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Abstract: In this study, we present a new notion of nonlocal closed boundary conditions. Equipped
with these conditions, we discuss the existence of solutions for a mixed nonlinear differential equa-
tion involving a right Caputo fractional derivative operator, and left and right Riemann–Liouville
fractional integral operators of different orders. We apply a decent and fruitful approach of fixed
point theory to establish the desired results. Examples are given for illustration of the main results.
The paper concludes with some interesting observations.
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1. Introduction

Closed boundary conditions play a pivotal role in dealing with the fluid dynamics
problems when there is no fluid flow along the boundary or through it [1]. The free slip
condition is also a type of the closed boundary conditions that ensure the flow along the
boundary, but no flow perpendicular to it. These conditions are also important in handling
gravity, radiation in diffusion approximation, an elastic wavefield on a closed free surface,
radiation heat transfer modeling, CFdesign, deblurring problems, honeycomb lattice, etc.
For further details, see the articles [2–7].

Boundary value problems involving different nonlocal fractional differential operators
and boundary data have been investigated in the literature. A recent text [8] on the topic
presents a nice exposure of such problems. For more examples, see the papers [9–13].
In addition, one can witness a significant development in the area of nonlocal boundary
value problems containing ψ, ψ-Hilfer and (k, ψ) Hilfer type fractional derivative operators;
for example, see [14–17]. For some results on coupled and hybrid fractional differential
equations, see the articles [18–22].

Let us now recall some works on closed boundary conditions. In [23], Setukha stud-
ied a three-dimensional Neumann problem in a region with a smooth closed boundary.
Ahmad et al. [24] considered fractional differential equations and inclusions complemented
with open and closed boundary conditions. In the article [25], the authors studied fractional
differential equations with impulse and closed boundary conditions.

In this paper, we propose a nonlocal variant of closed boundary conditions and study
an integro-differential equation containing a right Caputo fractional derivative and mixed
(usual and Riemann–Liouville type integral) nonlinearities supplemented with these newly
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introduced conditions. Specifically, we explore the criteria ensuring existence of solutions
for the following problem:

CDµ
T−y(t) + λIρ

T− Iσ
0+ϕ1(t, y(t)) = ϕ2(t, y(t)), t ∈ J := [0, T], (1)

y(T) = p1y(ξ) + p2Ty′(ξ), Ty′(T) = q1y(ξ) + q2Ty′(ξ), 0 < ξ < T, (2)

where CDµ
T− represents the right Caputo fractional derivative operator of order µ ∈ (1, 2],

Iρ
T− and Iσ

0+, respectively, designate the right and left Riemann–Liouville operators of
fractional orders ρ, σ > 0, ϕ1, ϕ2 : [0, T]×R→ R are continuous functions and λ, p1, p2, q1,
q2 ∈ R.

Here, it worthwhile to mention that our problem is new in the sense of fractional
integro-differential equation and nonlocal closed boundary conditions. We can interpret
the boundary conditions (2) as the values of the unknown function y and its derivative y′

at the right end-point of the domain [0, T] are proportional to a linear combination of these
values at a nonlocal position ξ ∈ (0, T). Physically, the nonlocal closed boundary conditions
provide a flexible mechanism to close the boundary at an arbitrary position in the given
domain instead of the left end-point of the domain (the usual closed boundary conditions
considered in [24]). We first convert the given boundary value problem into an equivalent
fixed point problem. Afterward, we establish our main results by applying the fixed point
theorems due to Krasnosel’skiĭ and Banach, and the Leray–Schauder nonlinear alternative.
It is well known that the methods of modern analysis offer an effective approach to develop
the existence theory for initial and boundary value problems. We emphasize that our
results are not only new in the given setting but also specialize to some new ones.

The rest of the paper is arranged as follows: Section 2 contains a subsidiary lemma,
which facilitates the transformation of the given nonlinear problem into an equivalent fixed-
point problem. The main results are presented in Section 3, while examples demonstrating
application of these results are constructed in Section 4. The last section addresses some
interesting findings.

2. Preliminaries

First of all, we present some preliminary definitions of fractional calculus from the
book by Kilbas et al. [26].

Definition 1. For g ∈ L1[a, b], we respectively define the left and right Riemann–Liouville
fractional integrals of order $ > 0 as

I$
a+g(t) =

∫ t

a

(t− s)$−1

Γ($)
g(s)ds and I$

b−g(t) =
∫ b

t

(s− t)$−1

Γ($)
g(s)ds.

Definition 2. The right Caputo fractional derivative for a function g ∈ ACm[a, b] of order
$ ∈ (m− 1, m], m ∈ N is defined by

CD$
b−g(t) = (−1)m

∫ b

t

(s− t)m−$−1

Γ(m− $)
g(m)(s)ds.

Next, we solve a linear version of the problems (1) and (2), which is of fundamental
importance in obtaining the main results.

Lemma 1. ForH,F ∈ C(J) and γ 6= 0, the solution of the linear problem
CDµ

T−y(t) + λIρ
T− Iσ

0+H(t) = F (t), t ∈ J,

y(T) = p1y(ξ) + p2Ty′(ξ), Ty′(T) = q1y(ξ) + q2Ty′(ξ), 0 < ξ < T,
(3)
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is given by

y(t) =
1

Γ(µ)

∫ T

t
(s− t)µ−1

[
F (s)− λIρ

T− Iσ
0+H(s)

]
ds

+
a1(t)
Γ(µ)

∫ T

ξ
(s− ξ)µ−1

[
F (s)− λIρ

T− Iσ
0+H(s)

]
ds (4)

+
a2(t)

Γ(µ− 1)

∫ T

ξ
(s− ξ)µ−2

[
λIρ

T− Iσ
0+H(s)−F (s)

]
ds,

where

a1(t) =
1
γ

[(
p2q1 − p1q2 + p1 − q1

)
T + q1t

]
,

a2(t) =
T
γ

[(
p1q2 − p2q1

)
ξ + (p2 − q2)T −

(
p1q2 − p2q1 − q2

)
t
]
, (5)

γ =
(

p1q2 − p2q1 − p1 + q1 − q2 + 1
)
T − q1ξ 6= 0.

Proof. Applying the operator Iµ
T− to both sides of the fractional integro-differential equa-

tion in (3), we obtain

y(t) = Iµ
T−F (t)− λIµ+ρ

T− Iσ
0+H(t)− c0 − c1t, (6)

where c0 and c1 are unknown arbitrary constants. Using (6) in the nonlocal closed boundary
conditions: y(T) = p1y(ξ) + p2Ty′(ξ) and Ty′(T) = q1y(ξ) + q2Ty′(ξ), we find a system
of algebraic equations in c0 and c1:{

(p1 − 1)c0 + (p1ξ + p2T − T)c1 = p1 A + p2TB,
q1c0 + (q1ξ + q2T − T)c1 = q1 A + q2TB,

(7)

where
A = Iµ

T−F (ξ)− λIµ+ρ
T− Iσ

0+H(ξ), B = λIµ+ρ−1
T− Iσ

0+H(ξ)− Iµ−1
T− F (ξ).

Solving the system (7), we find that

c0 =
−1
γ

{[
(q1 p2 − p1q2 + p1 − q1)

]
TA +

[
(q2 p1 − p2q1)ξ + (p2 − q2)T

]
TB
}

,

c1 =
1
γ

[
− q1 A + (p1q2 − q1 p2 − q2)TB

]
.

Inserting the above values in (6) together with the notation (5) yields the solution (4).
The converse follows by direct computation.

In view of Lemma 1, an operator G : X → X , related to the problems (1) and (2), is
defined by

Gy(t) =
1

Γ(µ)

∫ T

t
(s− t)µ−1

[
ϕ2(s, y(s))− λIρ

T− Iσ
0+ϕ1(s, y(s))

]
ds

+
a1(t)
Γ(µ)

∫ T

ξ
(s− ξ)µ−1

[
ϕ2(s, y(s))− λIρ

T− Iσ
0+ϕ1(s, y(s))

]
ds

+
a2(t)

Γ(µ− 1)

∫ T

ξ
(s− ξ)µ−2

[
λIρ

T− Iσ
0+ϕ1(s, y(s))− ϕ2(s, y(s))

]
ds, (8)

where X stands for the Banach space consisting of all continuous functions from J → R
equipped with the norm ‖y‖ = sup {|y(t)| : t ∈ J}. Notice that the problems (1) and (2) is
equivalent to the fixed point problem: Gy = y, where G is defined in (8).
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Now, we enlist the hypotheses needed in the sequel. ∀t ∈ J, x, y ∈ R, and the
following conditions hold:

(E1) For a Lipschitz constant K > 0, we have |ϕ1(t, x)− ϕ1(t, y)| ≤ K|x− y|;
(E2) For a Lipschitz constant L > 0, we have |ϕ2(t, x)− ϕ2(t, y)| ≤ L|x− y|;
(E3) There exist β, θ ∈ C(J,R+) such that |ϕ1(t, y)| ≤ θ(t) and |ϕ2(t, y)| ≤ β(t);
(E4) Let φ, ψ : [0, ∞)→ (0, ∞) be continuous nondecreasing functions such that

|ϕ1(t, y)| ≤ ω1(t)ψ(‖y‖), |ϕ2(t, y)| ≤ ω2(t)φ(‖y‖), ω1, ω2 ∈ C(J,R+);

(E5) M(‖ω2‖φ(M)Ω1 + ‖ω1‖ψ(M)Ω2)
−1 > 1, where M is a positive constant and Ω1 and

Ω2 are given by

Ω1 =
1

Γ(µ + 1)
[
Tµ + a1(T − ξ)µ + a2(µ)(T − ξ)µ−1],

Ω2 =
|λ|Tσ

Γ(σ + 1)Γ(µ + ρ + 1)

×
[
Tµ+ρ + a1(T − ξ)µ+ρ + a2(µ + ρ)(T − ξ)µ+ρ−1], (9)

with
a1 = max

t∈J
|a1(t)|, a2 = max

t∈J
|a2(t)|.

3. Main Results

This section is devoted to the existence and uniqueness results for the problems (1)
and (2). In the first theorem, we prove the existence of solutions to the given problem
by means of Krasnosel’skiĭ’s fixed point theorem [27], while Leray–Schauder nonlinear
alternative [28] is applied to establish the second existence result. Theorem 3, dealing with
the uniqueness of solutions for the problem at hand, is based on Banach’s contraction
mapping principle [28].

Theorem 1. (Existence result I) If the assumptions (E1)–(E3) are satisfied, then problems (1)
and (2) has at least one solution on J, provided that

Lγ1 + Kγ2 < 1, where γ1 =
Tµ

Γ(µ + 1)
, γ2 =

|λ|Tµ+ρ+σ

Γ(σ + 1)Γ(µ + ρ + 1)
. (10)

Proof. Define a closed ball Bζ = {y ∈ X : ‖y‖ ≤ ζ} with

ζ ≥ ‖β‖Ω1 + ‖θ‖Ω2. (11)

Then, we decompose the operator G : X → X on Bζ as G = G1 + G2, where

G1y(t) =
1

Γ(µ)

∫ T

t
(s− t)µ−1

[
ϕ2(s, y(s))− λIρ

T− Iσ
0+ϕ1(s, y(s))

]
ds,

G2y(t) =
a1(t)
Γ(µ)

∫ T

ξ
(s− ξ)µ−1

[
ϕ2(s, y(s))− λIρ

T− Iσ
0+ϕ1(s, y(s))

]
ds

+
a2(t)

Γ(µ− 1)

∫ T

ξ
(s− ξ)µ−2

[
λIρ

T− Iσ
0+ϕ1(s, y(s))− ϕ2(s, y(s))

]
ds.

Next, we show that G1 and G2 verify the hypothesis of Krasnosel’skiĭ’s fixed point
theorem [27] in three steps.

(i) Let y, x ∈ Bζ . Then, we have

‖G1y + G2x‖
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≤ sup
t∈J

{ ∫ T

t

(s− t)µ−1

Γ(µ)

[
|ϕ2(s, y(s))|+ |λ|Iρ

T− Iσ
0+|ϕ1(s, y(s))|

]
ds

+|a1(t)|
[ ∫ T

ξ

(s− ξ)µ−1

Γ(µ)

[
|ϕ2(s, x(s))|+ |λ|Iρ

T− Iσ
0+|ϕ1(s, x(s))|

]
ds

+|a2(t)|
[ ∫ T

ξ

(s− ξ)µ−2

Γ(µ− 1)

[
|λ|Iρ

T− Iσ
0+|ϕ1(s, x(s))|+ |ϕ2(s, x(s))|

]
ds

}

≤ ‖β‖ sup
t∈J

{ ∫ T

t

(s− t)µ−1

Γ(µ)
ds + |a1(t)|

∫ T

ξ

(s− ξ)µ−1

Γ(µ)
ds + |a2(t)|

∫ T

ξ

(s− ξ)µ−2

Γ(µ− 1)
ds
}

+‖θ‖|λ| sup
t∈J

{ ∫ T

t

(s− t)µ+ρ−1

Γ(µ + ρ)
Iσ
0+ds + |a1(t)|

∫ T

ξ

(s− ξ)µ+ρ−1

Γ(µ + ρ)
Iσ
0+ds

+|a2(t)|
∫ T

ξ

(s− ξ)µ+ρ−2

Γ(µ + ρ− 1)
Iσ
0+ds

}
≤ ‖β‖ sup

t∈J

{
(T − t)µ

Γ(µ + 1)
+ |a1(t)|

(T − ξ)µ

Γ(µ + 1)
+ |a2(t)|

(T − ξ)µ−1

Γ(µ)

}
+‖θ‖|λ| sup

t∈J

{
Tσ (T − t)µ+ρ

Γ(σ)Γ(µ + ρ + 1)
+ |a1(t)|Tσ (T − ξ)µ+ρ

Γ(σ)Γ(µ + ρ + 1)

+|a2(t)|Tσ (T − ξ)µ+ρ−1

Γ(σ)Γ(µ + ρ)

}
≤ ‖β‖

Γ(µ + 1)

{
Tµ + a1(T − ξ)µ + a2(µ)(T − ξ)µ−1

}
+

‖θ‖|λ|Tσ

Γ(σ)Γ(µ + ρ + 1)

{
Tµ+ρ + a1(T − ξ)µ+ρ + a2(µ + ρ)(T − ξ)µ+ρ−1

}
≤ ‖β‖Ω1 + ‖θ‖Ω2 < ζ,

where we used (E3) and (11). Thus, G1y + G2x ∈ Bζ .

(ii) Using (E1) and (E2), it is easy to show that

‖G1y− G1x‖ ≤ sup
t∈J

{ ∫ T

t

(s− t)µ−1

Γ(µ)
|ϕ2(s, y(s))− ϕ2(s, x(s))|ds

+|λ|
∫ T

t

(s− t)µ+ρ−1

Γ(µ + ρ)
Iσ
0+|ϕ1(s, y(s))− ϕ1(s, x(s))|

}
ds

≤ (Lγ1 +Kγ2)‖y− x‖,

which, by the condition Lγ1 +Kγ2 < 1 given in (10), verifies that G1 is a contraction.

(iii) It follows by continuity of ϕ1 and ϕ2 that G2 is continuous. Moreover, we have

‖G2y‖ ≤ sup
t∈J

{
|a1(t)|

∫ T

ξ

(s− ξ)µ−1

Γ(µ)

[
|ϕ2(s, y(s))|+ |λ|Iρ

T− Iσ
0+|ϕ1(s, y(s))|

]
ds

+|a2(t)|
∫ T

ξ

(s− ξ)µ−2

Γ(µ− 1)

[
|λ|Iρ

T− Iσ
0+|ϕ1(s, y(s))|+ |ϕ2(s, y(s))|

]
ds

}

≤ ‖β‖ sup
t∈J

{
|a1(t)|

∫ T

ξ

(s− ξ)µ−1

Γ(µ)
ds + |a2(t)|

∫ T

ξ

(s− ξ)µ−2

Γ(µ− 1)
ds

}
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+|λ|‖θ‖ sup
t∈J

{
|a1(t)|

∫ T

ξ

(s− ξ)µ+ρ−1

Γ(µ + ρ)
Iσ
0+ds + |a2(t)|

∫ T

ξ

(s− ξ)µ+ρ−2

Γ(µ + ρ− 1)
Iσ
0+ds

}
≤ ‖β‖(Ω1 − γ1) + ‖θ‖(Ω2 − γ2),

where Ωi and γi (i = 1, 2) are respectively given in (9) and (10). This shows that G2 is
uniformly bounded on Bζ . To establish the compactness of G2, let sup(t,y)∈J×Bζ

|ϕ1(t, y)| =
ϕ1 and sup(t,y)∈J×Bζ

|ϕ2(t, y)| = ϕ2. Then, for 0 < t1 < t2 < T, we have

|(G2y)(t2)− (G2y)(t1)|

≤
∣∣a1(t2)− a1(t1)

∣∣{ ∫ T

ξ

(s− ξ)µ−1

Γ(µ)

[
|ϕ2(s, y(s))|+ |λ|Iρ

T− Iσ
0+|ϕ1(s, y(s))|

]
ds
}

+
∣∣a2(t2)− a2(t1)

∣∣{ ∫ T

ξ

(s− ξ)µ−2

Γ(µ− 1)

[
|λ|Iρ

T− Iσ
0+|ϕ1(s, y(s))|+ |ϕ2(s, y(s))|

]
ds
}

≤ |q1(t2 − t1)|
|γ|

{
ϕ2(T − ξ)µ

Γ(µ + 1)
+

ϕ1|λ|Tσ(T − ξ)µ+ρ

Γ(σ + 1)Γ(µ + ρ + 1)

}

+
T|(p1q2 − q1 p2 − q2)||(t2 − t1)|

|γ|

{
ϕ1|λ|Tσ(T − ξ)µ+ρ−1

Γ(σ + 1)Γ(µ + ρ)
+

ϕ2(T − ξ)µ−1

Γ(µ)

}
−→ 0 as t2 → t1,

independently of y ∈ Bζ . Thus, G2 is equicontinuous. Consequently, G2 is relatively compact
on Bζ . Hence, G2 is compact on Bζ by the Arzelá–Ascoli theorem. We deduce from the
steps (i)–(iii) that the hypothesis of the Krasnosel’skiĭ’s fixed point theorem [27] is satisfied.
Thus, there exists a fixed point for the operator G1 + G2 = G, which is indeed a solution to
the problems (1) and (2).

Remark 1. Switching the roles of the operators G1 and G2 in the last theorem, the assumption
Lγ1 + Kγ2 < 1 changes to L(Ω1 − γ1) + K(Ω2 − γ2) < 1, where Ω1, Ω2 and γ1, γ2 are
respectively given in (9) and (10).

Theorem 2. (Existence result II) Assume that (E4) and (E5) are satisfied. Then, problems (1)
and (2) has at least one solution on J.

Proof. We complete the proof in several steps. Let us first establish that the operator G is
completely continuous.

(i) For a fixed number r, let y ∈ Br = {y ∈ X : ‖y‖ ≤ r}. Then, as argued in the proof
of Theorem 1, we can find that

‖Gy‖ ≤ ‖ω2‖φ(r)
Γ(µ + 1)

[
Tµ + a1(T − ξ)µ + a2(µ)(T − ξ)µ−1]

+
|λ|Tσ‖ω1‖ψ(r)

Γ(σ + 1)Γ(µ + ρ + 1)
[
Tµ+ρ + a1(T − ξ)µ+ρ + a2(µ + ρ)(T − ξ)µ+ρ−1]

= ‖ω2‖φ(r)Ω1 + ‖ω1‖ψ(r)Ω2 < ∞.

This shows that G maps bounded sets into bounded sets in X .
(ii) Bounded sets are mapped into equicontinuous sets by the operator G. For 0 < t1 < t2 < T

and y ∈ Br, we have

|Gy(t2)− Gy(t1)|

≤
∣∣∣∣ ∫ T

t2

(s− t2)
µ−1 − (s− t1)

µ−1

Γ(µ)
ϕ2(s, y(s))ds−

∫ t2

t1

(s− t1)
µ−1

Γ(µ)
ϕ2(s, y(s))ds
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−λ
∫ T

t2

(s− t2)
µ+ρ−1 − (s− t1)

µ+ρ−1

Γ(µ + ρ)
Iσ
0+ϕ1(s, y(s))ds

−λ
∫ t2

t1

(s− t1)
µ+ρ−1

Γ(µ + ρ)
Iσ
0+ϕ1(s, y(s))ds

∣∣∣∣
+
∣∣a1(t2)− a1(t1)

∣∣[∣∣∣∣ ∫ T

ξ

(s− ξ)µ−1

Γ(µ)

(
ϕ2(s, y(s))− λIρ

T− Iσ
0+ϕ1(s, y(s))

)
ds
∣∣∣∣
]

+
∣∣a2(t2)− a2(t1)

∣∣[∣∣∣∣ ∫ T

ξ

(s− ξ)µ−2

Γ(µ− 1)

(
λIρ

T− Iσ
0+ϕ1(s, y(s))− ϕ2(s, y(s))

)
ds
∣∣∣∣
]

≤
∫ T

t2

∣∣(s− t2)
µ−1 − (s− t1)

µ−1
∣∣

Γ(µ)
|ϕ2(s, y(s))|ds +

∫ t2

t1

(s− t1)
µ−1

Γ(µ)
|ϕ2(s, y(s))|ds

+|λ|
∫ T

t2

∣∣(s− t2)
µ+ρ−1 − (s− t1)

µ+ρ−1
∣∣

Γ(µ + ρ)
Iσ
0+|ϕ1(s, y(s))|ds

+|λ|
∫ t2

t1

(s− t1)
µ+ρ−1

Γ(µ + ρ)
Iσ
0+|ϕ1(s, y(s))|ds

+
∣∣a1(t2)− a1(t1)

∣∣[ ∫ T

ξ

(s− ξ)µ−1

Γ(µ)

(
|ϕ2(s, y(s))|+ |λ|Iρ

T− Iσ
0+|ϕ1(s, y(s))|

)
ds

]

+
∣∣a2(t2)− a2(t1)

∣∣[ ∫ T

ξ

(s− ξ)µ−2

Γ(µ− 1)

(
|λ|Iρ

T− Iσ
0+|ϕ1(s, y(s))|+ |ϕ2(s, y(s))|

)
ds

]

≤ ω2(t)φ(r)
Γ(µ + 1)

{∣∣(T − t2)
µ − (T − t1)

µ + (t2 − t1)
µ
∣∣+ |t2 − t1|µ

+
|t2 − t1|
|γ|

[
q1(T − ξ)µ + |p1q2 − q1 p2 − q2|T(µ)(T − ξ)µ−1]}

+
|λ|Tσω1(t)ψ(r)

Γ(σ + 1)Γ(µ + ρ + 1)

{∣∣(T − t2)
µ+ρ − (T − t1)

µ+ρ + (t2 − t1)
µ+ρ|+ |t2 − t1|µ+ρ

+
|t2 − t1|
|γ|

[
q1(T − ξ)µ+ρ + |p1q2 − q1 p2 − q2|T(µ + ρ)(T − ξ)µ+ρ−1]}

−→ 0 as t2 → t1,

independently of y ∈ Br. Thus, G : X → X is completely continuous by the Arzelá–Ascoli
theorem.

In order to apply the Leray–Schauder nonlinear alternative [28], we have to show that
we can find an open set V ⊂ C(J,R) such that y 6= vGy for v ∈ (0, 1) and y ∈ ∂V . If it is
not so, then y = vGy for y ∈ C(J,R) and v ∈ (0, 1). Thus, we have

|y(t)| = |vGy(t)| ≤ |ω2(t)|φ(‖y‖)Ω1 + |ω1(t)|ψ(‖y‖)Ω2,

which can alternatively be expressed as

‖y‖
‖ω2‖φ(‖y‖)Ω1 + ‖ω1‖ψ(‖y‖)Ω2

≤ 1.

By the assumption (E5), there existsM > 0 such that ‖y‖ 6=M. Define a set

V = {y ∈ X : ‖y‖ <M},

such that ∂V contains a solution only if ‖y‖ =M. Clearly, for some v ∈ (0, 1), there does
not exist any solution y ∈ ∂V satisfying y = vGy. Therefore, there exists a fixed point y ∈ V
for the operator G, for which problems (1) and (2) correspond to a solution.
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Theorem 3. (Uniqueness result) Let the assumptions (E1) and (E2) hold. Then, problems (1)
and (2) have a unique solution on J if

LΩ1 +KΩ2 < 1, (12)

where Ω1 and Ω2 are given in (9).

Proof. Letting ϕ̂1 = supt∈J |ϕ1(t, 0)|, ϕ̂2 = supt∈J |ϕ2(t, 0)|, and

ς ≥ ϕ̂2Ω1 + ϕ̂1Ω2

1− (LΩ1 +KΩ2)
,

it will be shown that GΘς ⊂ Θς, where Θς = {y ∈ X : ‖y‖ ≤ ς} and G are defined by (8).
For y ∈ Θς, it follows by the assumption (E1) that

|ϕ1(t, y)| = |ϕ1(t, y)− ϕ1(t, 0) + ϕ1(t, 0)| ≤ |ϕ1(t, y)− ϕ1(t, 0)|+ |ϕ1(t, 0)|
≤ L‖y‖+ ϕ̂1 ≤ Lς + ϕ̂1. (13)

Likewise, by the assumption (E2), we have

|ϕ2(t, y)| ≤ Kς + ϕ̂2. (14)

In view of (13) and (14), we obtain

‖Gy‖ = sup
t∈J
|Gy(t)|

≤ sup
t∈J

{ ∫ T

t

(s− t)µ−1

Γ(µ)

[
|ϕ2(s, y(s))|+ |λ|Iρ

T− Iσ
0+|ϕ1(s, y(s))|

]
ds

+|a1(t)|
∫ T

ξ

(s− ξ)µ−1

Γ(µ)

[
|ϕ2(s, y(s))|+ |λ|Iρ

T− Iσ
0+|ϕ1(s, y(s))|

]
ds

+|a2(t)|
∫ T

ξ

(s− ξ)µ−2

Γ(µ− 1)

[
|λ|Iρ

T− Iσ
0+|ϕ1(s, y(s))|+ |ϕ2(s, y(s))|

]
ds

≤ (Lς + ϕ̂2) sup
t∈J

{ ∫ T

t

(s− t)µ−1

Γ(µ)
ds + |a1(t)|

∫ T

ξ

(s− ξ)µ−1

Γ(µ)
ds

+|a2(t)|
∫ T

ξ

(s− ξ)µ−2

Γ(µ− 1)
ds
}

+(Kς + ϕ̂1)|λ| sup
t∈J

{ ∫ T

t

(s− t)µ+ρ−1

Γ(µ + ρ)
Iσ
0+ds + |a1(t)|

∫ T

ξ

(s− ξ)µ+ρ−1

Γ(µ + ρ)
Iσ
0+ds

+|a2(t)|
∫ T

ξ

(s− ξ)µ+ρ−2

Γ(µ + ρ− 1)
Iσ
0+ds

}
≤ (Lς + ϕ̂2)

Γ(µ + 1)

[
Tµ + a1(T − ξ)µ + a2(µ)(T − ξ)µ−1

]
+

|λ|(Kς + ϕ̂1)Tσ

Γ(σ + 1)Γ(µ + ρ + 1)

[
Tµ+ρ + a1(T − ξ)µ+ρ + a2(µ + ρ)(T − ξ)µ+ρ−1

]
= (Lς + ϕ̂2)Ω1 + (Kς + ϕ̂1)Ω2 < ς,

which verifies that GΘς ⊂ Θς since y ∈ Θς is arbitrary.
Next, it will be shown that G is a contraction. For x, y ∈ X and t ∈ J, it follows by

using the assumptions (E1) and (E2) that
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‖Gy− Gx‖ = sup
t∈J

∣∣(Gy)(t)− (Gx)(t)
∣∣

≤ sup
t∈J

{ ∫ T

t

(s− t)µ−1

Γ(µ)
|ϕ2(s, y(s))− ϕ2(s, x(s))|ds

+|λ|
∫ T

t

(s− t)µ+ρ−1

Γ(µ + ρ)
Iσ
0+|ϕ1(s, y(s))− ϕ1(s, x(s))|ds

+|a1(t)|
∫ T

ξ

(s− ξ)µ−1

Γ(µ)
∣∣ϕ2(s, y(s))− ϕ2(s, x(s))| ds

+|λ||a1(t)|
∫ T

ξ

(s− ξ)µ+ρ−1

Γ(µ + ρ)
Iσ
0+|ϕ1(s, y(s))− ϕ1(s, x(s))|ds

+|a2(t)|
∫ T

ξ

(s− ξ)µ−2

Γ(µ− 1)

∣∣ϕ2(s, y(s))− ϕ2(s, x(s))|ds

+|λ||a2(t)|
∫ T

ξ

(s− ξ)µ+ρ−2

Γ(µ + ρ− 1)
Iσ
0+
∣∣ϕ1(s, y(s))− ϕ1(s, x(s))| ds

}

≤ ‖y− x‖
{

L
Γ(µ + 1)

[
Tµ + a1(T − ξ)µ + a2(µ)(T − ξ)µ+1]

+
K|λ|Tσ

Γ(σ + 1)Γ(µ + ρ + 1)
[
Tµ+ρ + a1(T − ξ)µ+ρ + a2(µ + ρ)(T − ξ)µ+ρ+1]}

= (LΩ1 +KΩ2)‖y− x‖,

which implies that G is a contraction as (LΩ1 +KΩ2) < 1 by (12). Therefore, it follows
by Banach’s contraction mapping principle that G has a unique fixed point. Consequently,
there exists a unique solution to problems (1) and (2) on J.

4. Examples

Here, we illustrate the results derived in the last section with the aid of examples.
Consider the problem: D7/5

1− y(t) + 2I6/7
1− I9/4

0+ ϕ1(t, y(t)) = ϕ2(t, y(t)), t ∈ J := [0, 1],

y(1) = 3y(2/3)− 2y′(2/3), y′(1) = 4y(2/3)− y′(2/3).
(15)

Here, µ = 7/5, λ = 2, p1 = 3, p2 = −2, q1 = 4, q2 = −1, ξ = 2/3, ρ = 6/7, σ = 9/4, T = 1.
Using the given data, it is found that a1 = maxt∈[0,1] |a1(t)| = |a1(t)|t=0 ≈ 1.125000000,
a2 = maxt∈[0,1] |a2(t)| = |a2(t)|t=1 ≈ 0.6875000000. Consequently, we obtain

Ω1 ≈ 1.498891438, Ω2 ≈ 0.4534569794,

where Ω1 and Ω2 are given in (9).
(a) For explaining Theorem 1, let us take

ϕ1(t, y) =
1

t2 + 20

(
tan−1 y + sin y + e−t

)
, ϕ2(t, y) =

1
3

( 1√
t2 + 25

|y|
1 + |y| + sin t

)
, (16)

and observe that

|ϕ1(t, y)| ≤ θ(t) =
π + e−t

t2 + 20
, |ϕ2(t, y)| ≤ β(t) =

1
3

( 1√
t2 + 25

+ sin t
)

.

Moreover, γ1 ≈ 0.8050432130, γ2 ≈ 0.3055230436 and Lγ1 + Kγ2 ≈ 0.08422185186 < 1.
Since the hypotheses of Theorem 1 are satisfied, the problem (15) with ϕ1(t, y) and ϕ2(t, y)
given by (16) has a solution.
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(b) For illustrating Theorem 2, consider the problem (15) with

ϕ1(t, y) =
3√

t2 + 3600

(
tan−1 y + sin y

)
, ϕ2(t, y) =

t2 + 1
10

(
|y + 1|

3(1 + |y + 1|) + y cos y
)

, (17)

and note that ω1(t) = 3√
t2+3600

, ‖ω1‖ = 1/20, ω2(t) = (1/10)(t2 + 1),‖ω2‖ = 1/5,
φ(‖y‖) = ‖y‖+ 1/3 and ψ(‖y‖) = ‖y‖+ π/2. Using the condition (E5), it is found that
M > 1.351610815. Clearly, the assumptions of Theorem 2 are verified. Therefore, problem
(15) with ϕ1(t, y) and ϕ2(t, y) given in (17) has a solution on [0, 1].

(c) Clearly, ϕ1(t, y) and ϕ2(t, y) (given in (17)) satisfy (E1) and (E2), respectively, with
K = 1/10 and L = 4/15. Moreover, LΩ1 + KΩ2 ≈ 0.4450500814. < 1. Thus, the conclusion
of Theorem 3 applies to the problem (15) with ϕ1(t, y) and ϕ2(t, y) given in (17).

5. Conclusions

Applying the techniques of fixed point theory, we investigated the existence of so-
lutions to a mixed nonlinear differential equation involving a right Caputo fractional
derivative operator, and left and right Riemann–Liouville fractional integral operators of
different orders, complemented with nonlocal closed boundary conditions. Our results are
new in the given setting and specialize to some new ones by taking appropriate values of
the parameters involved in the boundary conditions. For instance, our results correspond to
nonlocal quasi-periodic boundary conditions: y(T) = p1y(ξ), Ty′(T) = q2Ty′(ξ) if we take
q1 = 0 = p2 in the present results. Our results interpolate between parametric type periodic
conditions (y(T) = y(ξ), y′(T) = y′(ξ)) for p1 = q2 = 1, p2 = q1 = 0 and parametric anti-
periodic conditions (y(T) = −y(ξ), y′(T) = −y′(ξ)) for p1 = q2 = −1, p2 = q1 = 0. More-
over, the present results become the ones associated with a nonlocal version of Zaremba
type boundary conditions: y(ξ) = 0, y′(T) = 0 when we take p1 → ∞, q1 = q2 = 0. For
more details on Zaremba boundary conditions, see the papers [29,30]. In the future, we
plan to study the multivalued and impulsive variants of the problems (1) and (2). We will
also extend our present study to a system of coupled right Caputo fractional differential
equations subject to nonlocal closed boundary conditions.
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