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Abstract: In the present work, two-dimensional mixed problems with the Caputo fractional order
differential operator are studied using the Fourier method of separation of variables. The equation
contains a linear transformation of involution in the second derivative. The considered problem
generalizes some previous problems formulated for some fourth-order parabolic-type equations. The
basic properties of the eigenfunctions of the corresponding spectral problems, when they are defined
as the products of two systems of eigenfunctions, are studied. The existence and uniqueness of the
solution to the formulated problem is proved.
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1. Introduction and Problem Statement

The transformation S of the function f (x), x ∈ [−1, 1], which satisfies the condition
S2 f (x) = f (x), is called an involution. We consider equations containing an involution of
the form S f (x) = f (−x).

Differential equations with involution are of theoretical and practical interest, as
they occupy a special place among differential equations with deviating arguments and
functional differential equations. More information on the theoretical developments and
applications of such equations can be found in [1–5].

The solvability of direct, inverse problems for the second-order differential equations
with involution is considered in [4–13] (see also references therein). Most of these studies
are based on the method of separation of variables, which leads to spectral problems with
involution. Regarding spectral problems for differential equations with involution, good
references are [14–23].

The boundary value problems for the fourth-order partial differential equations are
studied in (see [24], and references therein). However, in the scientific literature, there are
no works devoted to the study of the initial-boundary value problems for the fourth-order
partial differential equations with involution.

This paper is devoted to the study of the existence and uniqueness of a solution to
mixed problems for a two-dimensional fourth-order equation with involution

CDβ
0tu +

∂4

∂x4 u(x, y, t) + α
∂4

∂x4 u(−x, y, t) +
∂4

∂y4 u(x, y, t) = f (x, y, t), (1)

where −1 < α < 1. Here CDβ
0tu = I1−β

0t (ut), β ∈ (0, 1] is the Caputo derivative of order
β [25] where for any integrable function g the left-hand fractional Riemann–Liouville
integral of order β > 0 is defined as
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Iβ
0 g(t) =

1
Γ(β)

t∫
0

g(τ)

(t− τ)1−β
dτ,

where Γ(β) is the Euler gamma function.
Let Q = {(x, y, t) : −1 < x, y < 1} and Q̄ be its closure. The space Ck,l

x,y(Q̄) consists of
all functions u(x, y, t) having continuous derivatives of the order k with respect to x and
continuous derivatives of the order l with respect to y in the domain Q̄, t > 0.

The purpose of the work is to find, for given functions f (x, y, t) and ϕ(x, y), a function
that satisfies the following conditions:

(1) u(x, y, t) ∈ C3,3
x,y(Q̄) ∩ C4,4

x,y(Q), t ≥ 0;
(2) u(x, y, t) satisfies Equation (1) in the domain Q, t > 0;
(3) u(x, y, t) satisfies the boundary conditions

u(x, y, 0) = ϕ(x, y), −1 ≤ x, y ≤ 1, (2)

u(−1, y, t) = 0, u(1, y, t) = 0,
∂2

∂x2 u
∣∣∣∣
x=−1

=
∂2

∂x2 u
∣∣∣∣
x=1

= 0, −1 ≤ y ≤ 1, t ≥ 0, (3)

lj(u) ≡ aj
∂

∂y
u(x,−1, t) + bj

∂

∂y
u(x, 1, t) + aj1u(x,−1, t) + bj1u(x, 1, t) = 0,

l̃j(u) ≡ ãj
∂3

∂y3 u(x,−1, t) + b̃j
∂3

∂y3 u(x, 1, t) + ãj1
∂2

∂y2 u(x,−1, t) + b̃j1
∂2

∂y2 u(x, 1, t) = 0,
(4)

where for j = 1, 2, coefficients aj, aj1, bj, bj1 are some given numbers, (x, t) ∈ [−1, 1]× [0, ∞).
As can be seen from conditions (4), we consider boundary conditions of the most

general type.
The paper consists of three sections and a list of references. Section 2 is devoted to the

study of basic properties of the fourth-order differential operators. In Section 3, we give a
solution to the stated problem.

2. Properties of Eigenfunctions of Spectral Problems

Consider a homogeneous equation

CDβ
0tu +

∂4

∂x4 u(x, y, t) + α
∂4

∂x4 u(−x, y, t) +
∂4

∂y4 u(x, y, t) = 0 (5)

with boundary conditions (2)–(4). For simplicity and without loss of generality, we seek for a
nonzero solution of Equation (5) in the separated form u(x, y, t) = w(x, y)c(t). Substituting
this into Equation (5), we obtain the spectral problem

∂4

∂x4 w(x, y) + α
∂4

∂x4 w(−x, y) +
∂4

∂y4 w(x, y) = σw(x, y), −1 < x, y < 1, (6)

w(−1, y) = w(1, y) = 0,
∂2

∂x2 w
∣∣∣∣
x=−1

=
∂2

∂x2 w
∣∣∣∣
x=1

= 0, −1 ≤ y ≤ 1, (7)

lj(w) = 0, j = 1, 2,

l̃j(w) = 0, j = 1, 2.
(8)

The solution to problem (6)–(8) is sought in the form w(x, y) = X(x)Y(y). Then, the
spectral problem (6)–(8) generates the following two one-dimensional spectral problems.

Spectral problem 1.

X′′′′(x) + αX′′′′(−x) = λX(x), −1 < x < 1, (9)
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X(−1) = X(1) = X′′(−1) = X′′(1) = 0. (10)

Spectral problem 2.
Y′′′′(y) = µY(y), −1 < y < 1, (11)

lj(Y) ≡ ajY′(−1) + bjY′(1) + aj1Y(−1) + bj1Y(1) = 0, j = 1, 2,

l̃jθ(Y) ≡ ãjY′′′(−1) + b̃jY′′′(1) + ãj1Y′′(−1) + b̃j1Y′′(1) = 0, j = 1, 2,
(12)

where µ = σ− λ.
Spectral problem 1. To study problems (9), (10), we use the following notation:

α0 = 4
√

1
1+α , α1 = 4

√
1

1−α , ρ = 4
√

λ, (here,
(
reiϕ) 1

4 = r
1
4 e

iϕ
4 , −π

2 < ϕ ≤ 3π
2 ).

The solution to Equation (9) can be written as

X(x) = c1
(
eα0ρx + e−α0ρx)+ c2

(
eiα0ρx + e−iα0ρx

)
+ c3

(
eα1ρx − e−α1ρx)+ c4

(
eiα1ρx − e−iα1ρx

)
.

Using boundary conditions (10), we find the eigenvalues of the first series

λk1 = (1 + α)

(
k− 1

2

)4
π4, k = 1, 2, . . . ,

whose corresponding eigenfunctions are

Xk1 = cos
(

k− 1
2

)
πx.

The second series of eigenvalues

λk2 = (1− α)(kπ)4, k = 1, 2, 3, . . . ,

whose corresponding eigenfunctions are Xk2 = sin kπx.
The system of eigenfunctions of spectral problems (9) and (10) can be written as

{Xk(x)} =
{

X2k(x) = cos
(

k− 1
2

)
πx, X2k−1(x) = sin kπx

}
. (13)

Lemma 1. System (13) forms a complete orthonormal system in L2(−1, 1).

The lemma is proved by the direct calculation of the Fourier coefficients of an arbitrary
function f (x) ∈ L2(−1, 1).

Spectral problem 2. To study the fourth-order spectral problem (11), (12), we intro-
duce the operator LY(y) = −Y′′(θy), where θ = ±1, with the domain D(L) = {Y(y) ∈
W2

2 [−1, 1] : lj(Y) = 0}, where W2
2 [−1, 1] is the Sobolev space [26]. Hereafter, the operator L

acts on functions depending on the variable y. The operator L commutes with the operator
S, i.e., LS = SL, and the equality L2Y(y) = Y′′′′(y) is valid if LY(y) ∈ D(L). The domain
of the operator L2 is

D
(

L2
)
=
{

Y(y) ∈W2
4 [−1, 1] : lj(Y) = 0, l̃jθ(Y) = 0

}
.

In this case, the coefficients of the expression l̃j(Y) in (12) depend on the number θ.
Consider the spectral problem for the second-order equation

−Y′′(θy) = νY(y), −1 < y < 1, θ = ±1, (14)

lj(Y) = 0, j = 1, 2, (15)
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where (15) is the first equality in (12). Equation (14) is self-conjugate, whereas boundary
conditions (15) may be non-self-conjugate. The conjugate boundary conditions are denoted
by l∗j (Y). For θ = 1 , we have a classical spectral problem for an ordinary second-order
differential operator. For θ = −1, problem (14), (15) was studied in [27,28]. In the case
θ = 1, the result is well known [29].

Theorem 1 ([29]). Let θ = 1. Then, the system of eigenfunctions of the spectral problem (14), (15)
forms a Riesz basis in L2(−1, 1) if one of the following three conditions A:

(1) a1b2 − a2b1 6= 0;
(2) a1 = a2 = b1 = b2 = 0, a11b21 − a21b11 6= 0;
(3) a1b2 − a2b1 = 0, |a1|+ |b1| > 0,

(
a2

1 − b2
1
)(

a2
21 − b2

21
)
6= 0;

is satisfied.

In the case θ = −1, properties of eigenfunctions in problems (14), (15) were studied
in [27,28]. Based on the results of [28], the following theorem is formulated.

Theorem 2 ([28]). Let θ = −1. Then, the system of eigenfunctions of spectral problems (14) and (15)
forms a Riesz basis in L2(−1, 1) if one of the three conditions A is satisfied. If a1b2 − a1b2 = 0,
|a1|+ |b1| > 0, and one of the following four conditions:

(1) a1 = b1, a21 + b21 6= 0; (2)a1 = −b1, a21 − b21 6= 0;

(3) a21 = b21, a1 + b1 6= 0; (4) a21 = −b21, a1 − b1 6= 0,
(16)

is satisfied, then the system of eigenfunctions of the spectral problem (14), (15) also forms a Riesz
basis in L2(−1, 1).

It follows from the results of [28] that the system of eigenfunctions of problem (14)
does not form a basis in L2(−1, 1) for boundary conditions of the type Y(−1) = ±Y(−1),
Y′(−1) = ∓Y′(−1).

It was shown in [27] that if LY(y) ∈ D(L), then the system of eigenfunctions of the
second-order spectral problems (14) and (15) coincides with the system of eigenfunctions
of the fourth-order spectral problems (11) and (12). Therefore, Theorems 1 and 2 are also
valid for the fourth-order spectral problems (11) and (12).

Remark 1. If θ = 1, then the expressions l̃jθ(Y) in (12) can be represented in the form

l̃jθ(Y) ≡ ajY′′′(−1) + bjY′′′(1) + aj1Y′′(−1) + bj1Y′′(1) = 0, j = 1, 2.

According to this, the second boundary condition in (4) takes the form

l̃j(u) ≡ aj
∂3

∂y3 u(x,−1, t) + bj
∂3

∂y3 u(x, 1, t) + aj1
∂2

∂y2 u(x,−1, t) + bj1
∂2

∂y2 u(x, 1, t) = 0. (17)

Remark 2. If θ = −1, then the expressions l̃jθ(Y) in (12) can be represented in the form

l̃jθ(Y) ≡ bjY′′′(−1) + ajY′′′(1)− bj1Y′′(−1)− aj1Y′′(1) = 0, j = 1, 2.

According to this, the second boundary condition in (4) takes the form

l̃j(u) ≡ bj
∂3

∂y3 u(x,−1, t) + aj
∂3

∂y3 u(x, 1, t)− bj1
∂2

∂y2 u(x,−1, t)− aj1
∂2

∂y2 u(x, 1, t) = 0. (18)

Let us formulate theorems on the basis property of the eigenfunctions of the spectral
problems (11) and (12) for a fourth-order equation.
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Theorem 3. Let θ = 1 and LY(y) ∈ D(L). Then, the system of eigenfunctions of the spectral
problems (11) and (12) forms the Riesz basis in L2(−1, 1) if the coefficients of the boundary
conditions (12) satisfy one of the three conditions A.

Theorem 4. Let θ = −1 and LY(y) ∈ D(L). Then, the system of eigenfunctions of the spectral
problems (11) and (12) forms the Riesz basis in the following cases:

(1) if the coefficients of the boundary conditions (12) satisfy one of the three conditions A;
or
(2) if a1b2− a2b1 = 0, |a1|+ |b1| > 0, and for the coefficients of the boundary conditions (12),

one of the four conditions in (16) is satisfied.

Note that when one of the three conditions A is satisfied, all eigenvalues of the spectral
problem for the second-order Equations (14) and (15) are single. If one of the conditions (16)
is satisfied, the boundary conditions (12) for the fourth-order Equation (11) are regular
in the sense of Birkhoff [30] (but are not strongly regular), the eigenvalues of the fourth
order spectral problem (11), (12) may be multiple. For example [27], the boundary value
problem (14) with boundary conditions

Y(−1) = Y′′(1) = 0, Y′(−1) = Y′(1), Y′′′(−1) = Y′′′(1)

(a1 = −b1, a21 = 1, all other coefficients are equal to zero) is not self-conjugate, has an
infinite number of double eigenvalues, has no associated functions, and the system of
eigenfunctions forms a Riesz basis in L2(−1, 1). Hence, it appears that the system of
eigenfunctions of the conjugate problem

Y∗′(−1) = 0, Y∗′′′(1) = 0, Y∗(−1) = Y∗(1), Y∗′′(−1) = Y∗′′(1),

also forms the Riesz basis in L2(−1, 1).
Thus, in the case θ = −1, we cover a larger range of boundary conditions for the

boundary value problem (11), (12).
All the systems we consider are Riesz bases, and they remain Riesz bases for any

enumeration of system elements (unconditional bases). By virtue of [31], the systems
we consider are uniformly bounded. Therefore, the coefficients of bi-orthonormalization,
in the case of the non-orthogonality of the studied systems, are also uniformly bounded.
This means that the bi-orthnormalization coefficients do not affect either the convergence
of expansions in terms of eigenfunctions or the convergence of series formed by the
expansion coefficients.

Note that boundary conditions (10) are self-conjugate, whereas boundary condi-
tions (12) may be non-self-conjugate. Therefore, problem (6)–(8) in the general case is
a non-self-conjugate problem. For specific boundary conditions of the form (8), the conju-
gate boundary conditions are written in the standard way.

Let us write a problem conjugate to problem (6)–(8):

∂4

∂x4 w∗(x, y) + α
∂4

∂x4 w∗(−x, y) +
∂4

∂y4 w∗(x, y) = σ̄w∗(x, y), −1 < x, y < 1, (19)

w∗(−1, y) = w∗(1, y) = 0,
∂2w∗

∂x2

∣∣∣∣
x=−1

=
∂2w∗

∂x2

∣∣∣∣
x=1

= 0, −1 ≤ y ≤ 1, (20)

a∗j
∂

∂y
w∗(x,−1) + b∗j

∂

∂y
w∗(x, 1) + a∗j1w∗(x,−1) + b∗j1w∗(x, 1) = 0, j = 1, 2,

ã∗j
∂3

∂y3 w∗(x,−1) + b̃∗j
∂3

∂y3 w∗(x, 1) + ã∗j1
∂2

∂y2 w∗(x,−1) + b̃∗j1
∂2

∂y2 w∗(x, 1) = 0, j = 1, 2.
(21)
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Taking the above into account, we assume that all eigenvalues of problems (9)–(12)

are numbered as follows: λ2n = (1 + α)
(

n− 1
2

)4
π4, λ2n−1 = (1− α)(nπ)4, n = 1, 2, . . .,

|µk| ≤ |µk+1|, for any number k, σnk = λn + µk. If an eigenvalue µkis double, then
µk+1 = µk. The eigenfunctions wiare numbered respectively.

We denote the system of eigenfunctions of problem (6)–(8) as

wkn(x, y) = Xk(x)Yn(y), (22)

where Xk(x) are eigenfunctions of problem (9), (10), and Yn(y) are eigenfunctions of prob-
lem (11), (12). We denote the system of eigenfunctions of the corresponding conjugate
problem (19)–(21) as

w∗kn(x, y) = Xk(x)Y∗n (y), (23)

where Y∗n (y) are eigenfunctions of the problem conjugate to problems (11) and (12).
Systems (22) and (23) are bi-orthogonal as systems of eigenfunctions of mutually

conjugate spectral problems (6)–(8) and (19)–(21). Since the system {Xk(x)} is an ortho-
normal basis and the system {Yn(y)} is a Riesz basis, then each of the systems (22) and (23)
is a Riesz basis [32] in L2((−1, 1)× (−1, 1)).

3. Existence and Uniqueness of the Problem Solution

In this section, we assume that all the conditions of Theorem 4 are satisfied, and the
second boundary condition in (4) is of the form (17) or (18).

Then, each of the systems (22) and (23) forms a Riesz basis in L2((−1, 1)× (−1, 1)). To
solve the inhomogeneous problem (1)–(4), we first consider the homogeneous Equation (5).
The solution to problems (5), (2)–(4) is sought in the form of a Fourier series

u(x, y, t) =
∞

∑
k,n=0

Ckn(t)wkn(x, y) (24)

using the Riesz basis {wkn(x, y)}, where the unknown functions Ckn(t) are defined by
the relations

Ckn(t) =
∫∫
Ωxy

u(x, y, t)w∗kn(x, y)dxdy =

1∫
−1

1∫
−1

u(x, y, t)Xk(x)Y∗n (y)dxdy. (25)

From Equations (5) and (25) and condition (2), we obtain the problems

CDβ
0tCkn(t) + σnkCkn(t) = 0, Ckn(0) = ϕkn,

whose solutions are written as [25]

Ckn(t) = ϕknEβ

(
−σkntβ

)
, (26)

where ϕkn = (ϕ(x, y), w∗kn(x, y)) in the sense of the scalar product in L2((−1, 1)× (−1, 1)).
Here, Eβ(z) is the Mittag–Leffler function [25] satisfying the estimate

∣∣Eβ(z)
∣∣ ≤ M

1 + |z| .

Using relation (26), expression (24) can be written as

u(x, y, t) =
∞

∑
k,n=1

ϕknEβ

(
−σkntβ

)
Xk(x)Yn(y). (27)
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It is necessary to show that the formal solution (27) is a classical solution to prob-
lems (5), (2)–(4).

Lemma 2. Let ϕ(x, y) ∈ L2(Q̄). Then, series (27) converges absolutely and uniformly in the
domainQ̄, t > 0.

Proof. For any t ≥ t0 > 0, the Mittag–Leffler function satisfies the estimate

Eβ

(
−σkntβ

)
≤ M

1 + σkntβ
.

Since σnk = λn + µk, λk1 = (1 + α)
(

k− 1
2

)4
π4, λk2 = (1− α)(kπ)4, µk = O

(
k4), then

M
1 + σkntβ

≤ M
σkntβ

≤ M

σkntβ
0

≤
Mt−β

0
λk + µk

≤
Mt−β

0
2
√

λk
√

µk
.

Then

|u(x, y, t)| =
∣∣∣∣∣ ∞

∑
k,n=1

ϕknEβ

(
−σkntβ

)
Xk(x)Yn(y)

∣∣∣∣∣
≤

∞
∑

k,n=1

∣∣∣∣∣ 1∫
−1

1∫
−1

ϕ(x, y)Xk(x)Y∗n (y)dxdy

∣∣∣∣∣∣∣Eβ

(
−σkntβ

)∣∣|Xk(x)||Yn(y)|

≤
∞
∑

k,n=1

M0 Mt−β
0

2
√

λk
√

µk

∣∣∣∣∣ 1∫
−1

1∫
−1

ϕ(x, y)Xk(x)Y∗n (y)dxdy

∣∣∣∣∣.
Applying the Cauchy–Schwarz inequality and the Bessel inequality, we obtain

∞

∑
k,n=0

|ϕkn| ≤ M1‖ϕ‖L2(Q).

The lemma is proved.

Note that the method of separation of variables imposes stricter requirements on the
initial function. However, in this work, the problem of reducing the smoothness of the
initial function was not posed.

The main result of the work is the following theorem.

Theorem 5. Let the function ϕ(x, y) be such that ϕ(x, y) ∈ C3,0
x,y(Q̄) ∩ C0,3

x,y(Q̄) ∩ C4,0
x,y(Q) ∩

C0,4
x,y(Q) ∩ C2,2

x,y(Q̄), Lϕ(x, y) ∈ D(L), L2 ϕ(x, y) ∈ D(L), t > 0 and satisfy self-conjugate
conditions (3) with respect to the variable x. Then, problem (5), (2)–(4) has a unique solution, which
can be represented in the form (27).

Proof. Let us first prove the uniqueness. If the problem has two solutions u1, u2, then the
function u = u1 − u2 satisfies u(x, y, 0) = 0, Equation (5), and boundary conditions (3), (4).
Then, from (26), we obtain Ckn(t) = 0, and from (25) it follows that u(x, y, t) = 0 in Q̄
due to the completeness of the system {w∗kn(x, y)} in L2((−1, 1)× (−1, 1)). By virtue
of Lemma 2, from the continuity of the solution in the entire closed domain, we obtain
u(x, y, t) = 0 in Q̄. The uniqueness of the solution is proved.

Let us prove the existence of a solution. Formula (27) represents a formal solution to
problems (5), (2)–(4). In order to justify that the obtained formal solution is indeed a true
solution, we need to show that the series CDβ

0tu, ∂pu
∂xp , ∂pu

∂yp , p = 1, 2, 3 and ∂4u
∂x4 , ∂4u

∂y4 converge

uniformly in Q̄ and Q, t > 0, respectively.
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It is obvious that for the elements of system (13), the estimates∣∣∣∣dpX2k
dxp

∣∣∣∣ ≤ ((k− 1
2

)
π

)p
,

∣∣∣∣dpX2k−1
dxp

∣∣∣∣ ≤ (kπ)p, p = 1, 2, 3, 4

are valid. Now, we must prove the uniform convergence of the series ∂4u(x,y,t)
∂x4 in Q, t > 0.

Formally differentiating series (27) four times with respect to x and integrating by parts
four times with respect to the variable x, taking into account (13), we get

∂4

∂x4 u(x, y, t) =
∞

∑
k,n=1

ϕknEβ

(
−σkntβ

)
X(4)

k (x)Yn(y)

=
∞

∑
k,n=1

 1∫
−1

1∫
−1

ϕ(x, y)Xk(x)Y∗n (y)dxdy

Eβ

(
−σkntβ

)
X(4)

k (x)Yn(y)

=
∞

∑
k,n=1

 1∫
−1

1∫
−1

ϕ(x, y)Xk(x)Y∗n (y)dxdy

Eβ

(
−σkntβ

)
λkXk(x)Yn(y)

≤ α2

∞

∑
k,n=1

 1∫
−1

1∫
−1

ϕx
(4)(x, y)

Xk(x)
λk

Y∗n (y)dxdy

Eβ

(
−σkntβ

)
λkXk(x)Yn(y),

where α2 = max
{

α0
−1, α1

−1}. Further, applying the Lemma 2 we get∣∣∣∣∂4u(x, y, t)
∂x4

∣∣∣∣ ≤ M0

∥∥∥ϕ
(4)
x

∥∥∥
L2(Q)

.

where ϕ
(4)
x means the fourth derivative with respect to x. Thus, the uniform convergence

of the series ∂4u(x,y,t)
∂x4 in Q is proved.

The convergence of the series ∂4u(x,y,t)
∂y4 is proved similarly by replacing the fourth-

order derivative Y(4)(y) with the help of Equation (11). In this case, the function inside
the integral Y∗n (y) is represented as its fourth derivative using Equation (11). Here are the
corresponding calculations:

∂4

∂y4 u(x, y, t) =
∞
∑

k,n=1
ϕknEβ

(
−σkntβ

)
Xk(x)Y(4)

n (y)

=
∞
∑

k,n=1

[
1∫
−1

1∫
−1

ϕ(x, y)Xk(x)Y∗n (y)dxdy

]
Eβ

(
−σkntβ

)
Xk(x)µnYn(y)

=
∞
∑

k,n=1

[
1∫
−1

1∫
−1

ϕ(x, y)Xk(x)Y∗(4)n (y)
µn

dxdy

]
Eβ

(
−σkntβ

)
Xk(x)µnYn(y)

=
∞
∑

k,n=1

[
1∫
−1

1∫
−1

ϕ
(4)
y (x, y)Xk(x)Y∗n (y)

µn
dxdy

]
Eβ

(
−σkntβ

)
Xk(x)µnYn(y).

Hence, as in the previous case, we obtain the estimate∣∣∣∣∂4u(x, y, t)
∂y4

∣∣∣∣ ≤ M0

∥∥∥ϕ
(4)
y

∥∥∥
L2(Q)

.

Thus, the uniform convergence of the series ∂4u(x,y,t)
∂y4 in Q, t > 0 is proved. The

uniform convergence of the series ∂2u(x,y,t)
∂y2 in Q̄, t > 0 is proved in a similar way.
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Using estimates [33]∣∣∣Y(s)
n (y)

∣∣∣ ≤ const
(

1 + 4
√
|µn|

)s
max|Yn(y)|, s = 1, 2, 3,

for the eigenfunctions of the fourth-order differential operator, as above, we prove the
uniform convergence of the series ∂pu

∂yp , p = 1, 3, in Q̄.
Each term of series (27) is a solution of problems (5), (2)–(4). Therefore, boundary

conditions (3) and (4) are satisfied. The function (27) satisfies the relations of the type (2).
To do this, it sufficient to show that the series (27) converges uniformly in Q̄, t ≥ 0.
For t ≥ 0, the inequality

|u(x, y, t)| ≤ M
∞

∑
k,n=1

∣∣∣∣∣∣
1∫
−1

1∫
−1

ϕ(x, y)Xk(x)Y∗n (y)dxdy

∣∣∣∣∣∣|Xk(x)||Yn(y)|

is satisfied. The function inside the integral Y∗n (y) is represented as its second derivative
using Equation (14). Integrating by parts two times over the variable x and two times
over the variable y, applying the Cauchy–Schwarz inequality and the Bessel inequality, we
conclude that the series (27) converges absolutely and uniformly in Q̄, t ≥ 0. The theorem
is proved.

Remark 3. The solution to problem (2)–(4) for the inhomogeneous Equation (1) is sought in the
form of a series (24). We represent the function f (x, y, t) as an expansion in the basis (22)

f (x, y, t) =
∞

∑
k,n=0

fkn(t)wkn(x, y), fkn(t) = ( f (x, y, t), w∗kn(x, y)).

The functions Ckn(t) have the form

Ckn(t) = ϕknEβ

(
−σkntβ

)
+

t∫
0

(t− τ)β−1Eβ,β

(
−σkn(t− τ)β

)
fkn(τ)dτ, (28)

where ϕkn = (ϕ(x, y), w∗kn(x, y)) in the sense of the scalar product in L2((−1, 1)× (−1, 1)),

Eβ,γ(z) is the Mittag–Leffler function [25] defined by formula Eβ,γ(z) =
∞
∑

k=0

zk

Γ(βk+γ)
and satisfying

the estimate∣∣Eβ,γ(z)
∣∣ ≤ M

1 + |z| , 0 < β < 2, γ ∈ R, δ ≤ |arg z| ≤ π, δ ∈
(

βπ

2
, min{π; βπ}

)
.

Substituting (28) into (24), we obtain the solution of problem (1)–(4).

Example 1. Let the boundary conditions (4) have the form (case θ = −1)

l1(u) ≡
∂

∂y
u(x,−1, t) +

∂

∂y
u(x, 1, t) = 0,

l2(u) ≡ u(x, 1, t) = 0,

l̃1(u) ≡
∂3

∂y3 u(x,−1, t) +
∂3

∂y3 u(x, 1, t) = 0,

l̃2(u) ≡
∂2

∂y2 u(x,−1, t) = 0.

(29)

Then, the spectral problem (11), (12) takes the form

Y′′′′(y) = µY(y), −1 < y < 1,
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Y′(−1) + Y′(1) = 0, Y(1) = 0, Y′′′(−1) + Y′′′(1) = 0, Y′′(−1) = 0.

where the eigenvalues µk =
(

k− 1
2

)4
π4 correspond to two series of eigenfunctions

Yk1 = sin
(

k− 1
2

)
πy + (−1)k+1 e(k− 1

2 )πy + e−(k− 1
2 )πy

e(k− 1
2 )π + e−(k− 1

2 )π
, Yk2 = cos

(
k− 1

2

)
πy, (30)

k = 1, 2, . . . The conjugate boundary conditions are

Y∗′(1) = 0, Y∗(−1) + Y∗(1) = 0, Y∗′′′(−1) = 0, Y∗′′(−1) + Y∗′′(1) = 0.

The eigenfunctions of the conjugate problem are

Y∗k1 = sin
(

k− 1
2

)
πy, Y∗k2 = cos

(
k− 1

2

)
πy + (−1)k+1 e(k− 1

2 )πy − e−(k− 1
2 )πy

e(k− 1
2 )π + e−(k− 1

2 )π.
(31)

Each of systems (30) and (31) forms a Riesz basis in L2(−1, 1) [27].

Theorem 5 is formulated in the following form.

Theorem 6. Let the function ϕ(x, y) be such that ϕ(x, y) ∈ C3,0
x,y(Q̄) ∩ C0,3

x,y(Q̄) ∩ C4,0
x,y(Q) ∩

C0,4
x,y(Q) ∩ C2,2

x,y(Q̄), satisfy self-conjugate conditions (3) with respect to the variable x and condi-
tions (29) with respect to the variable y. Then problem (5), (2), (3), (29) has a unique solution,
which can be represented in the form (27).

Example 2. Considering the problem (5), (2), (3), (29). Let in (2) ϕ(x, y) = sin πx cos π
2 y.

Then in (27) coefficient ϕ11 = 1, all other coefficients ϕkn, k, n 6= 1, equal to zero. Since
λ1 = (1− α)π4, µ1 = 1

16 π4, σ11 =
(

17
16 − α

)
π4, from Equation (26), we get C11 = Eβ(

−
(

17
16 − α

)
π4tβ

)
. The solution in the form (27) of problem (5), (2), (3), (29) takes the form

u(x, y, t) = Eβ

(
−
(

17
16
− α

)
π4tβ

)
sin πx cos

π

2
y.

4. Conclusions

The existence and uniqueness of regular solutions of a certain class of problems for
two-dimensional parabolic equations of fractional order is established. With respect to
one variable, the equation contains an involution transformation. The completeness of the
eigenfunctions of the boundary value problem for the fourth-order differential equation
with involution is proved. The Riesz basis property of the eigenfunctions of boundary
value problems for the fourth-order ordinary differential equation is shown for a special
class of boundary conditions. In this case, the properties of eigenfunctions of boundary
value problems for the second-order differential equation with involution are used.
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