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Abstract: The solution of partial differential equations has generally been one of the most-vital
mathematical tools for describing physical phenomena in the different scientific disciplines. The
previous studies performed with the classical derivative on this model cannot express the propagating
behavior at heavy infinite tails. In order to address this problem, this study addressed the fractional
regularized long-wave Burgers problem by using two different fractional operators, Beta and M-
truncated, which are capable of predicting the behavior where the classical derivative is unable
to show dynamical characteristics. This fractional equation is first transformed into an ordinary
differential equation using the fractional traveling wave transformation. A new auxiliary equation
approach was employed in order to discover new soliton solutions. As a result, bright, periodic,
singular, mixed periodic, rational, combined dark–bright, and dark soliton solutions were found based
on the constraint relation imposed on the auxiliary equation parameters. The graphical visualization
of the obtained results is displayed by taking the suitable parametric values and predicting that the
fractional order parameter is responsible for controlling the behavior of propagating solitary waves
and also providing the comparison between fractional operators and the classical derivative. We are
confident about the vital applications of this study in many scientific fields.

Keywords: solitary wave solutions; beta derivative; M-truncated derivative; nonlinear partial
differential equation

1. Introduction

Nonlinear partial differential equations (NLPDEs) are extensively applied in several
domains of science to depict complex phenomena, such as biology, chemistry, and physics.
In order to provide sufficient information for understanding physical phenomena occur-
ring in a variety of science and engineering domains, multiple methods for finding the
exact and approximate solutions to nonlinear partial differential equations [1,2] have been
established. The extraction of the exact solution is one of the most-glowing avenues for
partial differential equations in modern sciences. This importance has led to the creation
and use of a variety of techniques in this area. There has been significant advancement
in the fundamental choice and creation of innovative analytical techniques for obtaining
solitons for these models [3]. However, there has recently been a noticeable movement in
interest toward fractional-order NLPDEs [4,5].

Despite the early popularity of fractional calculus, effective tools for solving fractional-
order derivative challenges, such as the Riemann–Liouville and Caputo fractional deriva-
tives, did not arise until much later [6,7]. Nonetheless, the majority of the well-known
definitions acknowledge some limits. Namely, the chains, quotients, and product rules,
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for example, are all invalid. Engineering, fluid mechanics, physics, control theory, plasma
physics, biology, and fractional dynamics are just a few of the domains where fractional
calculus has aroused much interest recently [8–10]. Because fractional-order derivatives can
be used to circumvent the drawbacks of integer-order derivatives, scientists and researchers
have been fascinated by them. To investigate fractional integrals and fractional derivatives
for limited measurable functions, one uses fractional calculus. It has a variety of com-
pelling characteristics that classical calculus cannot explain. Fractional nonlinear evolution
models, as a result, are an area of great interest in mathematics and engineering [11,12].
Only fractional operators can accurately depict the effects of crossover and fading memory
in many physical models. A thorough understanding of dynamics is made possible by
fractional systems. On the other side, Beta and M-truncated derivatives are receiving much
attention [13,14]. These operators have been successfully used to study numerous issues in
science and other domains [15–17].

There have been numerous studies of traveling solutions in space–time fractional
nonlinear optics. One of the most-significant basic needs of researchers in numerous
branches of science has been to find exact solutions for differential equations with partial
derivatives [18,19]. As a result of its importance, numerous methods have been developed
and implemented in this area [20,21]. In recent years, a hot topic in science and engineering
has been the study of analytical and numerical solutions to mathematical models that
represent well-known phenomena. Optical fibers, plasma physics, biology, ion acoustic
waves, stochasticity, and other fields are among those affected [22,23]. Nadeem et al. [24]
and Khan et al. [25] investigated the nonlinear-Schrödinger-type equations and established
the analytical solutions by using different analytical techniques. The nonlinear fractional
models have a wide range of application in different fields of disease and predict better cure
and caution [26,27]. Specifically, enormous optical fiber parameters were employed by the
optical soliton, which assisted in the production of the latter. Nonlinearities and dispersion
are the most-commonly used parameters to study the behavior of solitons. Solitons are,
in fact, one of the most-noticeable features of nonlinear dynamics. The authors in [28,29]
recently developed specific analytical techniques to find solutions to the equation under
consideration. The authors of [30] used Hirota’s approach to study the soliton solutions and
bi-linear forms of the described model, as well as the instability requirements for the soliton
solutions. Reference [31] provides the exact traveling wave solutions of the suggested
equation using a modified simple equation. Wang [32] investigated the modified Benjamin–
Bona–Mahony and developed the numerous types of solitons by using the variational
direct extended method and He’s frequency formulation method. Liu et al. [33] obtained
the fractional symmetry infinitesimal generators of the time fractional dissipative Burgers
equation. Akbar et al. [34] applied the Kudryashov scheme to the nonlinear Schrödinger
equation and constructed the generalized soliton solutions. Siddique et al. [35] studied
the fraction soliton solutions of the generalized reaction Duffing model by using three
different analytical techniques. The analysis of traveling wave solutions to fractional
differential equations has been approached in a variety of ways. The truncated approach,
semi-inverse, new extended direct algebraic method, the tanh-method, the exponential
generalized method, as well as the homotopy method are among the most common [36,37].
This article computes the traveling wave solutions of the fractional regularized long-wave
(RLW) problem using the new auxiliary equation method (NAEM). Many models, includ-
ing the KdV equation, coupled Boussinesq and Burgers models, fractional WBBM equation,
Krankel Manna Merle system, and others, have been analyzed using the suggested tech-
nique [38–40]. There are many different families of solutions for executing this technique.
The goal of this project is to not only find exact solutions to the RLW problem, but also to
do the comparison of the results using fractional operators and to perform a sensitivity
study of the system.
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The following is how the rest of the article is organized. Section 2 represents the basics
of fractional calculus. In Section 3, we go over how to use the NAEM to generate soliton
solutions. In Section 4, we apply the approach for the fractional RLW and find out the
solutions. Section 5 includes a graphical representation of the acquired solutions, as well as
a comparative approach to the results. In Section 6, the sensitivity of the system is given.
Finally, Section 7 presents the conclusion of the work.

2. Basic Preliminaries

Some basic definitions of fractional calculus are mentioned in this section.

2.1. Beta Derivative

Definition 1. The definition of the fractional Beta derivative is [41]

A
0 Dω

ϕ (g(ϕ)) = lim
ε→0

g
(

ϕ + ε(ϕ + 1
Γ(ω)

)1−ω

)
− g(ϕ)

ε
,

as well as the properties:

Theorem 1. If 0 < ω ≤ 1, α, β ∈ R, g, and h are the functions of ω order at the φ > 0 given
point, then

1: A
0 Dω

ϕ (α g(ϕ) + β h(ϕ)) = αA
0 Dω

ϕ g(ϕ) + βA
0 Dω

ϕ h(ϕ).

2: Dω
ϕ (c) = 0.

3: A
0 Dω

ϕ (g(ϕ) ∗ h(ϕ)) = h(ϕ)A
0 Dω

ϕ g(ϕ) + g(ϕ)A
0 Dω

ϕ h(ϕ).

4: A
0 Dω

ϕ

(
g(φ)
h(ϕ)

)
= φ

d g(φ)
dφ

.

5: A
0 Dω

ϕ

(
g(ϕ)

h(ϕ)

)
=

h(ϕ)A
0 Dω

ϕ g(ϕ)− g(ϕ)A
0 Dω

ϕ h(ϕ)

h2(ϕ)
;

taking ε =

(
ϕ + 1

Γ(ω)

)1−ω

b, ε→ 0 when b→ 0, then we have

A
0 Dω

ϕ g(ϕ) =

(
ϕ +

1
Γ(ω)

)1−ω d g(ϕ)

dϕ
.

2.2. M-Truncated Derivative

Definition 2. The single-parameter truncated Mittag–Leffler function [42] is defined as

iEθ(z) =
i

∑
k=0

zk

Γ(θk + 1)
,

in which θ > 0 and z ∈ C. Suppose that f : [0, ∞) → R and ω ∈ (0, 1), then the M-truncated
derivative of f of order ω is defined by

iD
ω,θ
M f (φ) = lim

ε→0

f (φiEθ(εφ−ω))− f (φ)
ε

,

for φ > 0 and iEθ(.), θ > 0.
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Theorem 2. Suppose that g is a differentiable function of ω order at φ0 > 0 with ω ∈ (0, 1] and
θ > 0, then f is continuous at φ0.

Theorem 3. If ω ∈ (0, 1], θ > 0, f , and h are differentiable up to ω order at φ > 0, then,
1- Dω,θ

M (r f (φ) + f h(φ)) = rDω,θ
M ( f (φ)) + sDω,θ

M (h(φ)), where r and s are real constants.

2- Dω,θ
M (φω) = ωφ1−ω, ω ∈ R.

3- Dω,θ
M ( f (φ)h(φ)) = f (φ)Dω,θ

M (h(φ)) + h(φ)Dω,θ
M ( f (φ)).

4- Dω,θ
M ( f (φ)

h(φ) ) =
f (φ)Dω,θ

M (h(φ))−h(φ)Dω,θ
M ( f (φ))

h(φ)2 .

5- Dω,θ
M ( f )(φ) = φ1−ω

Γ(θ+1)
d f
dφ .

6- Dω,θ
M ( f ◦ h)(φ) = g′(h(φ))Dω,θ

M h(φ).

3. Application of the NAEM

In this section, we simply use the proposed technique to find soliton solutions to the
RLW problem using Beta and M-truncated fractional derivatives. The graphs of the acquired
solutions are illustrated by adjusting the fractional parameter β to appropriate values.

Description of the NAEM

Consider the following nonlinear evolution equation for ψ(x, t):

G(ψ, ψx, ψt, ψxx, ψψxx, ψtt, . . .) = 0, (1)

where G indicates a ψ polynomial function with independent variables x and t. To turn
Equation (1) into a simple form of ordinary differential equation, we use the single-variable
transformation ω = x− κt:

K(Ψ, Ψ
′
, κ Ψ

′
, κ2 Ψ

′′
, ΨΨ

′′
, . . .) = 0. (2)

The powers of Ψ represent the derivatives in terms of ω, and κ is a polynomial function. A
possible initial solution for Equation (2) is as follows:

Q(ω) =
M

∑
i=0

fiρ
iβ(ω), (3)

satisfying the auxiliary equation:

β
′
(ω) =

1
ln(ρ)

(
µρ−φ(ω) + σ + γρφ(ω)

)
, (4)

where f0, f1, f2, . . . , fM are unknown coefficients such that fM 6= 0. According to the
balancing principle, the value of M can be determined by equating the largest nonlinear
term in Equation (2) with its higher-order derivative.

The following is a list of the families of possible results to Equation (4).
Family 1: When γ 6= 0 and σ2 − 4µγ < 0,

ρφ(ω) =
−σ

2γ
+

√
4µγ− σ2

2γ
tan

(√
4µγ− σ2

2
ω

)
, (5)

ρφ(ω) =
−σ

2γ
−
√

4µγ− σ2

2γ
cot
(√

4µγ− σ2

2
ω

)
. (6)
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Family 2: When σ2 − 4µγ > 0 and γ 6= 0,

ρφ(ω) =
−σ

2γ
−
√

σ2 − 4µγ

2γ
tanh

(√
σ2 − 4µγ

2
ω

)
, (7)

ρφ(ω) =
−σ

2γ
−
√

σ2 − 4µγ

2γ
coth

(√
σ2 − 4µγ

2
ω

)
. (8)

Family 3: When σ2 + 4µ2 < 0, γ 6= 0, and γ = −µ,

ρφ(ω) =
σ

2µ
−
√
−4µ2 − σ2

2µ
tan

(√
−4µ2 − σ2

2
ω

)
, (9)

ρφ(ω) =
σ

2µ
+

√
−4µ2 − σ2

2µ
cot
(√
−4µ2 − σ2

2
ω

)
. (10)

Family 4: When σ2 + 4µ2 > 0, γ 6= 0, and γ = −µ,

ρφ(ω) =
σ

2µ
+

√
4µ2 + σ2

2µ
tanh

(√
4µ2 + σ2

2
ω

)
, (11)

ρφ(ξ) =
σ

2µ
+

√
4µ2 + σ2

2µ
coth

(√
4µ2 + σ2

2
ω

)
. (12)

Family 5: When σ2 − 4µ2 < 0 and γ = µ,

ρφ(ω) =
−σ

2µ
+

√
4µ2 − σ2

2µ
tan

(√
4µ2 − σ2

2
ω

)
, (13)

ρφ(ω) =
−σ

2µ
−
√

4µ2 − σ2

2µ
cot
(√

4µ2 − σ2

2
α

)
. (14)

Family 6: When σ2 − 4µ2 > 0 and γ = µ,

ρφ(ω) =
−σ

2µ
−
√
−4µ2 + σ2

2µ
tanh

√
−4µ2 + σ2

2
ω

)
, (15)

ρφ(ω) =
−σ

2µ
−
√
−4µ2 + σ2

2µ
coth

(√
−4µ2 + σ2

2
ξ

)
. (16)

Family 7: When σ2 = 4µγ,

ρφ(α) = −2 + σ α

2γω
. (17)

Family 8: When µγ < 0, σ = 0, and γ 6= 0,

ρφ(ω) = −
√
−µ

γ
tanh(

√
−µγ ω), (18)

ρφ(ω) = −
√
−µ

γ
coth(

√
−µγ α). (19)

Family 9: When µ = −γ with σ = 0,

ρφ(ω) = −
(

1 + e−2γ ω

1− e−2γ ω

)
. (20)

Family 10: When µ = γ = 0,

ρφ(α) = sinh(σ ω) + cosh(σ ω). (21)
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Family 11: When µ = σ = K and γ = 0,

ρφ(ω) = eKω − 1. (22)

Family 12: When γ = σ = K and µ = 0,

ρφ(ω) =
eKω

1− eKω
. (23)

Family 13: When σ = µ + γ,

ρφ(α) = −1− µe(µ−γ)ω

1− γe(µ−γ)ω
. (24)

Family 14: When σ = −µ− γ,

ρφ(α) =
e(−γ+µ)ω − µ

e(µ−γ)ω − γ
. (25)

Family 15: When µ = 0,

ρφ(ω) =
σeσω

1− γeσω
. (26)

Family 16: When µ = σ = γ 6= 0,

ρφ(ω) =
1
2

[√
3 tan(

√
3

2
µ ω)− 1

]
. (27)

Family 17: When σ = γ = 0,
ρφ(ω) = µ ω. (28)

Family 18: When σ = µ = 0,

ρφ(ω) = − 1
γ ω

. (29)

Family 19: When µ = γ and σ = 0,

ρφ(ω) = tan(µ ω). (30)

Family 20: When γ = 0,

ρφ(ω) = eσω − n
l

. (31)

4. Fractional RLW Burgers Equation

This section focuses on putting our proposed methodology into action to evaluate
its efficacy and reliability. As a result, the RLW equation has a variety of solitary wave
solutions. The time-fractional RLW-Burgers equation in the sense of Beta and M-truncated
fractional derivatives is given as:{

A
0 Dγ

t u + δ ux + ε u ux + λ uxx + θ uxxt = 0,
A
0 Dω,γ

M,t u + δ ux + ε u ux + λ uxx + θ uxxt = 0, t > 0, 0 < γ ≤ 1,
(32)

where A
0 Dγ

t and A
0 Dω,γ

M,t are the Beta and M-truncated derivative operators and δ, λ, and
ε are real-valued constants. The regularized long-wave Burgers equation deliberates the
propagation of surface water waves in the channel. The influence of shallow-water waves is
described by Equation (32), and acoustic ion plasma waves have had a considerable impact
on the physical sciences, such as Equation (32) with integer-order, which depicts the forma-
tion and growth of an undular bore through a long wave in shallow water. In Equation (32),



Fractal Fract. 2023, 7, 136 7 of 20

the variables are scaled, t proportional to the elapsed time, x proportional to the horizontal
coordinate along the channel, and u proportional to the vertical displacement of the surface
of the water from its equilibrium position. Consider the following transformation of the
NLPDE into an ordinary differential equation, which is provided in Equation (32) as:

u(x, y, ) = Q(ω); (33)

u(x, y) is the soliton wave form, and ω is classified as follows:
i. We discover for the Beta fractional derivative:

ω = x− ν

η

(
t +

1
Γ(γ)

)η

. (34)

ii. Using the fractional M-truncated derivative yields:

ω =
Γ(ϑ + 1)

η

(
x− ν tη

)
. (35)

In Equations (34) and (35), η is the fractional-order parameter, ϑ is a real arbitrary con-
stant, and ν is the presenting wave’s speed. Equations (34) and (35) are substituted into
Equation (32), and we obtain an ordinary differential equation, such as:

(−ν θ)Q
′′′
+ λQ

′′
+ ε Q Q

′
+ (δ− ν)Q

′
= 0. (36)

Equation (36) yields a nonlinear equation that is derived by integrating once:

(−ν θ)Q
′′
+ λQ

′
+

ε

2
Q2 +

(
δ− ν

)
Q + C = 0, (37)

where λ, θ, ε, δ are arbitrary constant and the integration constant is symbolized by the
letter C.

Traveling Wave Solutions of Fractional RLW Equation

In this part, we extract the soliton solutions for the model under consideration. To
obtain the value of M, we apply the homogeneous balancing principle to Equation (37) and
obtain M = 2. Equation (3) now takes on the form:

Q(ω) = f0 + f1ρφ(ω) + f2ρ2φ(ω). (38)

By comparing all coefficients of distinct powers of f φ to zero after inserting Equation (38)
into Equation (37) along with Equation (4), a system of equations is achieved:

(ρφ)0 : −2 µ2 θ ν f2 + C− µ σ θ ν f1 + λ µ f1 +
1
2

ε f 2
0 + δ f0 − ν f0 = 0.

(ρφ)1 : −2 γ µ ν f1 − 6 µ σ θ ν f2 − σ2 θ ν f1 + ε f0 f1 + 2 λ µ f2 + λ σ f1 + δ f1 − ν f1 = 0.

(ρφ)2 : γ λ f1 + 2 λ σ f2 + ε f0 f2 − 8 γ µ θ ν f2 − 3 γ σ θ ν f1 − 4 σ2 θ ν f2

+
1
2

ε f 2
1 + δ f2 − ν f2 = 0.

(ρφ)3 : −2 γ2 θ ν f1 − 10 γ σ θ ν f2 + ε f1 f2 + 2 γ λ f2 = 0.

(ρφ)4 : −6 γ2 θ ν f2 +
1
2

ε f 2
2 = 0.
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The following set of solutions is obtained by solving the given system with Maple:

f0 =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + 2
√

Θ γ λ µ σ2 − 24γ λ µ σ + 6λ σ3 + Ξ
)

,

f1 =
12γ λ

5ε

(√
Θ σ− 1

)
, f2 =

12
5ε

√
Θ λ γ2,

δ =

√
Θ

5θ

(
− 4Θ

(
48
√

Θ γ2 λ µ2 − 12
√

Θ γ λ µ σ2 − 24γ λ µ σ + 6λ σ3 + Ξ
)√

Θ γ λ µ2 −

Θ
(

48
√

Θ γ2 λ µ2 − 12
√

Θ γ λ µ σ2 − 24γ λ µ σ + 6λ σ3 + Ξ
)√

Θ σ2 θ + 24
√

Θ γ λ µ σ θ

−6
√

Θ λ σ3 θ + 12γ λ µ θ + λ

)
, (39)

ν =

√
Θ λ

θ
, (40)

where

Θ =
−1

4γ µ− σ2 , (41)

and

Ξ =

(
− 2304γ3λ2µ3 + 1728γ2λ2σ2 − 432γλ2µ σ4 + 36λ2σ6 + 800Cγ2µ2ε−

400Cγµ2σε + 50Cσ4ε

) 1
2

.

(42)

When we insert Equations (39)–(42) into Equation (38), we obtain the following:

Q(ω) =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + 2
√

Θ γ λ µ σ2 − 24γ λ µ σ + 6λ σ3 + Ξ
)
+

12γ λ

5ε

(√
Θ σ− 1

)
ρφ(ω) +

12
5ε

√
Θ λ γ2 ρ2φ(ω). (43)

When the solutions identified by Equation (4) are swapped, Equation (43) yields a family
of solutions:
Family 1: When σ2 − 4µγ < 0 and γ 6= 0,

Q1,1(x, t) =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + 2
√

Θ γ λ µ σ2 − 24γ λ µ σ + 6λ σ3 + Ξ
)
+

6 λ

5ε

(√
Θ σ− 1

) (
− σ +

√
4µγ− σ2 tan

(√
4µγ− σ2

2
ω

))
+

3
5ε

√
Θ λ

(
− σ +

√
4µγ− σ2 tan

(√
4µγ− σ2

2
ω

)2

, (44)

Q1,2(x, t) =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + 2
√

Θ γ λ µ σ2 − 24γ λ µ σ + 6λ σ3 + Ξ
)
+

6 λ

5ε

(√
Θ σ− 1

) (
− σ−

√
4µγ− σ2 cot

(√
4µγ− σ2

2
ω

))
+

3
5ε

√
Θ λ

(
− σ−

√
4µγ− σ2 cot

(√
4µγ− σ2

2
ω

)2

. (45)
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Family 2: When σ2 − 4µγ > 0 and γ 6= 0,

Q2,1(x, t) =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + 2
√

Θ γ λ µ σ2 − 24γ λ µ σ + 6λ σ3 + Ξ
)
+

6 λ

5ε

(√
Θ σ− 1

) (
− σ−

√
σ2 − 4µγ tanh

(√
σ2 − 4µγ

2
ω

)
+

3
5ε

√
Θ λ

(
− σ−

√
σ2 − 4µγ tanh

(√
σ2 − 4µγ

2
ω

)2

, (46)

Q2,2(x, t) =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + 2
√

Θ γ λ µ σ2 − 24γ λ µ σ + 6λ σ3 + Ξ
)
+

6 λ

5ε

(√
Θ σ− 1

) (
− σ−

√
σ2 − 4µγ coth

(√
σ2 − 4µγ

2
ω

)
+

3
5ε

√
Θ λ

(
− σ−

√
σ2 − 4µγ coth

(√
σ2 − 4µγ

2
ω

)2

. (47)

Family 3: When σ2 + 4µγ < 0, γ 6= 0, and γ = −µ,

Q3,1(x, t) =
−Θ
5ε

(
48
√

Θ µ4 λ− 2
√

Θ λ µ2 σ2 + 24 λ µ2 σ + 6 λ σ3 + Ξ
)
−

6 λ

5ε

(
σ−

√
−4µ2 − σ2 tan

(√
−4µ2 − σ2

2
ω

)
+

3
5ε

√
Θ λ

(
σ−

√
−4µ2 − σ2 tan

(√
−4µ2 − σ2

2
ω

)2

, (48)

Q3,2(x, t) =
−Θ
5ε

(
48
√

Θ µ4 λ− 2
√

Θ λ µ2 σ2 + 24 λ µ2 σ + 6 λ σ3 + Ξ
)
+

6 λ

5ε

(√
Θ σ− 1

) (
σ +

√
−4µ2 − σ2 cot

(√
−4µ2 − σ2

2
ω

)
+

3
5ε

√
Θ λ

(
σ +

√
−4µ2 − σ2 cot

(√
−4µ2 − σ2

2
ω

)2

. (49)

Family 4: When σ2 + 4µγ > 0, γ 6= 0, and γ = −µ,

Q4,1(x, t) =
−Θ
5ε

(
48
√

Θ µ4 λ− 2
√

Θ λ µ2 σ2 + 24 λ µ2 σ + 6 λ σ3 + Ξ
)
−

6 λ

5ε

(
σ +

√
4µ2 + σ2 tanh

(√
4µ2 + σ2

2
ω

))
+

3
5ε

√
Θ λ

(
σ +

√
4µ2 + σ2 tanh

(√
4µ2 + σ2

2
ω

)2

, (50)

Q4,2(x, t) =
−Θ
5ε

(
48
√

Θ µ4 λ− 2
√

Θ λ µ2 σ2 + 24 λ µ2 σ + 6 λ σ3 + Ξ
)
−

6 λ

5ε

(√
Θ σ− 1

) (
σ +

√
4µ2 + σ2 coth

(√
4µ2 + σ2

2
ω

)
+

3
5ε

√
Θ λ

(
σ +

√
4µ2 + σ2 coth

(√
4µ2 + σ2

2
ω

)2

. (51)
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Family 5: When σ2 − 4µ2 < 0 and γ = µ,

Q5,1(x, t) =
−Θ
5ε

(
48
√

Θ µ4 λ + 2
√

Θ λ µ2 σ2 − 24 λ µ2 σ + 6 λ σ3 + Ξ
)
+

6 λ

5ε

(√
Θ σ− 1

) (
− σ +

√
4µ2 − σ2 tan

(√
4µ2 − σ2

2
ω

))
+

3
5ε

√
Θ λ

(
− σ +

√
4µ2 − σ2 tan

(√
4µ2 − σ2

2
ω

))2

, (52)

Q5,2(x, t) =
−Θ
5ε

(
48
√

Θ µ4 λ + 2
√

Θ λ µ2 σ2 − 24 λ µ2 σ + 6 λ σ3 + Ξ
)
+

6 λ

5ε

(√
Θ σ− 1

) (
− σ−

√
4µ2 − σ2 cot

(√
4µ2 − σ2

2
ω

))
+

3
5ε

√
Θ λ

(
− σ−

√
4µ2 − σ2 cot

(√
4µ2 − σ2

2
ω

)2

. (53)

Family 6: When σ2 − 4µ2 > 0 and γ = µ,

Q6,1(x, t) =
−Θ
5ε

(
48
√

Θ µ4 λ + 2
√

Θ λ µ2 σ2 − 24 λ µ2 σ + 6 λ σ3 + Ξ
)
+

6 λ

5ε

(√
Θ σ− 1

) (
− σ−

√
−4µ2 + σ2 tanh

(√
−4µ2 + σ2

2
ω

))
+

3
5ε

√
Θ λ

(
− σ−

√
−4µ2 + σ2 tanh

(√
−4µ2 + σ2

2
ω

))2

, (54)

Q6,2(x, t) =
−Θ
5ε

(
48
√

Θ µ4 λ + 2
√

Θ λ µ2 σ2 − 24 λ µ2 σ + 6 λ σ3 + Ξ
)
+

6 λ

5ε

(√
Θ σ− 1

) (
− σ−

√
−4µ2 + σ2 coth

(√
−4µ2 + σ2

2
ω

))
+

3
5ε

√
Θ λ

(
− σ−

√
−4µ2 + σ2 coth

(√
−4µ2 + σ2

2
ω

))2

. (55)

Family 7: When σ2 = 4µγ,

Q7(x, t) =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + 8
√

Θ γ2 λ µ2 − 24γ λ µ σ + 24 γ µ λ σ + Ξ
)
−

6 λ

5ε

(√
Θ σ− 1

) (
2 + σ ω

ω

)
+

3
5ε

√
Θ λ

(
2 + σ ω

ω

)2

. (56)

Family 8: µγ < 0, σ = 0, and γ 6= 0,

Q8,1(x, t) =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + Ξ
)
+

12 γ λ

5ε

√
−µ

γ
tanh

(√
−µγ ω

)
+

12
5ε

√
Θ λ γ2

(√
−µ

γ
tanh

(√
−µγ ω

))2

, (57)

Q8,2(x, t) =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + Ξ
)
+

12 γ λ

5ε

√
−µ

γ
coth

(√
−µγ ω

)
+

12
5ε

√
Θ λ γ2

(√
−µ

γ
coth

(√
−µγ ω

))2

. (58)
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Family 9: When σ = 0 and µ = −γ,

Q9,1(x, t) =
−Θ
5ε

(
48
√

Θ γ4 λ + Ξ
)
+

12 γ λ

5ε

(
1 + e−2γ ω

1− e−2γ ω

)
+

12
5ε

√
Θ λ γ2

(
1 + e−2γ ω

1− e−2γ ω

)2

. (59)

Family 10 and Family 11 are vanished.
Family 12: When γ = σ = K and µ = 0,

Q12(x, t) =
−Θ
5ε

(
6λ K3 + Ξ

)
+

12 K λ

5ε

(√
Θ K− 1

) (
eKω

1− eKω

)
+

12
5ε

√
Θ λ K2

(
eKω

1− eKω

)2

. (60)

Family 13: When µ + γ = σ,

Q13(x, t) =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + 2
√

Θ γ λ µ σ2 − 24γ λ µ σ + 6λ σ3 + Ξ
)
−

12 γ λ

5ε

(√
Θ σ− 1

) (
− 1− µe(µ−γ)ω

1− γe(µ−γ)ω

)
+

12
5ε

√
Θ λ γ2

(
− 1− µe(µ−γ)ω

1− γe(µ−γ)ω

)2

. (61)

Family 14: When −(µ + γ) = σ,

Q14(x, t) =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + 2
√

Θ γ λ µ σ2 − 24γ λ µ σ + 6λ σ3 + Ξ
)
−

12 γ λ

5ε

(√
Θ σ− 1

) (
e(−γ+µ)ω − µ

e(µ−γ)ω − γ

)
+

12
5ε

√
Θ λ γ2

(
e(−γ+µ)ω − µ

e(µ−γ)ω − γ

)2

. (62)

Family 15: When µ = 0,

Q15(x, t) =
−Θ
5ε

(
6λ σ3 + Ξ

)
− 12 γ λ

5ε

(√
Θ σ− 1

) (
σeσω

1− γeσω

)
+

12
5ε

√
Θ λ γ2

(
σeσω

1− γeσω

)2

. (63)

Family 16: When σ = µ = γ 6= 0,

Q16(x, t) =
−Θ
5ε

(
48
√

Θ γ2 λ µ2 + 2
√

Θ γ λ µ σ2 − 24γ λ µ σ + 6λ σ3 + Ξ
)
−

6 γ λ

5ε

(√
Θ σ− 1

) (√
3 tan(

√
3

2
µ ω)− 1

)
+

3
5ε

√
Θ λ γ2

(√
3 tan(

√
3

2
µ ω)− 1

)2

. (64)

Family 18: When σ = µ = 0,

Q18(x, t) =
12 λ

5ε

(
1
ω

)
+

12
5ε

√
Θ λ

(
1

ω2

)
. (65)

Family 19: When µ = γ and σ = 0,

Q19(x, t) =
−Θ
5ε

(
48
√

Θ γ4 λ + Ξ
)
− 12 λ

5ε
tan

(
µ ω

)
+

12
5ε

√
Θ λ tan2 (µ ω

)
.(66)



Fractal Fract. 2023, 7, 136 12 of 20

5. Graphical Analysis of the Solutions

This section is devoted to the physical explanation of the graphical presentation and
significance of the obtained results.

Figure 1a,b display the 3D Gray-type soliton propagation at fractional order η = 0.3
with the Beta and M-truncated fractional operator, respectively. Figure 1c presents a 2D
comparison between the utilized fractional operators and predicting that the solitary wave
by the β derivative has less singularity than other solitary waves by the M-truncated
derivative having the same amplitude at η = 0.3.

Similarly, Figures 2–4 predict the Gray soliton in 3D and 2D as well, η = 0.5, 0.7, 0.9,
respectively. One can observe that, as the fractional order is increasing and coming close to
the classical order, the singularity vanishes. More clearly, Figure 5a,b present the influence
of the fractional order on the propagation of the soliton. Figure 5c depicts the behavior
of the soliton at the integer order. It is observed that the classical derivative is unable to
express the behavior as the fractional operators are describing. The fractional operators
predict that the solution contains a singularity at η ≤ 0.3. The validity and accuracy of
these fractional operators can be ensured as the fractional propagating behavior of the
solution is tending to the behavior of the integer-order soliton solution as the fractional
order is increasing.

(a) (b) (c)

Figure 1. Depiction of 3D and 2D graphs of Q4,1(x, t) for µ = 0.1, γ = −0.1, σ = 2, θ = 0.5, ϑ = 1,
ε = 2, C = −1, and λ = 1. Here, (a,b) display the 3D graphs with Beta and M-truncated derivatives,
while (c) represents the 2D surface taking η = 0.3 at t = 1.

(a) (b) (c)

Figure 2. For Q4,1(x, t), we take µ = 0.1, γ = −0.1, σ = 2, θ = 0.5, ϑ = 1, ε = 2, C = −1, and λ = 1.
(a–c) reflect the 3D and 2D graphs employing η = 0.5 at t = 1.
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(a) (b) (c)

Figure 3. For Q4,1(x, t), we take µ = 0.1, γ = −0.1, σ = 2, θ = 0.5, ϑ = 1, ε = 2, C = −1, and λ = 1.
Here, (a–c) show the 3D, as well as 2D graphics letting η = 0.7.

(a) (b) (c)

Figure 4. Here, (a–c) manifest the 3D and 2D plots for Q4,1(x, t) taking η = 0.9 at t = 1.

Figure 6a,b display the 3D combined bright–dark-type soliton propagation at fractional
order η = 0.3 with the Beta and M-truncated fractional operator, respectively. Figure 6c
presents the 2D comparison between the utilized fractional operators and predicting that
the solitary wave by the β derivative has less singularity than other solitary waves by the
M-truncated derivative having the same amplitude at η = 0.3.

Similarly, Figures 7–9 predict the combined bright–dark soliton in 3D and 2D as
well, η = 0.5, 0.7, 0.9, respectively. More clearly, Figure 10a,b present the influence of the
fractional order on the propagation of the soliton. Figure 10c depicts the behavior of the
soliton at integer order. It is observed that the classical derivative is unable to express the
behavior as the fractional operators are describing. The amplitude of the solitary wave
at the fractional order is greater than the amplitude of the solitary wave at integer order.
The validity and accuracy of these fractional operators can be ensured as the fractional
propagating behavior of the solution is tending to the behavior of the integer-order soliton
solution as the fractional order is increasing.
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(a)

(b)

(c)

Figure 5. The 2D plots of Q4,1(x, t) for both operators taking µ = −0.5, γ = 0.5, σ = 1.1, and ω = 1
at t = 1 with different values of fractional parameter η.
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(a) (b) (c)

Figure 6. For Q8,2(x, t), now take µ = 0.5, γ = −0.8, σ = 0, θ = 1, ϑ = 1, ε = 0.5, λ = 1 and C = −1.
Here, (a–c) represent 3D and 2D graphs with both operators letting η = 0.3.

(a) (b) (c)

Figure 7. For Q8,2(x, t), we consider µ = 0.5, γ = −0.8, σ = 0, θ = 1, ϑ = 1, ε = 0.5, λ = 1, and
C = −1. (a–c) show 3D, as well as the 2D plots with Beta and M-truncated derivatives for η = 0.5.

(a) (b) (c)

Figure 8. Graphical depiction of Q8,2(x, t) taking µ = 0.5, γ = −0.8, σ = 0, θ = 1, ϑ = 1, ε = 0.5,
λ = 1, and C = −1. (a–c) reflect 3D and 2D profiles with Beta and M-truncated operators for η = 0.7.



Fractal Fract. 2023, 7, 136 16 of 20

(a) (b) (c)

Figure 9. Graphical representation of Q8,2(x, t) letting µ = 0.5, γ = −0.8, σ = 0, θ = 1, ϑ = 1, ε = 0.5,
λ = 1, and C = −1. Here, (a–c) show 3D, as well as the 2D surface graphs for η = 0.9.

(a)

(b)

Figure 10. Cont.
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(c)

Figure 10. The 2D profiles of Q8,2(x, t) for M-truncated and Beta operators with µ = 0.5, γ = −0.8,
σ = 0, θ = 1, ϑ = 1, ε = 0.5, λ = 1, and C = −1 at t = 1.

6. Sensitivity Analysis

This section describes the proposed system’s sensitive behavior. The sensitivity
method is a tool to analyzing how many variations in the input parameters for a spe-
cific variable will affect the results of a mathematical model. Sensitivity analysis can be
used in a variety of fields, including investment, business analysis, engineering, environ-
mental studies, physics, and chemistry. Sensitivity analysis is used to analyze the influence
of uncertainty on the output of the model. Sensitivity analysis investigates how different
values of an independent variable affect a certain dependent variable under a given set of
assumptions. Below is a description of the given system (see Figure 11):

(a)

Figure 11. Cont.
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(b)

Figure 11. (a) reflects the analysis of the system letting the initial conditions (u, v) = (0.0, 0.055)
and (u, v) = (0.0, 0.025) with ε = −0.1, δ = 0.1, ν = −2.5, θ = 1, and C = 0.001. It is indeed
important to see that overlapping can be observed between the curves. (b) Here, we take the initial
conditions (u, v) = (0.01, 0.055), the results of which are shown by the red curve and those of
(u, v) = (0.012, 0.045) represented by the blue color.

7. Conclusions

This paper discussed the soliton and soliton-like structures in the fractional regularized
long-wave equation. A variety of these structures were retrieved using the NAEM. The
Beta and M-truncated derivatives were introduced to solve the fractional RLW equation,
which had not yet been solved by the NAEM. There are twelve different cases in these
solutions. The constraint conditions, which are also listed beside the solutions, guarantee
the existence of solutions derived from these functions. The bright, dark, singular soliton, as
well as the bright–dark soliton solutions were retrieved. Furthermore, our findings showed
that the method we used is extremely simple, convenient, and effective for extracting
optical solitons from fractional RLW equations and other models that will be studied in
the future. Scientists need to have the resulting soliton solutions to agree on the physical
event of this equation. The behaviors of various solutions have been visualized using 3D
and 2D graphics by selecting appropriate parameter values. The method described here is
useful for exploring the multiple challenges found in science and engineering. Lastly, the
sensitivity analysis of the system was performed and depicted through graphs thoroughly.

8. Future Work

In this work, we discovered the soliton solutions of Equation (32) using the Beta and M-
truncated fractional derivatives on the RLW equation. In addition, we may develop further
derivatives on the same platform in the future in various formats. We may analyze the
graphical behavior of soliton solutions that provide the same outcomes as we found when
using conformable fractional derivatives by employing these different types of derivatives.
Moreover, multiple solitons, rogue waves, breathers, bifurcation analysis, chaos analysis,
and modulational instability gain spectrum visualization can be studied and explored.
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