, Y_2) \tag{34}$$

for a function $\nu \in C^{\infty}(M)$ and any $Y_1, Y_2 \in \mathcal{X}(M)$. Applying the Lie derivative of (7) in the *X*-direction and using (2), (3) and (34), we obtain

$$2(\pounds_X \varphi)(Y_1) + 2(2\omega - \nu + 2(2n-1)) \varphi Y_1 = 4Q\varphi Y_1 + \eta(Y_1) \nabla \nu - Y_1(\nu) \zeta.$$
(35)

From the first equality of (6), for $Y_1 \in \mathcal{X}(M)$ we get

$$(\pounds_X \varphi)(\varphi Y_1) + \varphi(\pounds_X \varphi)(Y_1) = (\pounds_X \eta)(Y_1)\zeta + \eta(Y_1)\pounds_X \zeta.$$
(36)

As a result of (10), *-RS Equation (2) gives us

$$(\pounds_X g)(Y_1, \zeta) = 2\omega \eta(Y_1)$$

Taking into account this, as well as (3), it suffices to show that

$$g(\pounds_X \zeta, Y_1) = (\nu - 2\omega) \eta(Y_1). \tag{37}$$

By direct calculation using $\varphi \zeta = 0$ we get $(\mathcal{L}_X \varphi)(\zeta) = 0$; hence, (35) gives $\nabla \nu = \zeta(\nu) \zeta$. Thus, by (9) we get

$$\operatorname{Hess}_{\nu}(Y_{1}, Y_{2}) = Y_{1}(\zeta(\nu)) \eta(Y_{2}) - \zeta(\nu) g(\varphi Y_{1}, Y_{2}).$$
(38)

Since φ is skew-symmetric and Hess_{ν} is symmetric, by (7) and (38), for Y_1, Y_2 orthogonal to ζ we achieve

$$\zeta(\nu)\,d\eta(Y_1,Y_2)=0$$

Thus, $\zeta(\nu) = 0$, as $d\eta$ is nonzero; hence, $\nabla \nu = 0$. Thus, ν is constant. Combining (2), (37) and $\eta(\zeta) = 1$, we get $\nu = \omega$. Substituting this and (10) in (35), gives

$$(\pounds_X \varphi)(\varphi Y_1) = \varphi(\pounds_X \varphi)(Y_1) = -2 QY_1 + (\omega + 2(2n-1))Y_1 - (\omega - 2) \eta(Y_1)\zeta, \quad (39)$$

where the equality $Q\varphi = \varphi Q$ (for an SM) has been used, see ([26], p. 116). Now, by (3), (36), (37), (39) and $\nu = \omega$, we obtain the relation

$$2\operatorname{Ric}_{g} = (\omega + 2(2n-1))g - (\omega - 2)\eta \otimes \eta.$$
(40)

Hence, (M, g) is an η -EM of scalar curvature $n(\omega + 4n)$. Substituting (40) into (35), we find $\mathcal{E}_X \varphi = 0$; thus, *X* leaves φ invariant. \Box

Proof of Theorem 4. The volume form Ω on a contact metric manifold satisfies $\Omega = \eta \land (d\eta)^n \neq 0$; therefore, its Lie derivative in the *X*-direction and (3) give

$$\pounds_X \Omega = (n+1)\nu \,\Omega.$$

Proceeding, we obtain the equality $\mathcal{L}_X \Omega = (\operatorname{div} X)\Omega$, from which we deduce $\operatorname{div} X = (n+1)\nu$. Applying the Divergence theorem (for compact *M*), this gives $\nu = 0$; consequently, $\omega = 0$ by the proof of Theorem 3. Thus, (3) and (37), respectively, follows from the condition that *X* leaves η and ζ invariant. Moreover, Equation (40) becomes

$$\operatorname{Ric}_{g} = (2n-1)g + \eta \otimes \eta. \tag{41}$$

Thus, from (12) we conclude that (M, g) is *-Ricci flat of zero *-scalar curvature r^* . Using (2), we find that X is KVF. Applying Theorem 3, completes the proof.

Proof of Theorem 5. By conditions, $X = \sigma \zeta$, where σ is a non-zero smooth function. By the skew-symmetry of φ and (9), we obtain

$$(\pounds_X g)(Y_1, Y_2) = g(\nabla_{Y_1} X, Y_2) + g(\nabla_X Y_2, Y_1) = Y_1(\sigma)\eta(Y_2) + Y_2(\sigma)\eta(Y_1).$$
(42)

Thus, (13) becomes

$$Y_1(\sigma)\eta(Y_2) + Y_2(\sigma)\eta(Y_1) + 2\operatorname{Ric}_g(Y_1, Y_2) = 2(\omega + 2n - 1)g(Y_1, Y_2) + 2\eta(Y_1)\eta(Y_2).$$
(43)

Using $Y_2 = \zeta$ in (43) and (10), yields

$$Y_1(\sigma) = (2\omega - \zeta(\sigma))\eta(Y_1), \quad Y_1 \in \mathcal{X}(M).$$
(44)

Again, using $Y_1 = \zeta$ and $Y_2 = \zeta$ in (43) and applying (10), we get $\zeta(\sigma) = \omega$; hence, from (44) it follows that $Y_1(\sigma) = \zeta(\sigma) \eta(Y_1)$, for $Y_1 \in \mathcal{X}(M)$. By the above argument, we get that σ is constant. By (42), X is KV, and using (44) we get $\omega = 0$. The above reduces (43) to (41), and therefore, g is *-Ricci flat (follows from (12)) and of constant scalar curvature $4n^2$. \Box

4. Conclusions

A modern geometrical concept of an almost *-RS can be important in differential geometry and theoretical physics. We study the interaction of this structure on a smooth manifold with the well-known Sasakian structure and prove some results of geometric classification. Theorem 1 contains a condition for a complete SM equipped with an almost *-RS to be a unit sphere. Theorems 2–5 having local character, contain conditions, ensuring that an SM equipped with an almost *-RS structure is a *-RS, e.g., a *-EM. Using the fact that an almost *-Ricci tensor on an SM can be written as (12), an almost *-RS reduces to the form (13), which is less general than the almost η -RS equation for an SM:

$$\frac{1}{2}\mathcal{L}_X g + \operatorname{Ric}_g + \omega g + \delta \eta \otimes \eta = 0.$$
(45)

In connection with the above, the following question arises: "are our Theorems 1–5 true under the condition (45) instead of (13), where ω and δ are arbitrary smooth functions on *M*?"

Author Contributions: Conceptualization, V.R. and D.S.P.; methodology, V.R. and D.S.P.; investigation, V.R. and D.S.P.; writing—review and editing, V.R. and D.S.P.; funding acquisition, D.S.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research of Dhriti Sundar Patra was funded by Indian Institute of Technology Hyderabad grant number SG/IITH/F295/2022-23/SG-133.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Soljacic, M.; Sears, S.; Segev, M.; Krylov, D.; Bergman, K. Self-similarity and fractals driven by soliton dynamics. Invited Paper, Special Issue on Solitons. *Photonics Sci. News* **1999**, 5, 3–12.
- 2. Boyer, C.P.; Galicki, K. Sasakian Geometry; Oxford University Press: Oxford, UK, 2008.
- 3. Boyer, C.P.; Galicki, K.; Matzeu, P. On η-Einstein Sasakian geometry. Comm. Math. Phys. 2006, 262, 177–208. [CrossRef]
- 4. Sparks, J. Sasakian–Einstein manifolds. Surveys Diff. Geom. 2011, 16, 265–324. [CrossRef]
- 5. Tachibana, S. On almost-analytic vectors in almost Kählerian manifolds. Tohoku Math. J. 1959, 11, 247–265. [CrossRef]
- 6. Hamada, T. Real hypersurfaces of complex space forms in terms of Ricci *-tensor. Tokyo J. Math. 2002, 25, 473–483. [CrossRef]
- Kaimakamis, G.; Panagiotidou, K. *-Ricci solitons of real hypersurface in non-flat complex space forms. J. Geom. Phys. 2014, 76, 408–413. [CrossRef]
- 8. Ivey, T.A.; Ryan, P.J. The *-Ricci tensor for hypersurfaces in CPⁿ and CHⁿ. Tokyo J. Math. 2011, 34, 445–471.
- 9. Barros, A.; Ribeiro, E., Jr. Some characterizations for compact almost Ricci solitons. *Proc. Amer. Math. Soc.* 2012, 140, 1033–1040. [CrossRef]
- Barros, A.; Batista, R.; Ribeiro, E., Jr. Compact almost Ricci solitons with constant scalar curvature are gradient. *Monatsh. Math.* 2014, 174, 29–39. [CrossRef]
- 11. Crasmareanu, M. A new approach to gradient Ricci solitons and generalizations. Filomat 2018, 32, 3337–3346. [CrossRef]
- Gangadharappa, N.H.; Sharma, R. D-homothetically deformed K-contact Ricci almost solitons. *Results Math.* 2020, 75, 124. [CrossRef]
- Ghosh, A.; Sharma, R. K-contact and Sasakian metrics as Ricci almost solitons. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150047. [CrossRef]
- 14. Patra, D.S. K-contact metrics as Ricci almost solitons. Beitr. Algebra Geom. 2021, 62, 737–744. [CrossRef]
- 15. Patra, D.S.; Ali, A.; Mofarreh, F. Geometry of almost contact metrics as almost *-Ricci solitons. arXiv 2021, arXiv:2101.01459.
- Ghosh, A.; Patra, D.S. *-Ricci Soliton within the frame-work of Sasakian and (κ, μ)-contact manifold. *Int. J. Geom. Methods Mod. Phys.* **2018**, *15*, 1850120. [CrossRef]
- 17. Dai, X. Non-existence of *-Ricci solitons on (*k*, μ)-almost cosymplectic manifolds. *J. Geom.* **2019**, *110*, 30. [CrossRef]
- 18. Dai, X.; Zhao, Y.; De, U.C. *-Ricci soliton on $(k, \mu)'$ -almost Kenmotsu manifolds. Open Math. 2019, 17, 874–882. [CrossRef]
- 19. Venkatesha, V.; Naik, D.M.; Kumara, H.A. *-Ricci solitons and gradient almost *-Ricci solitons on Kenmotsu manifolds. *Math. Slovaca* **2019**, *69*, 1447–1458. [CrossRef]
- 20. Wang, Y. Contact 3-manifolds and *-Ricci soliton. Kodai Math. J. 2020, 43, 256–267. [CrossRef]
- 21. Deshmukh, S. Almost Ricci solitons isometric to spheres. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950073. [CrossRef]
- 22. Deshmukh, S.; Al-Sodais, H. A note on almost Ricci solitons. Anal. Math. Phys. 2020, 10, 75. [CrossRef]
- 23. Ghosh, A. Certain contact metrics as Ricci almost solitons. Results Math. 2014, 65, 81–94. [CrossRef]
- 24. Ghosh, A. Ricci almost solitons and contact geometry. Adv. Geom. 2021, 21, 169–178. [CrossRef]
- 25. Yano, K.; Kon, M. Structures on Manifolds; Series in Pure Math. 3; World Scientific Pub. Co.: Singapore, 1984.
- 26. Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds; Birkhäuser: Boston, MA, USA, 2010.
- 27. Tanno, S. Note on infinitesimal transformations over contact manifolds. Tohoku Math. J. 1962, 14, 416–430. [CrossRef]
- 28. Sharma, R. Certain results on *K*-contact and (κ, μ) -contact manifolds. *J. Geom.* **2008**, *89*, 138–147. [CrossRef]
- 29. Besse, A. Einstein Manifolds; Springer: New York, NY, USA, 2008.
- 30. Yano, K. Integral Formulas in Riemannian Geometry; Marcel Dekker: New York, NY, USA, 1970.
- 31. Okumura, M. On infinitesimal conformal and projective transformations of normal contact spaces. *Tohoku Math. J.* **1962**, *14*, 398–412. [CrossRef]

- 32. Sharma, R. Addendum to our paper "Conformal motion of contact manifolds with characteristic vector field in the *k*-nullity distribution". *Ill. J. Math.* **1998**, *42*, 673–677. [CrossRef]
- Blair, D.E.; Vanhecke, L. Jacobi vector fields and the volume of tubes about curves in a Sasakian space forms. *Annali Mat. Pura App.* 1987, 148, 41–49. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.