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Abstract: The aim of this study is to determine a 3D incompressible Brinkman–Forchheimer-extended
Darcy fluid flow. Based on global well-posedness and regularity of solutions with a periodic boundary
condition, the determining modes for weak and regular solutions is achieved via the generalized
Grashof number for a 3D non-autonomous Brinkman–Forchheimer-Darcy fluid flow in porous
medium. Furthermore, the asymptotic determination of the complete trajectories inside an attractor
via Fourier functionals is shown for a 3D autonomous Brinkman–Forchheimer-extended Darcy model.
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1. Introduction

The celebrated Darcy equation is believed to originate from work in [1]. Darcy’s law
basically shows that the flow rate of fluid in porous materials is proportional to the pressure
gradient. In current terminology, if the flow is in the x-direction and the velocity in that
direction is u, then it can be expressed in the following form

µu = −k
dp
dx

, (1)

where µ, k are viscosity and permeability, and p is the pressure of fluid flow. The constitute
law (1) provides a theoretical description of porous media flow. If the velocity field can be
defined by v = (v1, v2, v3), ρ is the density of fluid and f is the external force, then (1) can
be rewritten as

0 = − ∂p
∂xi
− µ

k
vi + ρ fi, (2)

which describes the flow of a fluid in a saturated porous medium and provides a sufficiently
low flow rate.

If the flow exceeds a certain value, it is considered that the linear relationship of (1) or
(2) is insufficient to accurately describe the velocity field. Forchheimer proposed modifying
the linear velocity/pressure gradient law and replacing it with the nonlinear one. According
to [2,3], the left-hand side of Equation (1) can be replaced by one of three formulae

α = au + bu2, α = mun, α = au + bu2 + cu3, (3)

where α denotes the left-hand side of Equation (1).
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The porous medium is anisotropic ,and the permeability varies along all the directions.
This leads to it appearing as a positive semidefinite matrix in the momentum equation,
which can deduce the Brinkman–Forchheimer flow from (1)–(3) as{

∂tu− ν∆u + au + b|u|u +∇p = f ,

∇ · u = 0.
(4)

The Brinkman–Forchheimer system comes from the conservation law of the fluid in porous
medium as continuous and momentum equations (see [4,5]), which is studied in [6–8] and
the literature therein for the global existence of solutions and dynamic systems. Further-
more, the Brinkman–Forchheimer-Darcy model is always exported by classical Brinkman–
Forchheimer flow and fully developed using the Browder–Minty theorem, which is also
denoted as the Darcy-Forchheimer–Brinkman systems and extensively used in frontier areas
such as petroleum engineering, hydrogeology, reactor engineering, biology, medicine and
so on, see [9–21] and related literature [22,23]. The 3D Brinkman–Forchheimer-extended
Darcy model can be described as

ρ

φ

∂u
∂t

+
µ

κ
u +

ρF√
κ
|u|u +

ρ

φ2∇ · (u⊗ u)− µ

φ
∇2u = −∇p + ρg,

γ
∂p
∂t

+
∂φ

∂t
+∇ · u = f ,

(5)

which constitutes both porous media and clear fluid flow such as oil and gas reservoir
with the unknown velocity field and pressure u and p. Here, F = 1.75√

150φ3
denotes the

Forchheimer number, µ
φ∇2u is the Brinkman term, µ and κ represent the fluid viscosity

and second order flows permeability, ρ and g are the mass density and gravity vector,
respectively, and φ is the porosity. Although there are fruitful results on the mathematical
analysis and numerical simulation for (5) and its extended models in [9,12,13,15–17,20–22]
and literature therein, to the best of our best knowledge, there are fewer results dealing
with the determination of the 3D Brinkman–Forchheimer-extended Darcy flow model,
which is a special case of (5) with dimensionless representation.

The objective of this paper is to determine a 3D dimensionless Brinkman–Forchheimer-

extended Darcy model defined in the periodic domain Ω =
3

∏
i=1

(− Li
2

,
Li
2
) for some Li > 0,

which can be read as
∂tu− ν∆u + (u · ∇)u + a|u|2αu + b|u|2βu +∇p = f ,

∇ · u = 0,

u(t = 0) = u0,

(6)

equipped with periodic boundary conditions

u(x + Lei, t) = u(x, t), i = 1, 2, 3,

where u(x, t) : Ω × (0, ∞) → R3 denotes the velocity field, p(x, t) : Ω × (0, ∞) → R
represents the pressure as scalar function, f is the external force, the parameters α > β ≥ 0
are constants, and a, b are real numbers.

When a = b = 0, (6) reduces to the classical Navier–Stokes equations
∂tu− ν∆u + (u · ∇)u +∇p = f ,

∇ · u = 0,

u(t = 0) = u0.

(7)
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The study of finite dimensional attractors for (7) can be seen in Ladyzhenskaya [24,25] from
the 1960s. Then, the research on the fractal dimension of attractors and inertial manifolds
for systems (7) appeared in [26–29] and the literature therein. Moreover, information on
turbulence, the determining modes, nodes and finite volume elements for 2D Navier–
Stokes equations defined in the smooth domain were investigated in [27,30–35] and for
non-smooth domain in [36].

When the convection term can be neglected and α = 0, β = θ
2 (θ > 0), a > 0, and

b ∈ R, then Equation (6) reduces to generalized Brinkman–Forchheimer equations
∂tu− ν∆u + au + b|u|θu +∇p = f ,

∇ · u = 0,

u(t = 0) = u0.

(8)

The research of well-posedness and regularity of (8) can be seen in [6]. In particular,
when θ ∈ (0, ∞), the localization technique is used in [6] for a regularity argument. The
investigation on attractors and stability of a dynamical system generated by (8) can be
seen in [37–40] and the literature therein. When θ = 2, Equation (8) becomes the classical
Brinkman–Forchheimer equation, and its well-posedness and reduction were studied
in [41].

Inspired from [27,34,42], the determining modes of global solutions for an non-
autonomous system and asymptotic determination of a global attractor for an autonomous
case of (6) are obtained, which have the following features.

(I) The literature [43] presented a weak solution when α > β ≥ 0 and a > 0, b ∈ R and
its uniqueness when α > 1. Similarly, the strong solution and its uniqueness were
shown when α > 1.
Based on the well-posedness and regularity of Equation (6), for a non-autonomous
system, the determining modes for weak and regular solutions have been illustrated.
The key step for achieving determining modes is to find the generalized Grashof
number for porous medium fluid flow. The difficulty lies in the estimation of a trilin-
ear operator and a nonlinear term F(u) = a|u|2αu + b|u|2βu in the three-dimensional
model, which is overcome by combining the utilized regularity estimates of bilin-
ear operators with a monotone operator technique to deal with a nonlinear term
F(u) = a|u|2αu + b|u|2βu from the new definition of generalized Grashof numbers.
Furthermore, the determination can be proved for a weak solution when 0 ≤ β ≤ 1

2 ,
0 < α ≤ 2 and for a regular solution when 1 < α ≤ 7

5 .
(II) The global attractor of an autonomous system (6) can be obtained for the semigroup

generated by the global solution. Consider the complete trajectories inside an attractor;
the asymptotic determination can be constructed via Fourier functionals. The difficulty
lies in the estimation of a non-linear term F(u) = a|u|2αu + b|u|2βu, which can be
overcome by using the generalized Gronwall inequality with an assumption on
averaging integrations for all α > 1.

(III) The regularity and determination for the system (6) with a non-slip boundary condi-
tion are still unknown because of −PL∆ 6= −∆. Especially for the regularity estimates,
the pressure term does not disappear when one uses a localized technique to deal with
convective and nonlinear terms, which need new skills to overcome this difficulty.

(IV) The well-celebrated models (5) and (6) have been chosen as a representative problem
to highlight the utility and numerical simulation. Based on the well-posedness of the
three dimensional Brinkman–Forchheimer-extended Darcy system and related models
in [12,13,16,19–23], the numerical simulations, such as the continuous dependence
on the Forchheimer and Brinkman coefficients and the finite element approximation
for (5) and its extension, have been investigated in [9,14,15,17,18], which present the
effect of increasing Grashof numbers, the parameters (Brinkamn, Forchheimer and
Darcy numbers) and transportation in porous media.
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Comparing with the computation of (6), the determining modes and asymptotic
determination in this paper can give some theoretical analysis for the preparation of
a numerical simulation of fluid flow models and also the description of asymptotic
behaviors, which are important from the viewpoint of mathematical theory and
computation. Moreover, the theoretical analysis presented shows good agreement
with the asymptotic behavior of a numerical approximated solution.

This paper is organized as follows. In Section 2, some preliminaries and some useful
lemmas are given. In Section 3, we give the existence of global weak and regular solutions
under periodic boundary conditions. Section 4 is devoted to the determining modes for a
three-dimensional Brinkman–Forchheimer-extended Darcy model for a non-autonomous
system. In Section 5, the asymptotically determining for the autonomous system will be
shown. The paper concluses with some further results for more general cases.

2. Preliminaries
2.1. Functional Spaces, Symbols and Notations

The functional space L2
per(Ω) consists of all vector fields u with Li−periodic (for

i = 1, 2, 3), and the norm is defined by∫
O
|u(x)|2dx = ‖u‖2

(L2(O))3 .

The space H1
per(Ω) is also well defined as

‖u‖2
(H1(O))3 =

1
L2

∫
O
|u(x)|2dx +

∫
O

3

∑
i=1
| ∂u
∂xi
|2dx.

In the space-periodic case, the spaces V̇per and Ḣper are defined as

Ḣper = {u = ∑
k∈Z3\{0}

ûke2πi k
L x; û−k = ûk ,

k
L
· ûk = 0, ∑

k∈Z3\{0}
|ûk|2 < ∞},

V̇per = {u = ∑
k∈Z3\{0}

ûke2πi k
L x; û−k = ûk ,

k
L
· ûk = 0, ∑

k∈Z3\{0}
| k
L
|2|ûk|2 < ∞}

with the inner products and norms by

(u, v) =
∫

Ω
u(x) · v(x)dx, |u| = (u, u)

1
2 = (

∫
Ω
|u(x)|2dx)

1
2

and

((u, v)) =
∫

Ω

3

∑
i=1

∂u
∂xi

∂v
∂xi

dx, ‖u‖ = (
∫

Ω

3

∑
i=1
| ∂u
∂xi
|2dx)

1
2

respectively. Furthermore, the Poincaré inequality in homogeneous spaces holds with
positive constant λ1 satisfying λ1 ∼ 1

L2 .

2.2. Linear Operators

The Helmholtz–Leray projector is given by

PL : (L2
per(Ω))3 → (Ḣper(Ω))3

and the Stokes operator A is defined as

Au = −PL∆u for all u ∈ D(A) = V̇per ∩ (H2
per(Ω))3.
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Since the Stokes operator A is positive, self-adjoint, it generates a set of eigenvectors
{wm}∞

m=1
Awm = λmwm. m = 1, 2, · · · ,

and {wm}∞
m=1 are the orthonormal basis in Ḣper and corresponding eigenvalues satisfy

0 < λ1 ≤ λ2 · · · ≤ λm ≤ · · · , λm → +∞, as m→ ∞.

In addition, due to the properties of operator A, the fractional powers As (s ∈ R) can be
defined as

Asu =
∞

∑
j=1

λs
j (u, ωj)ωj, u ∈ D(As),

with the domain of As in Ḣper as D(As) = V2s. The inner product of domain D(As) is
defined as

(u, v)D(As) = (Asu, Asv) =
∞

∑
j=1

λ2s
j (u, ωj)(v, ωj)

and norm

||u||D(As) = |Asu| =
( ∞

∑
j=1

λ2s
j |(u, ωj)|2

) 1
2

respectively.
The embeddings D(As) ⊂ Ḣper ⊂ D(A−s) hold (see [27]), where D(A−s) is the dual

space of D(As). In particular, D(A
1
2 ) = V̇per and D(A−

1
2 ) = V̇′per satisfy the continuous

embeddings

V̇per ⊂ Ḣper ⊂ V̇′per,

where V̇′per is the dual space of V̇per, and the first embedding is dense.
The bilinear and trilinear operators on Ω are defined by

B(u, v) =
3

∑
i,j=1

∫
Ω

ui
∂vj

∂xi
dx, u, v ∈ V̇per

and

b(u, v, w) =
3

∑
i,j=1

∫
Ω

ui
∂vj

∂xi
wjdx, u, v, w ∈ V̇per.

The trilinear operator b(·, ·, ·) possesses the following properties
b(u, v, v) = 0, u, v, w ∈ V̇per,

b(u, v, w) = −b(u, w, v), u, v, w ∈ V̇per,

b(u, v, Av) = 0, u ∈ V̇per, v ∈ D(A).

(9)

3. Well-Posedness and Regularity

In this section, the existence and uniqueness of the weak solution and regularity for
the system (6) will be given.
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Theorem 1. (Well-posedness) Suppose that f ∈ L∞(R+; Ḣper), u0 ∈ Ḣper and α > β ≥ 0, a >
0, b ∈ R. Then, problem (6) possesses a weak solution satisfying

u ∈ C0(R+; Hweak) ∩ L∞
loc(R

+; Ḣper) ∩ L2
loc(R

+; V̇per) ∩ L2α+2
loc (R+; L2α+2(Ω)),

and

lim sup
t→∞

|u| ≤ ρ0,

where

ρ0 =

[
1

2ν

(
|| f ||2L∞(R+ ;Ḣper)

+

{[2(1 + 1{b<0})

a
] 1

α + 1{b<0}
[4

a
] β+1

α−β + 2
[ν

a
] α+1

α

}
|Ω|
)] 1

2

,

where Hweak is a weak topology equipped with Ḣper, and 1{b<0} is defined as the characteristic
function of the set {b < 0}. Moreover, if α > 1, then the weak solution is unique.

Proof. The existence of weak solutions can be obtained by the Galerkin method and
compact argument as in [43]. Here, we omit the details.

Theorem 2. (Regularity) Suppose that f ∈ L∞(R+; Ḣper), u0 ∈ V̇per and α > 1, α > β ≥ 0, a >
0, b ∈ R. Then, problem (6) has a unique global strong solution satisfying

u ∈ C0
b(R

+; V̇per) ∩ L2
loc(R

+; D(A)) ∩ L2α+2
loc (R+; L2α+2(Ω))

and

lim sup
t→∞

|∇u| ≤ ρ1,

where

ρ1 =

[
1
ν

{(
2 + (A1 + 1)

[
1 +

1
ν

])
|| f ||2L∞(R+ ;Ḣper)

+ (A1 + 1)
[
η0 +

η1

ν

]}] 1
2

,

with

A1 = 2
{[ να(1 + 2α)

2(1 + 2 · 1{b<0})

] 1
1−α + 1{b<0}

[4β[|b|(1 + 2β)]α

[a(1 + 2α)]β
] 1

α−β

}
,

η0 =
{[2(1 + 2 · 1{b<0})

a
] 1

α + 1{b<0}|b|
[4|b|

a
] β+1

α−β
}
|Ω|, η1 = η0 +

a
2
[ν

a
] α+1

α |Ω|,

which is dependent continuously on initial data. Furthermore, if u0 ∈ L2α+2(Ω), then u ∈
L∞

loc(R
+; L2α+2(Ω)) and ∂tu ∈ L2α+2

loc (R+; L2(Ω)).

Proof. See, e.g., [43] for more details.

4. Determining for a Non-Autonomous System

The section states the determining modes for a non-autonomous system, which needs
some lemmas such as the following for preparation.
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4.1. Some Lemmas

Lemma 1. (See [34]) Let γ(t) and η(t) be two locally integrable real-valued functions that satisfy

lim inf
t→∞

1
T

∫ t+T

t
η(τ)dτ > 0, (10)

lim sup
t→∞

1
T

∫ t+T

t
η−(τ)dτ < ∞,

lim inf
t→∞

1
T

∫ t+T

t
γ+(τ)dτ = 0

for some T > 0, where η− = max{−η(t), 0} and γ+ = max{γ(t), 0}. Assume ξ(t) is an
absolutely continuous nonnegative function on [0, ∞) that satisfies

dξ

dt
+ η(t)ξ 6 γ(t) (11)

almost everywhere on [0, ∞). Then, ξ(t)→ 0 as t→ ∞.

Lemma 2. Assume that Pm is the orthogonal projection from Ḣper to the space spanned by its finite
basis {w1, w2, . . . , wm}. Then,

|Qmu|2 ≤ 1
λm
||Qmu||2, u ∈ V̇per, m ∈ N,

||Pmu||2 ≤ λm|u|2, u ∈ V̇per, m ∈ N, (12)

where Qmu = (I − Pm)u for identity operator I.

Proof. See, e.g., [27] for more detail.

Lemma 3. The Ladyzhenskaya–Agmon inequalities in three-dimensional space is presented as

||u||L4(Ω) ≤ C1|u|
1
4 ||u||

3
4 , u ∈ V̇per,

||u||L∞(Ω) ≤ C1||u||
1
2 |Au|

1
2 , u ∈ D(A). (13)

Proof. See, e.g., [27] for more detail.

Lemma 4. There exist nonnegative constants κ0 = κ(α) and κ̂0 = κ̂0(α) such that

0 ≤ κ0|u− v|2(|u|+ |v|)2α ≤ (|u|2αu− |v|2αv) · (u− v),

and

||u|2αu− |v|2αv| ≤ κ̂0(|u|+ |v|)2α|u− v|.

Proof. See, e.g., [43,44] for more detail.

4.2. The Determining Modes for a Weak Solution

According to [27,32], the generalized Grashof number for medium porous fluid flow
is denoted by

G =
F

λ1ν2 ,

where F = || f ||L∞(t,t+T;Ḣper)
.
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Suppose u and v are the solutions of system (6) with different external force terms f
and g, which satisfy the following systems

∂tu− ν∆u + (u · ∇)u + a|u|2αu + b|u|2βu +∇p = f ,

∇ · u = 0,

u(t = 0) = u0,

(14)

and 
∂tv− ν∆v + (v · ∇)v + a|v|2αv + b|v|2βv +∇q = g,

∇ · v = 0,

v(t = 0) = v0

(15)

respectively.
According to [27], it gives the definition of the Galerkin projection Pm associated with

the first m modes of the Stokes operator. Each solution of (6) can be expanded into the
following form

u(x, t) =
∞

∑
k=1

ûkwk(x) and v(x, t) =
∞

∑
k=1

v̂kwk(x),

where wk is the k-th eigenfunction of the Stokes operator. Then, the Galerkin projection
corresponding to the first (say m) modes are

Pmu(x, t) =
m

∑
k=1

ûkwk(x) and Pmv(x, t) =
m

∑
k=1

v̂kwk(x).

Suppose that the external force terms f and g have the same asymptotic behavior as t
and is large enough

|| f (x, t)− g(x, t)||L∞(t,t+T;Ḣper)
−→ 0, as t→ ∞.

Then, the first m modes are called determining associated with Pm (see [27]), provided that

||Pmu(x, t)− Pmv(x, t)||L∞(t,t+T;Ḣper)
−→ 0, as t→ ∞ (16)

leads to
||u(x, t)− v(x, t)||L∞(t,t+T;Ḣper)

−→ 0, as t→ ∞. (17)

Now, the existence of determining modes for (6) can be shown as follows.

Theorem 3. Suppose that 2 ≥ α > 0, 1
2 ≥ β > 0, and m ∈ N fulfills the following inequality

m ≥ C′(L̃ + LG2)
3
2 , (18)

where
L = (4|b|2κ̂2

0 + 2C′1)(2 + 2νT)λ1,

and

L̃ =
8|b|2κ̂2

0 + 4C′1
ν4λ1

(η1 + 2νη0T) +
4|b|2κ̂2

0 + 2C′1
ν3λ1

e−νt max{|v(0)|2, |u(0)|2}

for the generalized Grashof number G of 3D Brinkman–Forchheimer equations, C′ > 0 is a
parameter which depends on the shape of Ω only. Then, the first m modes are called determining
associated with Pm for (6) equipped with a periodic boundary condition.
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Proof. Let u and v be the two solutions of (14) and (15), respectively. The forcing terms f
and g satisfy ‖ f (t)− g(t)‖L∞(t,t+T;Ḣper)

→ 0 as t → ∞. Denote w = u− v. Our goal is to
show that if

‖Pmw(t)‖L∞(t,t+T;Ḣper)
→ 0, as t→ ∞,

then ‖w(t)‖L∞(t,t+T;Ḣper)
→ 0, as t→ ∞. To reach the goal, it is sufficient to show that

‖Qmw(t)‖L∞(t,t+T;Ḣper)
→ 0, as t→ ∞.

Next, we mainly take advantage of Lemma 1 to achieve our goal.

Step 1: The estimate of |Qmω|
Subtract (15) from (14), it yields the following equation{

∂tw + νAw + B(u, w) + B(w, v) + a(|u|2αu− |v|2αv) + b(|u|2αu− |v|2αv) = f − g,

w(t = 0) = u0 − v0.
(19)

Taking the inner product of (19) with Qmw in Ḣper, we derive

1
2

d
dt
|Qmw|2 + ν||Qmw||2 + b(u, w, Qmw) + b(w, v, Qmw) + a(|u|2αu− |v|2αv, Qmw)

+ b(|u|2βu− |v|2βv, Qmw) = ( f − g, Qmw). (20)

The last four terms on the left side of the above equation will be estimated as follows.
For simplicity, denote Ii(i = 1, 2, 3, 4) as

I1 = b(u, w, Qmw),

I2 = b(w, v, Qmw),

I3 = a(|u|2αu− |v|2αv, Qmw),

I4 = b(|u|2βu− |v|2βv, Qmw).

By Ladyzhenskaya–Agmon’s, Hölder’s and Young’s inequalities, note that b(u, Qmw, Qmw) =
0. The estimates of I1, I2 are presented as

I1 = b(u, w, Qmw) = b(u, Pmw, Qmw) + b(u, Qmw, Qmw)

≤ |b(u, Pmw, Qmw)|

≤ C1|u|
1
4 ||u||

3
4 ||Qmw|||Pmw|

1
4 ||Pmw||

3
4

and

I2 = b(Pmw, v, Qmw) + b(Qmw, v, Qmw)

with

b(Pmw, v, Qmw) ≤ C1||Pmw||L4(Ω)||v||L4(Ω)||Qmw||

≤ C1|v|
1
4 ||v||

3
4 ||Qmw|||Pmw|

1
4 ||Pmw||

3
4 ,

b(Qmw, v, Qmw) ≤ C1||v||Qmw|
1
2 ||Qmw||

3
2

≤ C1

ν
||v||4|Qmw|2 + ν

4
||Qmw||2.
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The estimates of I3 can be given by

I3 = a(|u|2αu− |v|2αv, Qmw)

= a(|u|2αu− |v|2αv, w)− a(|u|2αu− |v|2αv, Pmw)

≥ −a(|u|2αu− |v|2αv, Pmw)

and

a(|u|2αu− |v|2αv, Pmw) ≤ aκ̂0

∫
Ω
|w|(|u|2α + |v|2α)|Pmw|dx

≤ aκ̂0||w|| ||Pmw||(||u||2α
L2α+2(Ω) + ||v||

2α
L2α+2(Ω))

≤ aC0||Pmw||2(||u||2α+2
L2α+2(Ω)

+ ||v||2α+2
L2α+2(Ω)

+ 1)

+ aC0||Qmw|| ||Pmw||(||u||2α+2
L2α+2(Ω)

+ ||v||2α+2
L2α+2(Ω)

+ 1),

where 0 < α ≤ 2 comes from α
α+1 ≤

2
3 .

By a similar technique as above, I4 can be estimated by

I4 = b(|u|2βu− |v|2βv, Qmw) ≤ |b|κ̂0

∫
Ω
|w|(|u|2β + |v|2β)|Qmw|dx

≤ |b|κ̂0||w||(||u||
2β

L2β+2(Ω)
+ ||v||2β

L2β+2(Ω)
)|Qmw|

≤ |b|κ̂0||Qmw||(||u||2β

L2β+2(Ω)
+ ||v||2β

L2β+2(Ω)
)|Qmw|

+ |b|κ̂0||Pmw||(||u||2β

L2β+2(Ω)
+ ||v||2β

L2β+2(Ω)
)|Qmw|,

where 0 < β ≤ 1
2 comes from β

β+1 ≤
1
3 . The combination of V̇per ↪→ L2β+2(Ω) with

Hölder’s and Young’s inequalities results in

I4 ≤
2|b|2κ̂2

0
ν

sup(||u||4β, ||v||4β)|Qmw|2 + ν

4
||Qmw||2

+ |b|C′0(||u||
2β+2
L2β+2(Ω)

+ ||v||2β+2
L2β+2(Ω)

+ 1)||Pmw|| |Qmw|.

Substitute the estimates of Ii into Equation (20). This leads to

d
dt
|Qmw|2 + (νλm+1 −

4|b|2κ̂2
0

ν
sup(||u||4β, ||v||4β)− 2C1

ν
||v||4)|Qmw|2 ≤ γ(t), (21)

where

γ(t) = C1|u|
1
4 ||u||

3
4 ||Qmw|||Pmw|

1
4 ||Pmw||

3
4

+ C1|v|
1
4 ||v||

3
4 ||Qmw|||Pmw|

1
4 ||Pmw||

3
4

+ aC0||Pmw||2(||u||2α+2
L2α+2(Ω)

+ ||v||2α+2
L2α+2(Ω)

+ 1)

+ aC0||Qmw|| ||Pmw||(||u||2α+2
L2α+2(Ω)

+ ||v||2α+2
L2α+2(Ω)

+ 1)

+ |b|C′0||Pmw||(||u||2β+2
L2β+2(Ω)

+ ||v||2β+2
L2β+2(Ω)

+ 1)|Qmw|+ | f − g||Qmw|.

Let ξ(t) = |Qmw|2 and η(t) = νλm+1 −
4|b|2κ̂2

0
ν sup(||u||4β, ||v||4β)− 2C′1

ν ||v||2. Then,
(21) satisfies the form (11) in Lemma 1.

Step 2: The estimate of
∫ t+T

t ||u||2dτ
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According to Theorem 1, the energy estimate of a weak solution yields

2ν
∫ t+T

t
||u||2ds + a

∫ t+T

t
||u||2α+2

L2α+2(Ω)
ds ≤ 2(|| f ||2L∞(t,t+T;Ḣper)

+ η0)T + |u0|2e−νt

+
2
ν
(|| f ||2L∞(t,t+T;Ḣper)

+ η1),

which results in

||u||2L2(t,t+T;V̇per)
≤ 1

ν
e−νt|u(0)|2 + 2 + 2νT

ν2 || f ||2L∞(t,t+T;Ḣper)
+

2η1 + 2νη0T
ν2 ,

In particular, if the forcing term f belongs to L∞(t, t + T; Ḣper), the boundedness of u in the
space L2(t, t + T; V̇per) can be deduced, which will be used in the next step.

Step 3: Determining modes
The results in Steps 1 and 2 lead to

1
T

∫ t+T

t
η(s)ds =

1
T

∫ t+T

t
νλm+1 −

4|b|2κ̂2
0

ν
sup(||u||4β, ||v||4β)−

2C′1
ν
||v||2ds

≥ νλm+1 −
(4|b|2κ̂2

0 + 2C′1)(2 + 2νT)
ν3 F2

−
4|b|2κ̂2

0 + 2C′1
ν2 e−νt max{|v(0)|2, |u(0)|2}

−
8|b|2κ̂2

0 + 4C′1
ν3 (η1 + 2νη0T) > 0,

where C′1 is a constant independent of t and x.
From [26], the approximation of eigenvalues fora Stokes operator with a periodic

boundary satisfying averaging zero and a non-slip case can be given by

λm ∼ Cλ1m
2
d , d = 2 or 3,

Thus, we derive
m ≥ C′(L̃ + LG2)

3
2 ,

where
L = (4|b|2κ̂2

0 + 2C′1)(2 + 2νT)λ1

and

L̃ =
8|b|2κ̂2

0 + 4C′1
ν4λ1

(η1 + 2νη0T) +
4|b|2κ̂2

0 + 2C′1
ν3λ1

e−νt max{|v(0)|2, |u(0)|2}.

Therefore, combining the results in the above steps, we conclude that m-modes satisfy
inequality (18). This implies that Pmu is the determining mode for the weak solution of (6).
The proof is finished.

4.3. Determining Modes for a Regular Solution

The definition of determining modes for the regular solution of (6) is similar to the
case for the weak solution, which only needs to prove

||u(x, t)− v(x, t)||L∞(t,t+T;V̇per)
−→ 0 as t→ ∞. (22)

Now, the determining modes for the regular solution of (6) are given as follows.
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Theorem 4. Suppose that 1 < α ≤ 7
5 and m ∈ N satisfy

m ≥ C′
[

Kν2λ1G2 +

{
2C(ν) + 2κ̃|b|(2β + 1) + 2κa(2α + 1)

+ 2C(ν)
[
a8(2α + 1)8 + |b|8(2β + 1)8]}A1η0

ν2λ1

] 3
2

, (23)

where

K =

{
C(ν) + κ̃|b|(2β + 1) + κa(2α + 1) + 2C(ν)

[
a8(2α + 1)8 + |b|8(2β + 1)8]}(2 +A1)

for the generalized Grashof number G of 3D Brinkman–Forchheimer equations, C′ > 0 is a
parameter which depends on the shape of Ω only. Then, the first m modes are called determining
modes associated with Pm for a regular solution of (6).

Proof. Similar to the technique in the proof of Theorem 3, we only need to show that

‖Qmw(t)‖L∞(t,t+T;V̇per)
→ 0, as t→ ∞,

for ‖Pmw(t)‖L∞(t,t+T;Ḣper)
→ 0 and ‖ f (t)− g(t)‖L∞(t,t+T;Ḣper)

→ 0 as t→ ∞.

Step 1: The estimate of ‖Qmω‖
Taking the inner product of (19) with AQmw in Ḣper, we obtain

1
2

d
dt
||Qmw||2 + ν|AQmw|2 + b(u, w, AQmw) + b(w, v, AQmw)

+ a(|u|2αu− |v|2αv, AQmw) + b(|u|2βu− |v|2βv, AQmw) = ( f − g, AQmw).

(24)

For simplicity, denote Ji(i = 1, 2, 3, 4) as

J1 = b(u, w, AQmw),

J2 = b(w, v, AQmw),

J3 = a(|u|2αu− |v|2αv, AQmw),

J4 = b(|u|2βu− |v|2βv, AQmw).

The trilinear operator J1 is estimated by

J1 = b(u, w, AQmw) = b(u, Pmw, AQmw) + b(u, Qmw, AQmw)

≤ |b(u, Pmw, AQmw)|

≤ C1||u||
1
2 |Au|

1
2 ||Pmw|| |AQmw|.

Since b(u, Qmw, AQmw) = 0 in the periodic case in [27], the equality

b(v, u, Au) + b(u, v, Au) + b(u, u, Av) = 0, u, v ∈ D(A)

leads to

J2 = b(w, v, AQmw) = b(Pmw, v, AQmw)− b(w, Qmw, AQmw)− b(Qmw, Qmw, Av)

= b(Pmw, v, AQmw)− b(Qmw, Qmw, Av)



Fractal Fract. 2023, 7, 146 13 of 20

with estimates

b(Pmw, v, AQmw) ≤ C1||Pmw||L∞(Ω)||v|| |AQmw|

≤ C1||Pmw||
1
2 |APmw|

1
2 ||v|| |AQmw|

and

b(Qmw, Qmw, Av) ≤ C1||Qmw||
3
2 |AQmw|

1
2 |Av|

≤ C(ν)|Av|
4
3 ||Qmw||2 + ν

6
|AQmw|2.

Since A = −∆ in the periodic case, the Hölder and Young inequalities result in

J3 = a(|u|2αu− |v|2αv, AQmw)

= a(2α + 1)
∫

Ω
(|u|2α∇u− |v|2α∇v) · ∇Qmwdx

= a(2α + 1)
∫

Ω
(|u|2α∇u− |u|2α∇v + |u|2α∇v− |v|2α∇v) · ∇Qmwdx

= a(2α + 1)
∫

Ω
(|u|2α − |v|2α)∇v · ∇Qmwdx + a(2α + 1)

∫
Ω
|u|2α∇w · ∇Qmwdx

≤ a(2α + 1)
∫

Ω
f ′(ϕ)w∇v · ∇Qmwdx + a(2α + 1)

∫
Ω
|u|2α∇w · ∇Qmwdx

≤ a(2α + 1)κ|Av| ||w|| |∇Qmw|+ a(2α + 1)||u||2α
L2α+2(Ω)|Aw| ||Qmw||

1
4 ||AQmw|

3
4 ,

where 1 < α ≤ 7
5 , κ = 2α||ϕ||2α−1

L∞(Ω)
, ϕ lies in u and v. Hence, the further estimate of J3

J3 ≤ κa(2α + 1)|Av| ||Pmw|| ||Qmw||+ κa(2α + 1)|Av| ||Qmw||2

+ a(2α + 1)||u||2α
L2α+2(Ω)|APmw| ||Qmw||

1
4 ||AQmw|

3
4

+ a(2α + 1)||u||2α
L2α+2(Ω)||Qmw||

1
4 ||AQmw|

7
4

≤ κa(2α + 1)|Av| ||Pmw|| ||Qmw||+ κa(2α + 1)|Av| ||Qmw||2

+ a(2α + 1)||u||2α
L2α+2(Ω)|APmw| ||Qmw||

1
4 ||AQmw|

3
4

+ C(ν)a8(2α + 1)8||u||16α||Qmw||2 + ν

6
|AQmw|2

holds from V ↪→ L2α+2(Ω).
Similarly, the estimate of J4 can be obtained

J4 ≤ κ̃|b|(2β + 1)|Av| ||Pmw|| ||Qmw||+ κ̃|b|(2β + 1)|Av| ||Qmw||2

+ |b|(2β + 1)||u||2β

L2β+2(Ω)
|APmw| ||Qmw||

1
4 ||AQmw|

3
4

+ C(ν)|b|8(2β + 1)8||u||16β||Qmw||2 + ν

6
|AQmw|2,

where κ̃ = 2β||ϕ||2β−1
L∞(Ω)

.
Substitute the estimate of Ji into (24). This yields

d
dt
||Qmw||2+

{
νλm+1 − C(ν)|Av|

4
3 − C(ν)a8(2α + 1)8||u||16α

− C(ν)|b|8(2β + 1)8||u||16β − κa(2α + 1)|Av|
− κ̃|b|(2β + 1)|Av|

}
||Qmw||2 ≤ γ(t), (25)



Fractal Fract. 2023, 7, 146 14 of 20

where

γ(t) = C1||u||
1
2 |Au|

1
2 ||Pmw|| |AQmw|

+ C1||Pmw||
1
2 |APmw|

1
2 ||v|| |AQmw|

+ κa(2α− 1)|Av| ||Pmw|| ||Qmw||

+ a(2α + 1)||u||2α
L2α+2(Ω)|APmw| ||Qmw||

1
4 ||AQmw|

3
4

+ |b|(2β + 1)||u||2β

L2β+2(Ω)
|APmw| ||Qmw||

1
4 ||AQmw|

3
4

+ κ̃|b|(2β− 1)|Av| ||Pmw|| ||Qmw||+ | f − g||AQmw|.

Setting ξ(t) = ||Qmw||2 and

η(t) =νλm+1 − C(ν)|Av|
4
3 − C(ν)a8(2α + 1)8||u||16α

− C(ν)|b|8(2β + 1)8||u||16β − κa(2α + 1)|Av|
− κ̃|b|(2β + 1)|Av|,

we conclude that (25) satisfies the form (11) in Lemma 1.

Step 2: The estimate of
∫ t+T

t |Au|2dτ
According to Theorem 2, we obtain the energy estimate of a regular solution

||u||2L∞(t,t+T;V̇per)
≤ 2

ν

[
(2 +A1)|| f ||L∞(t,t+1;Ḣper)

+A1η0
]
T

and
‖Au‖2

L2(t,t+T;Ḣper)
≤ 1

ν2

[
(2 +A1)|| f ||L∞(t,t+1;Ḣper)

+ 2A1η0
]
T.

In particular, the hypothesis f ∈ L∞(t, t + T; Ḣper) leads to the boundedness of u in
the spaces L2(t, t + T; D(A)), L∞(t, t + T; V̇per), which will be used in the next step.

Step 3: Determining modes
It remains to check the similar condition (10) in Lemma 1.
From the results in the above steps, we can see that

1
T

∫ t+T

t
η(s)ds =

1
T

∫ t+T

t

{
νλm+1 − C(ν)|Av|

4
3 − C(ν)a8(2α + 1)8||u||16α

− C(ν)|b|8(2β + 1)8||u||16β − κa(2α + 1)|Av|

− κ̃|b|(2β + 1)|Av|
}

ds

≥ νλm+1 −
κ̃|b|(2β + 1) + κa(2α + 1) + C(ν)

ν2

[
(2 +A1)F2 + 2A1η0

]
− 2

C(ν)
[
a8(2α + 1)8 + |b|8(2β + 1)8]

ν

[
(2 +A1)F2 +A1η0

]
= νλm+1 − K

F2

ν2 −
{

2C(ν) + 2κ̃|b|(2β + 1) + 2κa(2α + 1)

+ 2C(ν)
[
a8(2α + 1)8 + |b|8(2β + 1)8]}A1η0

ν2

> 0.

The estimate
λm ∼ Cλ1m

2
3
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leads to

m ≥ C′
[

Kν2λ1G2 +

{
2C(ν) + 2κ̃|b|(2β + 1) + 2κa(2α + 1)

+ 2C(ν)
[
a8(2α + 1)8 + |b|8(2β + 1)8]}A1η0

ν2λ1

] 3
2

,

where

K =

{
C(ν) + κ̃|b|(2β + 1) + κa(2α + 1) + 2C(ν)

[
a8(2α + 1)8 + |b|8(2β + 1)8]}(2 +A1).

Hence, we conclude that m satisfies inequality (23). The first m modes associated with
Pmu are the determining modes for a regular solution of (6).

The proof of Theorem 4 is completed.

4.4. Some Remarks

In addition, some related topics will be stated in this section.
(I) Consider the following data assimilation algorithm with periodic boundary condi-

tion 
∂tu− ν∆u + (u · ∇)u + a|u|2αu + b|u|2βu +∇p = f + µ(Ih(u)− Ih(v)),

∇ · u = 0,

u(t = 0) = u0,

(26)

where µ is a nudging parameter, Ih(u) is an interpolation operator, and h denotes spatial
resolution of the collected measurements. In [43], the following types of interpolation
operators are mainly considered. The first operator I1

h : H1 −→ L2(Ω) is linear satisfying

||φ− I1
h (φ)||

2
L2(Ω) ≤ c0h2||∇φ||2L2(Ω), (27)

for every φ ∈ H1(Ω), where c0 > 0 is a dimensionless constant.
The second operator I2

h : H2(Ω) −→ L2(Ω) is also linear satisfying

||φ− I2
h (φ)||

2
L2(Ω) ≤ c0h2||∇φ||2L2(Ω) + c1h4||∆φ||2L2(Ω), (28)

for every φ ∈ H2(Ω), where c1 > 0 is a dimensionless constant.
In [43], Titi studied the well-posedness and regularity of weak solutions for different

interpolations Ih. Based on well-posedness and regularity of weak solutions, it is possible
to study the determining modes for systems (26). The main difficulty lies in dealing with
the term of µ(Ih(u)− Ih(v)).

(II) The three-dimensional MHD model of electrically conducting fluid in a porous
medium with periodic boundary conditions is described as

∂tu− ν∆u + (u · ∇)u− b · ∇b + a|u|2αu +∇p = 0,

∂tb + κ∇× (∇× b) + u · ∇b− b · ∇u = 0,

∇ · u = 0, u(t = 0) = u0, b(t = 0) = b0,

(29)

where u is the fluid velocity, b is the magnetic field, and p is the pressure. The viscosity
ν, resistivity κ and a, α are nonnegative constants. The first equation of (29) is about the
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porous medium on domain Ω, and the second one is the magnetic field evolution equation.
In particular, if ∇ · b = 0, it can be concluded that

∂tu− ν∆u + (u · ∇)u− b · ∇b + a|u|2αu +∇p = 0,

∂tb− κ∆u + u · ∇b− b · ∇u = 0,

∇ · u = 0, u(t = 0) = u0, b(t = 0) = b0.

(30)

For system (30), Titi investigated global well-posedness and regularity in [45]. It is possible
to study the determining modes for systems (30). However, the system (30) is coupled with
two equations, which leads to more difficulty than the Brinkman–Forchheimer extended
Darcy model.

5. The Asymptotically Determining for an Autonomous System

Consider the Brinkman–Forchheimer-extended-Darcy equation in the periodic case
∂tu− ν∆u + (u · ∇)u + a|u|2αu + b|u|2βu +∇p = f (x),

∇ · u = 0,

u(t = 0) = u0.

(31)

By using the Leray projector PL to (31), the autonomous system (31) is transformed into{
∂tu + νAu + B(u) + F(u) = f (x),

∇ · u = 0,
(32)

where f := PL f (x), A = −∆, B(u) := PL(u · ∇)u and F(u) = PL(a|u|2αu + b|u|2βu).
Based on the well-posedness of system (32), the existence of a global attractor can be

stated as follows.

Theorem 5. Assume the hypotheses in Theorems 1 and 2 hold for an autonomous system (32).
Then, the problem (32) with a periodic boundary condition possesses a global attractor A ∈ Ḣper for
semigroup S(t) : Ḣper → Ḣper generated by a global weak solution.

Proof. The proof is similar to the procedure in [6], which will be skipped here.

Consider the system F = {F1, · · · , Fm}, where Fi are the Fourier modes Fi = (u, wi)

for u =
∞

∑
i=1

(u, wi)wi. Then, the asymptotic determination is defined via the functional F as

follows.

Definition 1. Assume that u1(t) and u2(t) are the two trajectories of the global attractor of problem
(32). Then, the dynamic system (Ḣper, S(t)) is called asymptotically determining if there exists a
system F such that

Fn(u1(t))− Fn(u2(t)) = 0 as t→ ∞

implies that
lim
t→∞
||u1(t)− u2(t)||Ḣper

= 0 f or all n = 1, · · · , m.

Next, the asymptotically determining of trajectories inside a global attractor can be
proved via the system F when m is large enough.

Theorem 6. Suppose that m ∈ N satisfies

m ≥ C′(
νσ

1
1−α + 2|b|κ̂0[

1
σ ]

β
α−β

ν2λ1
)

3
2 ,
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where σ = aκ0
2|b|κ̂0+

1
ν

and C′ is a positive constant. Then, F is asymptotically determining for the

dynamic system generated by (32) with the periodic boundary.

Proof. Let u and v be two trajectories inside a global attractor. Suppose that Pm(u(t)−
v(t)) = 0 for t ∈ R+. Then, w(t) = u(t)− v(t) satisfies{

∂tw + νAu + B(u, w) + B(w, v) + a(|u|2αu− |v|2αv) + b(|u|2βu− |v|2βv) = 0,

w(t = 0) = u0 − v0.
(33)

Take the inner product of (33) with w(t). This leads to

1
2

d
dt
|w|2 + ν||w||2 + b(w, v, w) + a(|u|2αu− |v|2αv, w) + b(|u|2βu− |v|2βv, w) = 0. (34)

For any α > 1, by the Hölder and Young inequalities, we deduce

|b(w, v, w)| ≤
∫

Ω
|v||w||∇w|dx

≤
∫

Ω
|v||w|

1
α |w|1−

1
α |∇w|dx

≤ |||v||w|
1
α ||L2α(Ω)|||w|1−

1
α ||

L
2α

α−1 (Ω)
||w||

≤ σ

2ν
||v|αw|2 + σ

1
1−α

2ν
|w|2 + ν

2
||w||2 (35)

and

b
∫

Ω
(|u|2βu− |v|2βv)wdx ≤ |b|κ̂0

∫
Ω
(|u|+ |v|)2β|w|2

β
α |w|2(1−

β
α )dx

≤ |b|κ̂0|(|u|+ |v|)α|w||2
β
α |w|2

α−β
α

≤ σ|b|κ̂0|(|u|+ |v|)α|w||2 + |b|κ̂0
[ 1

σ

] β
α−β |w|2 (36)

because of

a
∫

Ω
(|u|2βu− |v|2βv)wdx ≥ aκ0

∫
Ω
|w|2(|u|+ |v|)2αdx

= aκ0|(|u|+ |v|)α|w||2 (37)

from Lemma 4.
Substituting (35)–(37) into (34), we obtain

d
dt
|w|2 + ν||w||2 + (2aκ0 − 2σ|b|κ̂0 −

σ

ν
)|(|u|+ |v|)α|w||2 ≤ (

σ
1

1−α

ν
+ 2|b|κ̂0

[ 1
σ

] β
α−β )|w|2. (38)

Choose appropriate σ = aκ0
2|b|κ̂0+

1
ν

such that 2aκ0 − 2σ|b|κ̂0 − σ
ν = aκ0 > 0. This results in

d
dt
|w|2 +

{
νλm+1 − (

σ
1

1−α

ν
+ 2|b|κ̂0

[ 1
σ

] β
α−β )

}
|w|2 ≤ 0 (39)

from (38).
The Gronwall inequality gives the boundedness

|w|2 ≤ |w0|2e−Lt, (40)

where L = νλm+1 − ( σ
1

1−α

ν + 2|b|κ̂0
[ 1

σ

] β
α−β ) > 0, which lead to |w|2 → 0 as t→ ∞.
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Since λm ∼ Cλ1m
2
3 , F is asymptotically determining for the dynamic system gener-

ated by (32) when m satisfies

m ≥ C′(
νσ

1
1−α + 2|b|κ̂0[

1
σ ]

β
α−β

ν2λ1
)

3
2 ,

where σ = aκ0
2|b|κ̂0+

1
ν

. The poof is completed.

6. Conclusions and Further Research

This paper has presented the determining modes and asymptotic determination of the
3D incompressible Brinkman–Forchheimer extended Darcy system for non-autonomous
and autonomous cases, respectively, under assumptions on generalized Grashof numbers
related to modes, which are the basis of theoretical analysis for finite element computation
and long-time behavior for the porous medium occupied by fluid flow, especially the
tracking property of complete trajectories for the dynamic systems. Furthermore, the
determining modes and finite element volumes for the presented model in this paper are
more interesting, which need further consideration in research.
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