Article

Characteristics of Sasakian Manifolds Admitting Almost *-Ricci Solitons

Vladimir Rovenski ${ }^{1, *(\mathbb{D}}$ and Dhriti Sundar Patra ${ }^{2}$

1 Department of Mathematics, University of Haifa, Mount Carmel, Haifa 3498838, Israel
2 Department of Mathematics, Indian Institute of Technology, Hyderabad 502285, India

* Correspondence: vrovenski@univ.haifa.ac.il

Citation: Rovenski, V.; Patra, D.S. Characteristics of Sasakian Manifolds Admitting Almost *-Ricci Solitons. Fractal Fract. 2023, 7, 156. https:// doi.org/10.3390/fractalfract7020156

Academic Editor: Carlo Cattani
Received: 14 December 2022
Revised: 1 February 2023
Accepted: 2 February 2023
Published: 4 February 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

This article presents some results of a geometric classification of Sasakian manifolds (SM) that admit an almost $*$-Ricci soliton (RS) structure (g, ω, X). First, we show that a complete SM equipped with an almost $*$-RS with $\omega \neq$ const is a unit sphere. Then we prove that if an SM has an almost $*$-RS structure, whose potential vector is a Jacobi vector field on the integral curves of the characteristic vector field, then the manifold is a null or positive SM. Finally, we characterize those SM represented as almost $*-\mathrm{RS}$, which are $*-\mathrm{RS}, *$-Einstein or $*$-Ricci flat.

Keywords: sasakian manifold; (almost) *-Ricci soliton; *-Einstein manifold; infinitesimal contact transformation; conformal vector field

MSC: 53C25; 53C21; 53D15

1. Introduction

Nonlinear systems that support solitons can generate self-similarity and fractals on successively smaller scales. Very often, the solitons of a given system are all self-similar to each other, see [1].

Several authors study Ricci solitons (RS) in contact metric geometry, where Sasakian manifolds (SM) are especially important. SM, which are odd-dimensional analogues of K^{\prime} ahler manifolds, are used to build geometrical examples, e.g., manifolds of special holonomy, Einstein manifolds (EM), K'ahler manifolds and orbifolds. The geometry of SM (in particular, η-EM and Sasaki-Einstein manifolds) attracts much attention from mathematicians. We refer the reader to [2-4] for the latest developments in the theory of these manifolds.

Many tools for K'ahler manifolds have analogues for contact manifolds, among them the $*$-Ricci tensor, introduced in [5] for almost Hermitian manifolds. In [6], the $*$-Ricci tensor was applied to a real hypersurface in a non-flat complex space form. Namely, for an almost contact manifold $M^{2 n+1}(\varphi, \zeta, \eta, g)$ and any vector fields Y_{1}, Y_{2}, Y_{3} on $M^{2 n+1}$, we get

$$
\begin{equation*}
\operatorname{Ric}_{g}^{*}\left(Y_{1}, Y_{2}\right)=\frac{1}{2} \operatorname{trace}_{g}\left\{Y_{3} \rightarrow R\left(Y_{1}, \varphi Y_{2}\right) \varphi Y_{3}\right\} \tag{1}
\end{equation*}
$$

If Ric ${ }_{g}^{*}$ vanishes identically then such $M^{2 n+1}$ is called $*$-Ricci flat. A $*-R S$ structure has been introduced in [7], using Ric ${ }_{g}^{*}$ instead of the Ricci tensor in the equation of RS,

$$
\begin{equation*}
£_{X} g+2 \operatorname{Ric}_{g}^{*}=2 \omega g \tag{2}
\end{equation*}
$$

Here, $£$ is the Lie derivative. If ω in (2) belongs to $C^{\infty}(M)$ and is not a constant, then we get an almost $*-R S$, the triple (g, ω, X). An almost $*$-RS is shrinking for $\omega>0$, steady for $\omega=0$ and expanding for $\omega<0$. Observe that a $*$-RS is $*$-EM (i.e., the $*$-Ricci tensor and the metric tensor are homothetic) if X is a Killing vector field (KVF), see [8]. Thus, it is a generalization of a $*$-EM. In particular, if $X=\nabla f$ (the gradient of $f \in C^{\infty}(M)$) in (2),
then we obtain a gradient almost $*-R S$. Some generalizations of RS were studied by several authors, see [9-15].

Ghosh-Patra [16] first studied $*-\mathrm{RS}$ and gradient almost $*-\mathrm{RS}$ on a contact metric manifold, in particular, on an SM and (k, μ)-contact manifolds. Later on, $*$-RS were studied on almost contact manifolds in [15,17-20]. Wang [20] proved that "if the metric of a Kenmotsu 3-manifold represents a $*$-RS, then the manifold is locally the hyperbolic space $\mathbb{H}^{3}(-1)^{\prime \prime}$, and it was proved in [18] that "if a non-Kenmotsu $(k, \mu)^{\prime}$-almost Kenmotsu manifold has a *-RS structure, then it is locally isometric to $\mathbb{H}^{n+1}(-4) \times \mathbb{R}$ under some restrictions".

There is a natural question: "under what conditions a (gradient) almost RS is a unit sphere"? Several affirmative answers to this question on Riemannian and contact metric manifolds, are given in $[9,10,12-14,21,22]$. An almost $*-\mathrm{RS}$ is a generalization of $*-\mathrm{RS}$ and $*-\mathrm{EM}$; thus we ask a question: "under what conditions a (gradient) almost $*-R S$ is a unit sphere?"

In [16], they answered this question by showing that "if a complete SM admits a gradient almost $*-R S$, then it is a unit sphere". Here, we consider non-gradient almost $*$-RS in the case of SM, and we are looking for conditions under which SM having an almost $*$-RS structure is a unit sphere. Our main achievement is the following.

Theorem 1. If a complete SM $M^{2 n+1}(\varphi, \zeta, \eta, g)$ of dimension greater than three has an almost *-RS structure (g, ω, X) with $\omega \neq$ const, then it is the unit sphere $\mathbb{S}^{2 n+1}$.

The following question arises: "under what conditions an almost RS is an RS, or, EM"? Several answers to this question can be found in [14,22-24]. An almost $*$-RS generalizes $*-\mathrm{RS}$ and $*-\mathrm{EM}$; so the following question arises:
"when an almost $*-R S$ is a $*-R S$, for example, an $*-E M$?"
In [16], they found such a condition on an SM, and this question on a Kenmotsu manifold was studied in [15]. In this regard, we are interested in characterizing those SM represented as almost $*$-RS, which are $*$-RS or are $*-\mathrm{EM}$. In the following theorem, we assume that the potential vector field is a Jacobi vector field on the integral curves of the Reeb vector field.

Theorem 2. If an $S M M^{2 n+1}(\varphi, \zeta, \eta, g)$ has an almost $*-R S$ structure (g, ω, X) such that X is a Jacobi field on the ζ-integral curves, then (g, ω, X) is $a *$-RS on M.

Now, we recall some definitions, e.g., [3]. A SM $M^{2 n+1}(\varphi, \zeta, \eta, g)$ is an η-EM if

$$
\operatorname{Ric}_{g}=\alpha_{1} g+\alpha_{2} \eta \otimes \eta
$$

where functions α_{1} and α_{2} belong to $C^{\infty}(M)$. For K-contact manifolds (for example, SM) of dimension $\geq 4, \alpha_{1}, \alpha_{2}$ are real constants, see [25], thus, the scalar curvature is constant. An η-Einstein SM is a null-SM when $\alpha_{1}=-2$ and $\alpha_{2}=2 n+2$, and is a positive-SM when $\alpha_{1}>-2$, see [3]. Using ([16], Theorem 8), we get the following consequence of Theorem 2.

Corollary 1. If an $S M M^{2 n+1}(\varphi, \zeta, \eta, g)$ has an almost $*-R S$ structure (g, ω, X) such that X is a Jacobi vector field on the ζ-integral curves, then M is positive SM and X is KVF (and g is $*-E M$), or M is null-SM and φ is invariant under X.

Remark 1. Observe from [24] that if an SM has an almost RS structure, whose potential field is a Jacobi vector field on the ζ-integral curves, then the manifold is null-SM with the expanding RS.

A vector field Y on a contact manifold (M, η) that preserves the contact form η is called an infinitesimal contact transformation, see $[26,27]$, i.e.,

$$
\begin{equation*}
£_{Y} \eta=v \eta, \tag{3}
\end{equation*}
$$

for some $v \in C^{\infty}(M)$; and if $v=0$, then Y is said to be strict. A vector field Y preserving φ, ζ, η and g on a contact metric manifold is called an infinitesimal automorphism. In [16], they addressed the question by showing that "if an SM represents an almost $*-R S$ such that the potential vector field is an infinitesimal contact transformation, then it is $a *$-RS". We improve this result in the following statement.

Theorem 3. Let an SM represent an almost $*-R S(g, \omega, X)$ such that X is an infinitesimal contact transformation. Then X leaves φ invariant, and the manifold is η - $E M$ of scalar curvature $(\omega+4 n) n$.

Assuming compactness we get one more sufficient condition for g to be $*$-Ricci flat (e.g., *-EM).

Theorem 4. Let a compact $S M M^{2 n+1}(\varphi, \zeta, \eta, g)$ admit an almost $*-R S(g, \omega, X)$ such that X is an infinitesimal contact transformation. Then the soliton is steady $(\omega=0), X$ is an infinitesimal automorphism, and g is $*$-Ricci flat of scalar curvature $4 n^{2}$.

Finally, we show that the property "potential vector field and the characteristic vector field are parallel" provides "*-Ricci flat" (e.g., *-EM).

Theorem 5. Let an $S M M^{2 n+1}(\varphi, \zeta, \eta, g)$ admit an almost $*-R S(g, \omega, X)$ such that X is parallel to ζ. Then the soliton is steady $(\omega=0), V$ is $K V F$, and g is $*$-Ricci flat of scalar curvature $4 n^{2}$.

Remark 2. Observe from [14] that if a compact SM has an almost RS structure (g, ω, X) such that X is an infinitesimal contact transformation, then the soliton is shrinking $(\omega=2 n), X$ is strict and leaves φ invariant, and the manifold is EM of scalar curvature $2 n(2 n+1)$. By Theorem 4, the soliton is steady $(\omega=0), X$ is strict and leaves φ, ζ and η invariant, and the manifold is $*-E M$ of scalar curvature $4 n^{2}$. In addition, note that an SM considered as an RS or an almost RS with X parallel to ζ, is an EM of scalar curvature $2 n(2 n+1)$, and X is a KVF, see [28].

Within the framework of Theorems 3-5, we not only find sufficient conditions for $*-E M$, but also characterize the structural tensor fields and the potential vector field.

2. Preliminaries

Here, we recall some properties of SM, see [2,26]. We suppose that all manifolds are smooth and connected. The curvature tensor R on a Riemannian manifold (M, g) is given by

$$
\begin{equation*}
R\left(Y_{1}, Y_{2}\right)=\left[\nabla_{Y_{1}}, \nabla_{Y_{2}}\right]-\nabla_{\left[Y_{1}, Y_{2}\right]}, \quad Y_{1}, Y_{2} \in \mathcal{X}(M), \tag{4}
\end{equation*}
$$

where ∇ is the Levi-Civita connection and $\mathcal{X}(M)$ is the space of vector fields on M. They define the Ricci operator Q by

$$
g\left(Q Y_{1}, Y_{2}\right)=\operatorname{Ric}_{g}\left(Y_{1}, Y_{2}\right)=\operatorname{trace}_{\mathrm{g}}\left\{Y_{3} \rightarrow R\left(Y_{3}, Y_{1}\right) Y_{2}\right\}, \quad Y_{1}, Y_{2}, Y_{3} \in \mathcal{X}(M)
$$

is a symmetric (1,1)-tensor. Then $r=$ trace $_{g} Q$ is the scalar curvature. We get the following formula (follows from twice contracted second Bianchi identity, see, e.g., [29]):

$$
\begin{equation*}
\frac{1}{2} g\left(Y_{1}, \nabla r\right)=(\operatorname{div} Q)\left(Y_{1}\right)=\sum_{i} g\left(\left(\nabla_{E_{i}} Q\right) Y_{1}, E_{i}\right), \quad Y_{1} \in \mathcal{X}(M) \tag{5}
\end{equation*}
$$

where $\left\{E_{i}\right\}$ is any local orthonormal basis on M.
For the Lie derivative of $f \in C^{\infty}(M)$ along $Y_{1} \in \mathcal{X}(M)$ we have

$$
£_{Y_{1}} f=Y_{1}(f)=g\left(Y_{1}, \nabla f\right),
$$

where the Hessian of f is defined by

$$
\operatorname{Hess}_{f}\left(Y_{1}, Y_{2}\right)=\nabla^{2} f\left(Y_{1}, Y_{2}\right)=\left(\nabla_{Y_{1}} \nabla f\right) Y_{2}=Y_{1} Y_{2}(f)-\left(\nabla_{Y_{1}} Y_{2}\right)(f), \quad Y_{1}, Y_{2} \in \mathcal{X}(M)
$$

The hessian Hess_{f} is symmetric and $g\left(\nabla_{Y_{1}} \nabla f, Y_{2}\right)=g\left(\nabla_{Y_{2}} \nabla f, Y_{1}\right)$ is true, so it is a section of $T^{*} M \otimes T^{*} M$. A vector field Y on (M, g) is conformal if

$$
£_{Y} g=f g
$$

for some $f \in C^{\infty}(M)$. Such Y is called homothetic if $f=$ constant, and Y is said to be KVF if $f=0$.

A manifold $M^{2 n+1}$ is a contact manifold if $\eta \wedge(d \eta)^{n} \neq 0$ for some global 1-form η. In this case, ζ satisfying $d \eta(\zeta, \cdot)=0$ and $\eta(\zeta)=1$ is called a characteristic vector field. Polarization of $d \eta$ on $\mathcal{D}_{\equiv}=\operatorname{ker} \eta$ allows to find a (1,1)-tensor φ and a Riemannian structure g satisfying

$$
\begin{align*}
& \varphi^{2}=-i d_{T M}+\eta \otimes \zeta, \quad \eta=g(\zeta, \cdot) \tag{6}\\
& d \eta(\cdot, \cdot)=g(\cdot, \varphi \cdot) \tag{7}
\end{align*}
$$

They call such $M^{2 n+1}(\varphi, \zeta, \eta, g)$ a contact metric manifold with associated metric g. By (6), we get

$$
\varphi(\zeta)=0, \quad \eta \circ \varphi=0, \quad \text { and } \quad \operatorname{rank}(\varphi)=2 n .
$$

Further, a contact metric manifold is called SM if the following condition is valid, see [3,26]:

$$
\left[\varphi Y_{1}, \varphi Y_{2}\right]=-2 d \eta\left(Y_{1}, Y_{2}\right) \zeta, \quad Y_{1}, Y_{2} \in \mathcal{X}(M)
$$

The curvature tensor of an SM satisfies

$$
\begin{equation*}
R\left(Y_{1}, Y_{2}\right) \zeta=\eta\left(Y_{2}\right) Y_{1}-\eta\left(Y_{1}\right) Y_{2}, \quad Y_{1}, Y_{2} \in \mathcal{X}(M) \tag{8}
\end{equation*}
$$

Recall that if ζ is KVF, then M is called a K-contact manifold. A SM is K-contact, the converse is valid in dimension 3 only, see ([26], p. 87). SM satisfy the following, see ([26], p. 113):

$$
\begin{align*}
\nabla_{Y_{1}} \zeta & =-\varphi Y_{1}, \quad Y_{1} \in \mathcal{X}(M) \tag{9}\\
Q \zeta & =2 n \zeta . \tag{10}
\end{align*}
$$

According to ([16], Lemma 2.1):

$$
\nabla_{\zeta} Q=Q \varphi-\varphi Q
$$

therefore, $\nabla_{\zeta} Q=0$, as φ and the Ricci operator commute on an SM, see [26]. Using (9) we find the derivative of (10) in the direction of $Y_{1} \in \mathcal{X}(M)$,

$$
\begin{equation*}
\left(\nabla_{Y_{1}} Q\right) \zeta=Q \varphi Y_{1}-2 n \varphi Y_{1} . \tag{11}
\end{equation*}
$$

The $*$-Ricci tensor Ric $_{g}^{*}$ on an SM has the view (see [16], Lemma 5):

$$
\begin{equation*}
\operatorname{Ric}_{g}^{*}\left(Y_{1}, Y_{2}\right)=\operatorname{Ric}_{g}\left(Y_{1}, Y_{2}\right)-(2 n-1) g\left(Y_{1}, Y_{2}\right)-\eta\left(Y_{1}\right) \eta\left(Y_{2}\right), \quad Y_{1}, Y_{2} \in \mathcal{X}(M) \tag{12}
\end{equation*}
$$

Thus, we can write the $*$-RS structure (2) on an SM as

$$
\begin{equation*}
\left(£_{V} g\right)\left(Y_{1}, Y_{2}\right)+2 \operatorname{Ric}_{g}\left(Y_{1}, Y_{2}\right)=2(\omega+2 n-1) g\left(Y_{1}, Y_{2}\right)+2 \eta\left(Y_{1}\right) \eta\left(Y_{2}\right) \tag{13}
\end{equation*}
$$

for all $Y_{1}, Y_{2} \in \mathcal{X}(M)$.

Remark 3. Contracting the derivative of (8) using a local orthonormal basis $\left\{E_{i}\right\}_{1 \leq i \leq 2 n+1}$ on M and using (9), we get the following:

$$
(\operatorname{div} R)\left(Y_{1}, Y_{2}\right) \zeta-g\left(R\left(Y_{1}, Y_{2}\right) \varphi E_{i}, E_{i}\right)=-2 g\left(\varphi Y_{1}, Y_{2}\right)
$$

Contracting the second Bianchi identity, they reduce the above equation to the following:

$$
\begin{equation*}
g\left(\left(\nabla_{Y_{1}} Q\right) Y_{2}-\left(\nabla_{Y_{2}} Q\right) Y_{1}, \zeta\right)-g\left(R\left(Y_{1}, Y_{2}\right) \varphi E_{i}, E_{i}\right)=-2 g\left(\varphi Y_{1}, Y_{2}\right) \tag{14}
\end{equation*}
$$

Using (11), from (14) we obtain

$$
g\left(R\left(Y_{1}, \Upsilon_{2}\right) \varphi E_{i}, E_{i}\right)=g\left(Q \varphi Y_{1}, Y_{2}\right)+g\left(\varphi Q Y_{1}, \Upsilon_{2}\right)-2(2 n-1) g\left(\varphi Y_{1}, \Upsilon_{2}\right)
$$

Replacing Y_{2} by φY_{2} in the preceding equation and using the definition (1), we represent the *-Ricci tensor of an SM in the form (12).

To prove Theorems 1 and 2, we need the following three results.
Proposition 1. If an $S M$ admits an almost $*-R S$ structure, then we get the following:

$$
\begin{equation*}
\left(£_{X} \nabla\right)\left(Y_{1}, \zeta\right)+2 Q \varphi Y_{1}=2(2 n-1) \varphi Y_{1}+Y_{1}(\omega) \zeta+\zeta(\omega) Y_{1}-\eta\left(Y_{1}\right) \nabla \omega, \quad Y_{1} \in \mathcal{X}(M) \tag{15}
\end{equation*}
$$

Proof. Using the derivative of (13) for an arbitrary $\Upsilon_{3} \in \mathcal{X}(M)$ and (9), gives

$$
\begin{align*}
& \left(\nabla_{Y_{3}} £_{X} g\right)\left(Y_{1}, Y_{2}\right)+2\left(\nabla_{Y_{3}} \operatorname{Ric}_{g}\right)\left(Y_{1}, Y_{2}\right)=2 Y_{3}(\omega) g\left(Y_{1}, Y_{2}\right) \\
& -2 \eta\left(Y_{1}\right) g\left(Y_{2}, \varphi Y_{3}\right)-2 \eta\left(Y_{2}\right) g\left(Y_{1}, \varphi Y_{3}\right) \tag{16}
\end{align*}
$$

for $Y_{1}, Y_{2} \in \mathcal{X}(M)$. Following Yano ([30] p. 23), for $Y_{1}, Y_{2}, Y_{3} \in \mathcal{X}(M)$ we write $\left(£_{X} \nabla_{Y_{3}} g-\nabla_{Y_{3}} £_{X} g-\nabla_{\left[X, Y_{3}\right]} g\right)\left(Y_{1}, Y_{2}\right)=-g\left(\left(£_{X} \nabla\right)\left(Y_{3}, Y_{1}\right), Y_{2}\right)-g\left(\left(£_{X} \nabla\right)\left(Y_{3}, Y_{2}\right), Y_{1}\right)$.

Inserting (16) in the above relation and using $\nabla g=0$ yields the following:

$$
\begin{aligned}
& g\left(\left(£_{X} \nabla\right)\left(Y_{3}, Y_{1}\right), Y_{2}\right)+g\left(\left(£_{X} \nabla\right)\left(Y_{3}, Y_{2}\right), Y_{1}\right)+2\left(\nabla_{Y_{3}} \operatorname{Ric}_{g}\right)\left(Y_{1}, Y_{2}\right) \\
& =2\left\{Y_{3}(\omega) g\left(Y_{1}, Y_{2}\right)-\eta\left(Y_{1}\right) g\left(Y_{2}, \varphi Y_{3}\right)-\eta\left(Y_{2}\right) g\left(Y_{1}, \varphi Y_{3}\right)\right\} .
\end{aligned}
$$

Due to the symmetry $\left(£_{X} \nabla\right)\left(Y_{1}, Y_{2}\right)=\left(£_{X} \nabla\right)\left(Y_{2}, Y_{1}\right)$, using cyclical permutations of Y_{1}, Y_{2}, Y_{3} in the preceding equation, we get

$$
\begin{align*}
& g\left(\left(£_{X} \nabla\right)\left(Y_{1}, Y_{2}\right), Y_{3}\right)=\left(\nabla_{Y_{3}} \operatorname{Ric}_{g}\right)\left(Y_{1}, Y_{2}\right)-\left(\nabla_{Y_{1}} \operatorname{Ric}_{g}\right)\left(Y_{2}, Y_{3}\right)-\left(\nabla_{Y_{2}} \operatorname{Ric}_{g}\right)\left(Y_{3}, Y_{1}\right) \\
& +Y_{1}(\omega) g\left(Y_{2}, Y_{3}\right)+Y_{2}(\omega) g\left(Y_{3}, Y_{1}\right)-Y_{3}(\omega) g\left(Y_{1}, Y_{2}\right) \\
& -2 \eta\left(Y_{2}\right) g\left(\varphi Y_{1}, Y_{3}\right)-2 \eta\left(Y_{1}\right) g\left(\varphi Y_{2}, Y_{3}\right) \text {. } \tag{17}
\end{align*}
$$

Since the Ricci operator Q is self-adjoint, using $\nabla_{\zeta} Q=0$ and (11), and replacing Y_{2} by ζ in (17), we get (15).

Proposition 2. Let an SM represent an almost $*-R S$ and ζ leave ω invariant. Then we get

$$
\begin{align*}
R\left(Y_{1}, \Upsilon_{2}\right) \nabla \omega & -g\left(R\left(Y_{1}, Y_{2}\right) \nabla \omega, \zeta\right) \zeta=4\left\{\left(\nabla_{Y_{1}} Q\right) Y_{2}-\left(\nabla_{Y_{2}} Q\right) Y_{1}\right\}-2\left\{Y_{1}(\omega) Y_{2}-\Upsilon_{2}(\omega) Y_{1}\right\} \\
& +2\left\{Y_{1}(\omega) \eta\left(Y_{2}\right) \zeta-Y_{2}(\omega) \eta\left(Y_{1}\right) \zeta\right\}+2(\omega-2)\left\{2 g\left(Y_{1}, \varphi Y_{2}\right) \zeta\right. \\
& \left.+\eta\left(Y_{1}\right) \varphi Y_{2}-\eta\left(Y_{2}\right) \varphi Y_{1}\right\}+\eta\left(Y_{2}\right) \nabla_{Y_{1}} \nabla_{\zeta} \nabla \omega-\eta\left(Y_{1}\right) \nabla_{Y_{2}} \nabla_{\zeta} \nabla \omega \\
& +2 g\left(\varphi Y_{2}, Y_{1}\right) \nabla_{\zeta} \nabla \omega+g\left(\varphi Y_{2}, \nabla_{Y_{1}} \nabla \omega\right) \zeta-g\left(\varphi Y_{1}, \nabla_{Y_{2}} \nabla \omega\right) \zeta \\
& +g\left(\zeta, \nabla_{Y_{1}} \nabla \omega\right) \varphi Y_{2}-g\left(\zeta, \nabla_{Y_{2}} \nabla \omega\right) \varphi Y_{1}, \quad Y_{1}, Y_{2} \in \mathcal{X}(M) . \tag{18}
\end{align*}
$$

Proof. Applying the Lie derivative for $R\left(\Upsilon_{1}, \zeta\right) \zeta=\Upsilon_{1}-\eta\left(Y_{1}\right) \zeta$ for all $Y_{1} \in \mathcal{X}(M)$ (follows from (8)) along X and using (8), yields

$$
\begin{equation*}
\left(£_{X} R\right)\left(Y_{1}, \zeta\right) \zeta+R\left(\Upsilon_{1}, \zeta\right) £_{X} \zeta+\eta\left(£_{X} \zeta\right) Y_{1}+\left(£_{X} g\right)\left(Y_{1}, \zeta\right) \zeta+g\left(Y_{1}, £_{X} \zeta\right) \zeta=0 \tag{19}
\end{equation*}
$$

Replacing $\left(Y_{1}, Y_{2}\right)$ by $\left(Y_{1}, \zeta\right)$ in (13) and using (10), we acquire the following:

$$
\left(£_{X} g\right)\left(Y_{1}, \zeta\right)=2 \omega \eta\left(Y_{1}\right)
$$

Plugging it into the Lie derivative of $\eta\left(Y_{1}\right)=g\left(Y_{1}, \zeta\right)$ and $\eta(\zeta)=1$, we find $\eta\left(£_{X} \zeta\right)=-\omega$ and $\left(£_{X} \eta\right)(\zeta)=\omega$. Thus, in view of (8), Equation (19) gives us

$$
\begin{equation*}
\left(£_{X} R\right)\left(Y_{1}, \zeta\right) \zeta=2 \omega\left\{Y_{1}-\eta\left(Y_{1}\right) \zeta\right\}, \quad Y_{1} \in \mathcal{X}(M) \tag{20}
\end{equation*}
$$

By conditions, $\zeta(\omega)=0$ is valid, thus (15) reduces to the following:

$$
\begin{equation*}
\left(£_{X} \nabla\right)\left(Y_{1}, \zeta\right)+2 Q \varphi Y_{1}=2(2 n-1) \varphi Y_{1}+Y_{1}(\omega) \zeta-\eta\left(Y_{1}\right) \nabla \omega, \quad Y_{1} \in \mathcal{X}(M) \tag{21}
\end{equation*}
$$

Using ζ-derivative of (21), gives

$$
\begin{equation*}
\left(\nabla_{\zeta} £_{X} \nabla\right)\left(Y_{1}, \zeta\right)=g\left(Y_{1}, \nabla_{\zeta} \nabla \omega\right) \zeta-\eta\left(Y_{1}\right) \nabla_{\zeta} \nabla \omega, \tag{22}
\end{equation*}
$$

where equalities $\nabla_{\zeta} Q=\nabla_{\zeta} \zeta=\nabla_{\zeta} \varphi=0$ for an SM were used. On the other hand, using $Y_{1}=\zeta$ in (21), then differentiating along Y_{1} and using (9) and the symmetry of $£_{X} \nabla$, we get

$$
\begin{equation*}
\left(\nabla_{Y_{1}}\left(£_{X} \nabla\right)\right)(\zeta, \zeta)=2\left(£_{X} \nabla\right)\left(\varphi Y_{1}, \zeta\right)-\nabla_{Y_{1}} \nabla \omega . \tag{23}
\end{equation*}
$$

Next, differentiating $g(\zeta, \nabla \omega)=0$ along $Y_{1} \in \mathcal{X}(M)$ and using (6), gives $\left(\varphi Y_{1}\right)(\omega)=$ $g\left(\zeta, \nabla_{Y_{1}} \nabla \omega\right)$; therefore, it suffices to combine (6), (10), (21) and (23) to arrive at the result

$$
\begin{equation*}
\left(\nabla_{Y_{1}} £_{X} \nabla\right)(\zeta, \zeta)=4 Q Y_{1}-4(2 n-1) Y_{1}-4 \eta\left(Y_{1}\right) \zeta+2 g\left(\zeta, \nabla_{Y_{1}} \nabla \omega\right) \zeta-\nabla_{Y_{1}} \nabla \omega . \tag{24}
\end{equation*}
$$

We need the following commutation result, see ([30], p. 23):

$$
\begin{equation*}
\left(£_{X} R\right)\left(Y_{1}, Y_{2}\right) Y_{3}=\left(\nabla_{Y_{1}} £_{X} \nabla\right)\left(Y_{2}, Y_{3}\right)-\left(\nabla_{Y_{2}} £_{X} \nabla\right)\left(Y_{1}, Y_{3}\right) \tag{25}
\end{equation*}
$$

Next, replacing both Y_{2} and Y_{3} by ζ in (25) and then plugging the values of $\left(£_{X} R\right)\left(Y_{1}, \zeta\right) \zeta$, $\left(\nabla_{\zeta} £_{X} \nabla\right)\left(Y_{1}, \zeta\right)$ and $\left(\nabla_{Y_{1}} £_{X} \nabla\right)(\zeta, \zeta)$ from (20), (22) and (24), respectively, we get

$$
\begin{equation*}
\nabla_{Y_{1}} \nabla \omega=4 Q Y_{1}-2\{\omega+2(2 n-1)\} Y_{1}+2(\omega-2) \eta\left(Y_{1}\right) \zeta+g\left(\zeta, \nabla_{X} \nabla \omega\right) \zeta+\eta\left(Y_{1}\right) \nabla_{\zeta} \nabla \omega \tag{26}
\end{equation*}
$$

for $Y_{1} \in \mathcal{X}(M)$. Using (9) in the Y_{2}-derivative of (26), we acquire

$$
\begin{aligned}
& \nabla_{Y_{2}} \nabla_{Y_{1}} \nabla \omega=4\left\{\left(\nabla_{Y_{2}} Q\right) Y_{1}+Q\left(\nabla_{Y_{2}} Y_{1}\right)\right\}-2 Y_{2}(\omega)\left\{Y_{1}-\eta\left(Y_{1}\right) \zeta\right\}-2\{\omega+2(2 n-1)\} \nabla_{Y_{2}} Y_{1} \\
& +2(\omega-2)\left\{\eta\left(\nabla_{Y_{2}} Y_{1}\right) \zeta-g\left(Y_{1}, \varphi Y_{2}\right) \zeta-\eta\left(Y_{1}\right) \varphi Y_{2}\right\}+\left\{\eta\left(\nabla_{Y_{2}} Y_{1}\right)\right. \\
& \left.-g\left(Y_{1}, \varphi Y_{2}\right)\right\} \nabla_{\zeta} \nabla \omega+\eta\left(Y_{1}\right) \nabla_{Y_{2}} \nabla_{\zeta} \nabla \omega-g\left(\varphi Y_{2}, \nabla_{Y_{1}} \nabla \omega\right) \zeta \\
& +g\left(\zeta, \nabla Y_{Y_{2}} \nabla{ }_{Y_{1}} \nabla \omega\right) \zeta-g\left(\zeta, \nabla Y_{1} \nabla \omega\right) \varphi Y_{2} \text {. }
\end{aligned}
$$

Since $\operatorname{Hess}_{\omega}$ is symmetric and φ is skew-symmetric, using (26) and the above equation in (4) completes the proof of (18).

Recall that the contact metric structure commutes with the Ricci operator, i.e., $Q \varphi=\varphi Q$, e.g., [26]. Its covariant derivative and (5) provide the following.

Lemma 1 (see [12]). For an $S M M$ and all $Y_{1} \in \mathcal{X}(M)$, we have
(i) $\sum_{i=1}^{2 n+1} g\left(\left(\nabla_{\varphi Y_{1}} Q\right) \varphi E_{i}, E_{i}\right)=0$,
(ii) $\sum_{i=1}^{2 n+1} g\left(\left(\nabla_{\varphi E_{i}} Q\right) \varphi Y_{1}, E_{i}\right)=-\frac{1}{2} Y_{1}(r)$,
where $\left\{E_{i}\right\}_{1 \leq i \leq 2 n+1}$ is a local orthonormal basis on M.

3. Proof of Results

Proof of Theorem 1. Since the characteristic vector field is $K V F, £_{\zeta} g=0=£_{\zeta}$ Ric $_{g}$ is valid. Applying this to the Lie derivative of (13) along ζ, and using $£_{Y_{1}} £_{Y_{2}} g-£_{Y_{2}} £_{Y_{1}} g=£_{\left[Y_{1}, \gamma_{2}\right]} g$, e.g., [30], we get

$$
\begin{equation*}
£_{[X, \zeta]} g=-2 \zeta(\omega) g . \tag{27}
\end{equation*}
$$

By (27), $[X, \zeta]$ is a conformal vector field. This gives us the following alternatives:
(I) $[X, \zeta]$ is non-homothetic,
(II) $[X, \zeta]$ is homothetic.

Okumura [31] proved that "if a complete SM of dimension >3 has a non-Killing conformal vector field, then it is a unit sphere". Applying this theorem for (I), we conclude that (M, g) is a unit sphere.

We will finish the proof by showing a contradiction for case (II). Sharma [32] proved the following: "a homothetic vector field on an SM (more generally, K-contact manifold) is necessarily a $K V F^{\prime \prime}$. So, (27) implies that ζ leaves ω invariant. Thus, (18) holds. Contracting it over Y_{1} and then using (5), (8), we obtain

$$
\begin{align*}
\operatorname{Ric}_{\mathrm{g}}\left(Y_{2}, \nabla \omega\right) & =4 g\left(\varphi Y_{2}, \nabla_{\zeta} \nabla \omega\right)+\eta\left(Y_{2}\right) \operatorname{div}\left(\nabla_{\zeta} \nabla \omega\right) \\
& -g\left(\zeta, \nabla_{Y_{2}} \nabla_{\zeta} \nabla \omega\right)-2 g\left(Y_{2}, \nabla r\right)+2(2 n-1) g\left(Y_{2}, \nabla \omega\right), \tag{28}
\end{align*}
$$

where we used trace $\varphi=0=\varphi \zeta$, the skew-symmetry of φ and symmetry of $\operatorname{Hess}_{\omega}$. Differentiating the equality $g\left(\zeta, \nabla_{\zeta} \nabla \omega\right)=0$ along $\Upsilon_{2} \in \mathcal{X}(M)$ and using (9), gives

$$
g\left(\zeta, \nabla_{Y_{2}} \nabla_{\zeta} \nabla \omega\right)=g\left(\varphi Y_{2}, \nabla_{\zeta} \nabla \omega\right) .
$$

Thus, (28) can be rewritten as

$$
\begin{equation*}
\operatorname{Ric}_{g}\left(Y_{2}, \nabla \omega\right)=3 g\left(\varphi Y_{2}, \nabla_{\zeta} \nabla \omega\right)+\eta\left(Y_{2}\right) \operatorname{div}\left(\nabla_{\zeta} \nabla \omega\right)-2 Y_{2}(r)+2(2 n-1) Y_{2}(\omega) \tag{29}
\end{equation*}
$$

for all $Y_{2} \in \mathcal{X}(M)$. Next, recall the following result for $S M$, see [26]:

$$
R\left(\varphi Y_{2}, \varphi Y_{1}\right) Y_{3}=R\left(Y_{2}, Y_{1}\right) Y_{3}+g\left(Y_{2}, Y_{3}\right) Y_{1}-g\left(Y_{1}, Y_{3}\right) Y_{2}-g\left(Y_{2}, Y_{3}\right) Y_{1}+g\left(Y_{1}, Y_{3}\right) Y_{2}
$$

for all $Y_{1}, Y_{2}, Y_{3} \in \mathcal{X}(M)$. Substituting $Y_{1}=\varphi Y_{1}$ and $Y_{2}=\varphi Y_{2}$ in (18) and using the last formula, in view of (6), $\varphi \zeta=0$ and the skew-symmetry of φ, we obtain

$$
\begin{align*}
& R\left(Y_{1}, Y_{2}\right) \nabla \omega-g\left(R\left(Y_{1}, Y_{2}\right) \nabla \omega, \zeta\right) \zeta=4\left\{\left(\nabla_{\varphi} Y_{1} Q\right) \varphi Y_{2}-\left(\nabla_{\varphi Y_{2}} Q\right) \varphi Y_{1}\right\}+Y_{2}(\omega)\left\{2 Y_{1}-\eta\left(Y_{1}\right) \zeta\right\} \\
& -Y_{1}(\omega)\left\{2 Y_{2}-\eta\left(Y_{2}\right) \zeta\right\}+4(\omega-2) g\left(Y_{1}, Y_{2}\right) \zeta+2 g\left(Y_{1}, \Upsilon_{2}\right) \nabla_{\zeta} \nabla \omega \\
& +2 \eta\left(Y_{2}\right) g\left(\zeta, \nabla_{Y_{1}} \nabla \omega\right) \zeta-2 \eta\left(Y_{1}\right) g\left(\zeta, \nabla_{Y_{2}} \nabla \omega\right) \zeta-g\left(Y_{2}, \nabla_{Y_{1}} \nabla \omega\right) \zeta \\
& -g\left(Y_{1}, \nabla_{Y_{2}} \nabla \omega\right) \zeta+g\left(\zeta, \nabla_{Y_{2}} \nabla \omega\right) Y_{1}-g\left(\zeta, \nabla_{Y_{1}} \nabla \omega\right) Y_{2} \text {. } \tag{30}
\end{align*}
$$

On the other hand, contracting (30) over Y_{1} and applying (8), (5), (29) and Lemma 1, we find

$$
\begin{equation*}
\eta\left(Y_{2}\right) \operatorname{div}\left(\nabla_{\zeta} \nabla \omega\right)+2(n-1)\left\{Y_{2}(\omega)-g\left(\varphi Y_{2}, \nabla_{\zeta} \nabla \omega\right)\right\}=0, \tag{31}
\end{equation*}
$$

where we have used the symmetry of $\operatorname{Hess}_{\omega}$ and that ζ leaves ω invariant. Next, replacing Y_{2} by φY_{2} in (31), noting that (6) and using $g\left(\zeta, \nabla_{\zeta} \nabla \omega\right)=0$, we acquire

$$
\begin{equation*}
2(n-1)\left\{g\left(\varphi Y_{2}, \nabla \omega\right)+g\left(Y_{2}, \nabla_{\zeta} \nabla \omega\right)\right\}=0, \quad \Upsilon_{2} \in \mathcal{X}(M) \tag{32}
\end{equation*}
$$

Furthermore, differentiating $g(\zeta, \nabla \omega)=0$ along $Y_{2} \in \mathcal{X}(M)$ and using (9), we achieve

$$
g\left(\zeta, \nabla_{Y_{2}} \nabla \omega\right)=g\left(\varphi Y_{2}, \nabla \omega\right)
$$

Thus, (32) for $n>1$ gives us $g\left(\varphi Y_{2}, \nabla \omega\right)=0$; consequently, $\nabla \omega=0$. Hence, ω is constant - a contradiction with the conditions of the theorem.

Proof of Theorem 2. Applying Proposition 1 to the well-known formula:

$$
\nabla_{Y_{1}} \nabla_{Y_{2}} X-\nabla_{\nabla_{Y_{1}} Y_{2}} X-R\left(Y_{1}, X\right) Y_{2}=\left(£_{X} \nabla\right)\left(Y_{1}, Y_{2}\right),
$$

see ([30], p. 23), we acquire

$$
\begin{equation*}
\nabla_{Y_{1}} \nabla_{\zeta} X-\nabla_{\nabla_{Y_{1}} \zeta} X-R\left(Y_{1}, X\right) \zeta=-2 Q \varphi Y_{1}+2(2 n-1) \varphi Y_{1}+Y_{1}(\omega) \zeta+\zeta(\omega) Y_{1}-\eta\left(Y_{1}\right) \nabla \omega \tag{33}
\end{equation*}
$$

By conditions, X is a Jacobi vector field on the ζ-integral curves, see [33], i.e.,

$$
\nabla_{\zeta} \nabla_{\zeta} X+R(X, \zeta) \zeta=0
$$

Using $Y_{1}=\zeta$ in (33) and $\nabla_{\zeta} \zeta=0$ (that is a consequence of (9)), we achieve the equality $\nabla \omega=2 \zeta(\omega) \zeta$, or, using the exterior derivative,

$$
d \omega=2 \zeta(\omega) \eta
$$

Applying exterior derivative, the Poincaré lemma ($d^{2}=0$), and the wedge product with η, we acquire $\zeta(\omega) \eta \wedge d \eta=0$; thus, $\zeta(\omega)=0$, as $\eta \wedge d \eta$ is nowhere zero on a contact manifold. Thus, $d \omega=0$, i.e., $\omega=$ constant.

Corollary 4 follows from ([16], Theorem 8) and our Theorem 2.
Proof of Theorem 3. Using $d \circ £_{X}=£_{X} \circ d$ (d commutes with the Lie derivative) and applying the operator d to (3), gives

$$
\begin{equation*}
\left(£_{X} d \eta\right)\left(Y_{1}, Y_{2}\right)=\frac{1}{2}\left\{Y_{1}(v) \eta\left(Y_{2}\right)-Y_{2}(v) \eta\left(Y_{1}\right)\right\}+v d \eta\left(Y_{1}, Y_{2}\right) \tag{34}
\end{equation*}
$$

for a function $v \in C^{\infty}(M)$ and any $Y_{1}, Y_{2} \in \mathcal{X}(M)$. Applying the Lie derivative of (7) in the X-direction and using (2), (3) and (34), we obtain

$$
\begin{equation*}
2\left(£_{X} \varphi\right)\left(Y_{1}\right)+2(2 \omega-v+2(2 n-1)) \varphi Y_{1}=4 Q \varphi Y_{1}+\eta\left(Y_{1}\right) \nabla v-Y_{1}(v) \zeta \tag{35}
\end{equation*}
$$

From the first equality of (6), for $Y_{1} \in \mathcal{X}(M)$ we get

$$
\begin{equation*}
\left(£_{X} \varphi\right)\left(\varphi Y_{1}\right)+\varphi\left(£_{X} \varphi\right)\left(Y_{1}\right)=\left(£_{X} \eta\right)\left(Y_{1}\right) \zeta+\eta\left(Y_{1}\right) £_{X} \zeta . \tag{36}
\end{equation*}
$$

As a result of (10), $*$-RS Equation (2) gives us

$$
\left(£_{X} g\right)\left(Y_{1}, \zeta\right)=2 \omega \eta\left(Y_{1}\right)
$$

Taking into account this, as well as (3), it suffices to show that

$$
\begin{equation*}
g\left(£_{X} \zeta, Y_{1}\right)=(v-2 \omega) \eta\left(Y_{1}\right) \tag{37}
\end{equation*}
$$

By direct calculation using $\varphi \zeta=0$ we get $\left(£_{X} \varphi\right)(\zeta)=0$; hence, (35) gives $\nabla v=\zeta(v) \zeta$. Thus, by (9) we get

$$
\begin{equation*}
\operatorname{Hess}_{v}\left(Y_{1}, Y_{2}\right)=Y_{1}(\zeta(v)) \eta\left(Y_{2}\right)-\zeta(v) g\left(\varphi Y_{1}, \Upsilon_{2}\right) \tag{38}
\end{equation*}
$$

Since φ is skew-symmetric and Hess ${ }_{v}$ is symmetric, by (7) and (38), for Y_{1}, Y_{2} orthogonal to ζ we achieve

$$
\zeta(v) d \eta\left(Y_{1}, Y_{2}\right)=0
$$

Thus, $\zeta(v)=0$, as $d \eta$ is nonzero; hence, $\nabla v=0$. Thus, v is constant. Combining (2), (37) and $\eta(\zeta)=1$, we get $v=\omega$. Substituting this and (10) in (35), gives

$$
\begin{equation*}
\left(£_{X} \varphi\right)\left(\varphi Y_{1}\right)=\varphi\left(£_{X} \varphi\right)\left(Y_{1}\right)=-2 Q Y_{1}+(\omega+2(2 n-1)) Y_{1}-(\omega-2) \eta\left(Y_{1}\right) \zeta \tag{39}
\end{equation*}
$$

where the equality $Q \varphi=\varphi Q$ (for an SM) has been used, see ([26], p. 116). Now, by (3), (36), (37), (39) and $v=\omega$, we obtain the relation

$$
\begin{equation*}
2 \operatorname{Ric}_{\mathrm{g}}=(\omega+2(2 n-1)) g-(\omega-2) \eta \otimes \eta \tag{40}
\end{equation*}
$$

Hence, (M, g) is an η-EM of scalar curvature $n(\omega+4 n)$. Substituting (40) into (35), we find $£_{X} \varphi=0$; thus, X leaves φ invariant.

Proof of Theorem 4. The volume form Ω on a contact metric manifold satisfies $\Omega=\eta \wedge$ $(d \eta)^{n} \neq 0$; therefore, its Lie derivative in the X-direction and (3) give

$$
£_{X} \Omega=(n+1) v \Omega
$$

Proceeding, we obtain the equality $£_{X} \Omega=(\operatorname{div} X) \Omega$, from which we deduce $\operatorname{div} X=(n+1) v$. Applying the Divergence theorem (for compact M), this gives $v=0$; consequently, $\omega=0$ by the proof of Theorem 3. Thus, (3) and (37), respectively, follows from the condition that X leaves η and ζ invariant. Moreover, Equation (40) becomes

$$
\begin{equation*}
\operatorname{Ric}_{g}=(2 n-1) g+\eta \otimes \eta \tag{41}
\end{equation*}
$$

Thus, from (12) we conclude that (M, g) is $*$-Ricci flat of zero $*$-scalar curvature r^{*}. Using (2), we find that X is KVF. Applying Theorem 3, completes the proof.

Proof of Theorem 5. By conditions, $X=\sigma \zeta$, where σ is a non-zero smooth function. By the skew-symmetry of φ and (9), we obtain

$$
\begin{equation*}
\left(£_{X} g\right)\left(Y_{1}, Y_{2}\right)=g\left(\nabla_{Y_{1}} X, Y_{2}\right)+g\left(\nabla_{X} Y_{2}, Y_{1}\right)=Y_{1}(\sigma) \eta\left(Y_{2}\right)+Y_{2}(\sigma) \eta\left(Y_{1}\right) \tag{42}
\end{equation*}
$$

Thus, (13) becomes

$$
\begin{equation*}
Y_{1}(\sigma) \eta\left(Y_{2}\right)+Y_{2}(\sigma) \eta\left(Y_{1}\right)+2 \operatorname{Ric}_{g}\left(Y_{1}, Y_{2}\right)=2(\omega+2 n-1) g\left(Y_{1}, Y_{2}\right)+2 \eta\left(Y_{1}\right) \eta\left(Y_{2}\right) . \tag{43}
\end{equation*}
$$

Using $Y_{2}=\zeta$ in (43) and (10), yields

$$
\begin{equation*}
Y_{1}(\sigma)=(2 \omega-\zeta(\sigma)) \eta\left(Y_{1}\right), \quad Y_{1} \in \mathcal{X}(M) \tag{44}
\end{equation*}
$$

Again, using $Y_{1}=\zeta$ and $Y_{2}=\zeta$ in (43) and applying (10), we get $\zeta(\sigma)=\omega$; hence, from (44) it follows that $Y_{1}(\sigma)=\zeta(\sigma) \eta\left(Y_{1}\right)$, for $Y_{1} \in \mathcal{X}(M)$. By the above argument, we get that σ is constant. By (42), X is KV, and using (44) we get $\omega=0$. The above reduces (43) to (41), and therefore, g is $*$-Ricci flat (follows from (12)) and of constant scalar curvature $4 n^{2}$.

4. Conclusions

A modern geometrical concept of an almost $*-$ RS can be important in differential geometry and theoretical physics. We study the interaction of this structure on a smooth manifold with the well-known Sasakian structure and prove some results of geometric classification. Theorem 1 contains a condition for a complete SM equipped with an almost *-RS to be a unit sphere. Theorems 2-5 having local character, contain conditions, ensuring that an SM equipped with an almost $*$-RS structure is a $*$-RS, e.g., a $*$-EM. Using the fact that an almost $*$-Ricci tensor on an SM can be written as (12), an almost $*$-RS reduces to the form (13), which is less general than the almost η-RS equation for an SM:

$$
\begin{equation*}
\frac{1}{2} £_{X} g+\operatorname{Ric}_{g}+\omega g+\delta \eta \otimes \eta=0 \tag{45}
\end{equation*}
$$

In connection with the above, the following question arises: "are our Theorems 1-5 true under the condition (45) instead of (13), where ω and δ are arbitrary smooth functions on M ?"

Author Contributions: Conceptualization, V.R. and D.S.P.; methodology, V.R. and D.S.P.; investigation, V.R. and D.S.P.; writing-review and editing, V.R. and D.S.P.; funding acquisition, D.S.P. All authors have read and agreed to the published version of the manuscript.
Funding: This research of Dhriti Sundar Patra was funded by Indian Institute of Technology Hyderabad grant number SG/IITH/F295/2022-23/SG-133.

Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Soljacic, M.; Sears, S.; Segev, M.; Krylov, D.; Bergman, K. Self-similarity and fractals driven by soliton dynamics. Invited Paper, Special Issue on Solitons. Photonics Sci. News 1999, 5, 3-12.
2. Boyer, C.P.; Galicki, K. Sasakian Geometry; Oxford University Press: Oxford, UK, 2008.
3. Boyer, C.P.; Galicki, K.; Matzeu, P. On η-Einstein Sasakian geometry. Comm. Math. Phys. 2006, 262, 177-208. [CrossRef]
4. Sparks, J. Sasakian-Einstein manifolds. Surveys Diff. Geom. 2011, 16, 265-324. [CrossRef]
5. Tachibana, S. On almost-analytic vectors in almost Kählerian manifolds. Tohoku Math. J. 1959, 11, 247-265. [CrossRef]
6. Hamada, T. Real hypersurfaces of complex space forms in terms of Ricci *-tensor. Tokyo J. Math. 2002, 25, 473-483. [CrossRef]
7. Kaimakamis, G.; Panagiotidou, K. *-Ricci solitons of real hypersurface in non-flat complex space forms. J. Geom. Phys. 2014, 76, 408-413. [CrossRef]
8. Ivey, T.A.; Ryan, P.J. The $*$-Ricci tensor for hypersurfaces in $C P^{n}$ and $C H^{n}$. Tokyo J. Math. 2011, 34, 445-471.
9. Barros, A.; Ribeiro, E., Jr. Some characterizations for compact almost Ricci solitons. Proc. Amer. Math. Soc. 2012, 140, 1033-1040. [CrossRef]
10. Barros, A.; Batista, R.; Ribeiro, E., Jr. Compact almost Ricci solitons with constant scalar curvature are gradient. Monatsh. Math. 2014, 174, 29-39. [CrossRef]
11. Crasmareanu, M. A new approach to gradient Ricci solitons and generalizations. Filomat 2018, 32, 3337-3346. [CrossRef]
12. Gangadharappa, N.H.; Sharma, R. D-homothetically deformed K-contact Ricci almost solitons. Results Math. 2020, 75, 124. [CrossRef]
13. Ghosh, A.; Sharma, R. K-contact and Sasakian metrics as Ricci almost solitons. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150047. [CrossRef]
14. Patra, D.S. K-contact metrics as Ricci almost solitons. Beitr. Algebra Geom. 2021, 62, 737-744. [CrossRef]
15. Patra, D.S.; Ali, A.; Mofarreh, F. Geometry of almost contact metrics as almost *-Ricci solitons. arXiv 2021, arXiv:2101.01459.
16. Ghosh, A.; Patra, D.S. *-Ricci Soliton within the frame-work of Sasakian and (κ, μ)-contact manifold. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850120. [CrossRef]
17. Dai, X . Non-existence of $*$-Ricci solitons on (k, μ)-almost cosymplectic manifolds. J. Geom. 2019, 110, 30. [CrossRef]
18. Dai, X.; Zhao, Y.; De, U.C. *-Ricci soliton on $(k, \mu)^{\prime}$-almost Kenmotsu manifolds. Open Math. 2019, 17, 874-882. [CrossRef]
19. Venkatesha, V.; Naik, D.M.; Kumara, H.A. $*$-Ricci solitons and gradient almost $*$-Ricci solitons on Kenmotsu manifolds. Math. Slovaca 2019, 69, 1447-1458. [CrossRef]
20. Wang, Y. Contact 3-manifolds and $*$-Ricci soliton. Kodai Math. J. 2020, 43, 256-267. [CrossRef]
21. Deshmukh, S. Almost Ricci solitons isometric to spheres. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950073. [CrossRef]
22. Deshmukh, S.; Al-Sodais, H. A note on almost Ricci solitons. Anal. Math. Phys. 2020, 10, 75. [CrossRef]
23. Ghosh, A. Certain contact metrics as Ricci almost solitons. Results Math. 2014, 65, 81-94. [CrossRef]
24. Ghosh, A. Ricci almost solitons and contact geometry. Adv. Geom. 2021, 21, 169-178. [CrossRef]
25. Yano, K.; Kon, M. Structures on Manifolds; Series in Pure Math. 3; World Scientific Pub. Co.: Singapore, 1984.
26. Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds; Birkhäuser: Boston, MA, USA, 2010.
27. Tanno, S. Note on infinitesimal transformations over contact manifolds. Tohoku Math. J. 1962, 14, 416-430. [CrossRef]
28. Sharma, R. Certain results on K-contact and (κ, μ)-contact manifolds. J. Geom. 2008, 89, 138-147. [CrossRef]
29. Besse, A. Einstein Manifolds; Springer: New York, NY, USA, 2008.
30. Yano, K. Integral Formulas in Riemannian Geometry; Marcel Dekker: New York, NY, USA, 1970.
31. Okumura, M. On infinitesimal conformal and projective transformations of normal contact spaces. Tohoku Math. J. 1962, 14, 398-412. [CrossRef]
32. Sharma, R. Addendum to our paper "Conformal motion of contact manifolds with characteristic vector field in the k-nullity distribution". Ill. J. Math. 1998, 42, 673-677. [CrossRef]
33. Blair, D.E.; Vanhecke, L. Jacobi vector fields and the volume of tubes about curves in a Sasakian space forms. Annali Mat. Pura App. 1987, 148, 41-49. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

