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Abstract: The nonlinearity form of the Schrödinger equation (NLSE) gives a sterling account for
energy and solitary transmission properties in modern communications with optical-fiber energ-
reinforcement actions. The solitary representation during fiber transmissions was regulated by NLSE
coefficients such as nonlinear Kerr, evolutions, and dispersions, which controlled the energy changes
through the model. Sometimes, the energy values predicted from the NLSEs computations may
diverge due to variations in the amplitude and width caused by scattering, dispersive, and dissipative
features of fiber materials. Higher-order nonlinear Schrödinger equations (HONLSEs) should be
explored to alleviate these implications in energy and wave features. The unified solver approach
is employed in this work to evaluate the HONLSEs. Steepness, HO dispersions, and nonlinearity
self-frequency influences have been taken into consideration. The energy and solitary features were
altered by higher-order actions. The unified solver approach is employed in this work to reform
the HONLSE solutions and its energy properties. The steepness, HO dispersions, and nonlinearity
self-frequency influences have been taken into consideration. The energy and soliton features in
the investigated model were altered by the higher-order impacts. Furthermore, the new HONLSE
solutions explain a wide range of important complex phenomena in wave energy and its applications.

Keywords: higher-order nonlinear Schrödinger equations; optical super soliton; huge waves; super
huge structure

1. Introduction

Various forms of Schrödinger equations have found widespread application in applied
science, energy and its implementations, particularly in performing natures in dispersive
systems of shock dispersive hydrodynamic waves [1], B-Einstein condensate [2,3], and
waveguide and optical solitons [4]. In many nonlinear circumstances, such as semiconduc-
tors, deep ocean, optics, plasmas flow and condensation of Bose–Einstein, the nonlinearly
Schrödinger equation (NLSE) has developed into the intrinsic illustrative technique for
representing wave patterns [5–7]. The majority of researchers concur that solitonic motion,
or the study of self-modes trapped in most natural nonlinear environmental configurations,
is a hugely important phenomenon that recurrently explains the progression of waves in a
broad diversity of scientific optical, plasma, fluid, and energy applications [8–11]. By using
Maxwell equations that related the light magnetic and electric fields, light propagation may
be mathematically and accurately explained. The equation governing pulse propagation in
optical fibers may be obtained by combining the equations for the magnetic and electric
fields and performing certain mathematical computations [12]. The NLSE is important
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for depicting the wave patterns of dynamical propagation modes in implementations of
fiber optics

ψz − iβ1ψtt − iβ2 | ψ |2 ψ = 0 , (1)

where ψ is the varying slow field, z (t) is the spatial (temporal) coordinate, and β1 (β2) is
real parameter for chromatic dispersion (nonlinear Kerr) coefficient. Solitons are waves that
maintain their shape when propagated at constant speed under balancing effects between
dispersion and nonlinearity. The NLSE offers a phase of self-modulation effects as well as
dispersion characteristics in Kerr impact applications in optical fiber experiments [13–15].
The propagating bright or dark envelopes in optical fibers are related to the balance between
self-phase modulations and group velocity dispersives effects [16–18].

The NLSE ignores nonlinear effects aside from the intensity dependence of the re-
fractive index, neglects linear loss, and approximate dispersion using the leading group
velocity dispersion component. Physically, some terms must be added to incorporate what
is not represented, depending on the circumstances and/or the desired precision of the
computed results. This results in a generalized NLSE [19,20]. Due to the dissipative and
dispersive effects on fiber composites, the predicted soliton energies are different from
that discovered with NLSE. This means that HO modulations of these consequences on
NLSE should be considered [5,21]. The form (1) with HO coefficients is modified in the
form [5,21]:

ψz − iβ1ψtt − iβ2 | ψ |2 ψ− β3ψttt − β4(| ψ | ψ)t − β5 | ψ2 |t ψ = 0 , (2)

where β2, β3 are the firs- order dispersion and nonlinearity coefficients, respectively. Addi-
tionally, the higher orders of dispersive-nonlinear coefficients are β4 and β5. When there
are higher orders of Kerr effects present, solitary optical propagations are characterized by
the HOLSE with the disturbance of higher orders. The passing light intensity depends on
its refractive index in the configuration of nonlinear Kerr’s effects [22,23]. Numerous do-
mains of technology and research, including applied mathematics, hydrodynamics, nuclear
physics, telecommunications, transmission lines, ocean waves, and energy applications,
have recently been affected by recent studies on nonlinear higher-order dynamical systems
with distinct resulting behaviors [24,25].

On the other hand, in the nonlinear systems, the breathers and hybrid freak solutions
have been actually researched [26–31]. It has been shown that the breather phase changes
and hybrid waveform interactions rely on the physical parameters of the model equation.
It has been shown how nonlinearly stimulated Raman scattering is described by the
dynamical interactions and collisions of huge wave properties [32]. It was discovered that
the bright, kinks, and W formal solutions are some of the self-similar solitary wave types.
Solitons have received a lot of interest recently due to their robust nature and essential
responsibilities in the physics of nonlinear applications [33–38].

In the ongoing work, we introduce some new solutions for HONLSE, utilizing the
unified solver technique [39] to modulate the obtained structures as rational bright, rapid
amplitudes and periodic waves via the introduction of higher-order effects. It has been
carefully considered how these results’ properties depend on and are sensitive to higher-
order coefficients. It has been noted that HO coefficients dominate not only the width,
amplitude, and energy of new wave excitations, but also the kind and frequency.

This study is organized as follows: Section 2 shows an intriguing equation that aggre-
gates physical correlations between the dispersion, higher-order NLSE physical coefficients,
and the transformation parameters. We also introduce some vital solutions for Equation (2).
The physical interpretation of the provided answers shown in Section 3 represents the
physical interpretation of the presented results. Finally, the article is concluded in Section 4.

2. Optical Solitary Solution

Utilizing the wave transformation,

ψ(t, z) = Ψ(ζ) ei(cz−vt), ζ = t− µz + ζ0, (3)

c, v, µ and ζ0 are arbitrary constants.
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Putting Equation (3) into Equation (2), one obtains the nonlinear equation:

β3Ψ′′′ + (2β1v− 3β3v2 + µ)Ψ′ + (3β4 + 2β5)Ψ2Ψ′ + i((β1 − 3β3v)Ψ′′ +

(β3v3 − β1v2 − c)Ψ + (β2 − β4v)Ψ3) = 0. (4)

Equation (4) contains real and imaginary parts. By separate real and imaginary
components, the first real part reads

β3Ψ′′′ + (2β1v− 3β3v2 + µ)Ψ′ + (3β4 + 2β5)Ψ2Ψ′ = 0 (5)

and the other imaginary, part given by

(β1 − 3β3v)Ψ′′ + (β3v3 − β1v2 − c)Ψ + (β2 − β4v)Ψ3 = 0 . (6)

Integrating Equation (5) and using Equation (6) via some algebraic steps, the two
Equations (5) and (6) reduce to

Λ1Ψ′′ + Λ2Ψ3 + Λ3Ψ = 0 (7)

and the constrain conditions

µ =
−β3 c− 8β2

3v3 + 8β1β3v2 − 2β2
1v

β1 − 3β3v
, (8)

β5 =
3(β2β3 − β1β4 + 2β4β3v)

2(β1 − 3β3v)
(9)

with

Λ1 = 1, Λ2 =
β2 − β4v

β1 − 3β3v
, Λ3 =

c + v2(β1 − β3v)
3β3v− β1

, (10)

where Λ1, Λ2, and Λ3 represent the physical coefficients for the lowest- and higher-order
effects.

In view of the proposed solver [39], the solutions to Equation (2) are:
Family 1:

Ψ1,2(t, z) = ±

√
6(3v2β3 − 2β1v− µ)

3β4 + 2β5
sech

(
±

√
3v2β3 − 2β1v− µ

β3
(t− µz + ζ0)

)
. (11)

Thus, the solutions to Equation (2) are

ψ1,2(t, z) = ±

√
6(3v2β3 − 2β1v− µ)

3β4 + 2β5
sech

(
±

√
3v2β3 − 2β1v− µ

β3
(t− µz + ζ0)

)
ei(cz−vt). (12)

Family 2:

Ψ3,4(t, z) = ±

√
35(3v2β3 − 2β1v− µ)

6(3β4 + 2β5)
sech2

(
±

√
5 (3v2β3 − 2β1v− µ)

12β3
(t− µz + ζ0)

)
. (13)

Thus, the solutions to Equation (2) are

ψ3,4(t, z) = ±

√
35(3v2β3 − 2β1v− µ)

6(3β4 + 2β5)
sech2

(
±

√
5 (3v2β3 − 2β1v− µ)

12β3
(t− µz + ζ0)

)
ei(cz−vt). (14)

Family 3:

Ψ5,6(t, z) = ±

√
3(3v2β3 − 2β1v− µ)

3β4 + 2β5
tanh

(
±

√
2β1v− 3v2β3 + µ

2β3
(t− µz + ζ0)

)
. (15)
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Thus, the solutions to Equation (2) are

ψ5,6(t, z) = ±

√
3(3v2β3 − 2β1v− µ)

3β4 + 2β5
tanh

(
±

√
2β1v− 3v2β3 + µ

2β3
(t− µz + ζ0)

)
ei(cz−vt). (16)

3. Results and Discussion

In several domains, Equation (2) has been solved using a variety of numerical and
analytical approaches. To obtain an exact solitary solution for our model, Equation (6) can
be integrated and transformed into a dynamical energy equation in the form:

1
2

Ψ′(ζ)2 = −
2
(
c + v2(β1 − β3v)

)
12β3v− 4β1

Ψ(ζ)2 +
(β2 − β4v)

12β3v− 4β1
Ψ(ζ)4. (17)

By solving Equation (17), the exact solution can be obtained in the form:

Ψ(z, t) = 2
√

2
(

c + v2(β1 − β3v)
)√ (β1 − 3β3v)2

(β2 − β4v)(c + v2(β1 − β3v))

exp(

√
c + v2(β1 − β3v)

β1 − 3β3v
(ζ0 + t− µz) + i(c z− tv)) (18)

((β1 − 3β3v)(exp(2

√
c + v2(β1 − β3v)

β1 − 3β3v
(ζ0 + t− µz)) + 1)).

This solution produces very stable breather envelopes and soliton waves as depicted
in Figures 1 and 2. Furthermore, the suggested solver produces several solutions (12), (14),
(16), the physical nature of which mostly depends on the coefficients for lowest (higher)
order effects. Many solution forms are obtained by the solver method such as breather
envelopes and solitons, as shown in Figures 3 and 4 in addition to periodic rational and
explosive blow up as per Figures 5 and 6.

On the other hand, the positive and negative values of β1β2 demonstrate the solution
type desired for modulation stability for creating waves structure as dark, bright, and huge
forms. The modulations of field form in slow-amplitude variations can produce randomly
external perturbation forms of dark and bright envelopes as per [40,41]:

ψ(t, z) = Λei(c z−tv) tanh

 ζ0 + t− µz
√

2
√∣∣∣ β1

β2Λ

∣∣∣
 (19)

and

ψ(t, z) = Λei(c z−tv)sech2

 ζ0 + t− µz
√

2
√∣∣∣ β1

β2Λ

∣∣∣
. (20)

Furthermore, to obtain freak wave solutions, the rational huge self-focusing solutions
of the first-second types have been given as [42]

Ψ1(z, t) =
√

2

√
β1

β2
e2iβ1z

(
−1 +

4 + 16iβ1z
4t2 + 16β2

1z2 + 1

)
, (21)
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and

Ψ2(z, t) =

√
β1

β2
e2iβ1z(1 + (− t4

2
− 6β2

1t2z2 − 3t2

2
− iβ1z(t4 + 4β2

1t2z2 − 3t2 +

4β4
1z4 − 2β2

1z2 − 15
4
)− 10β4

1z4 − 9β2
1z2 +

3
8
)/(

t6

12
+

1
2

β2
1t4z2 + (22)

t4

8
+ β4

1t2z4 − 3
2

β2
1t2z2 +

9t2

16
+

2
3

β6
1z6 +

9
2

β4
1z4 +

33
8

β2
1z2 +

3
32

)).

The propagation of envelope dark and bright waves are illustrated in Figures 7 and 8.
The physical effects of coefficients β1 and β2 on the structure properties of these waves are
given in Figures 9–12. It was noted that β1 increases the width of dark and solitonic waves,
while β2 decreases the the width of dark and solitonic waves as depicted in Figures 9–12.
In another ward, the existence of first to second freak waves in this model are shown in
Figures 13 and 14. Furthermore, Figures 15 and 16 illustrate how variables β1 physically
change the structural characteristics of huge waveforms. It was discovered that β1 raises
the first huge and second super freak amplitudes as in Figures 15 and 16.

Finally, the higher-order combined dispersion and dissipation effects in coefficients
β3 and β4 are reported in Figures 17–20. It is noted that β3 increases both the amplitude
and width of the solver solution (14), while β4 dominated the amplitude and width of
the same solution as in Figures 17–20. In summary, a unified solver has investigated the
characteristics of higher-order solutions of breather envelopes, dark, bright, huge, rational,
explosive, and solitons in addition to enhance the wave representation of novel structures
as super freaks.

Figure 1. Change of real part of solution (18) with z, t for c = 0.5, v = 0.7, β1 = 0.1, β2 = 1, β1 = 0.1,
β3 = 0.3, β4 = 0.2.
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Figure 2. Change of absolute value of solution (18) with z, t for c = 0.5, v = 0.7, β1 = 0.1, β2 = 1,
β1 = 0.1, β3 = 0.3, β4 = 0.2.

Figure 3. Change of solution (12) with z, t for c = 0.5, v = 0.7, β1 = 0.1, β2 = 1, β1 = 0.1, β3 = 0.3,
β4 = 0.2.

Figure 4. Change of solution (14) with z, t for c = 0.5, v = 0.7, β1 = 0.1, β2 = 1, β1 = 0.1, β3 = 0.3,
β4 = 0.2.
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Figure 5. Change of real part of solution (16) with z, t for c = 0.5, v = 0.7, β1 = 0.1, β2 = 1,
β3 = 0.3, β4 = 0.2.

Figure 6. Change of solution (16) with z, t for c = 0.5, v = 0.7, β1 = 0.05, β2 = 1, β3 = 0.3, β4 = 0.2.

Figure 7. Change of real part of solution (19) with z, t for c = 0.5, v = 0.7, β1 = 0.05, β2 = 1,
β3 = 0, β4 = 0.
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Figure 8. Change of real part of solution (20) with z, t for c = 0.5, v = 0.7, β1 = 0.05, β2 = 1,
β3 = 0, β4 = 0.

Figure 9. Change of solution (19) with z, t, β1 for c = 0.5, v = 0.7, β2 = 1, β3 = 0, β4 = 0.

Figure 10. Change of solution (20) with z, t, β2 for c = 0.5, v = 0.7, β1 = 0.1, β3 = 0, β4 = 0.
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Figure 11. Change of solution (19) with z, t, β1 for c = 0.5, v = 0.7, β2 = 0.1, β3 = 0, β4 = 0.

Figure 12. Change of solution (20) with z, t, β2 for c = 0.5, v = 0.7, β1 = 0.1, β3 = 0, β4 = 0.

Figure 13. Change of solution (21) with z, t for c = 0.5, v = 0.7, β2 = 1, β3 = 0, β4 = 0.
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Figure 14. Change of solution (22) with z, t for c = 0.5, v = 0.7, β1 = 0.1, β2 = 1, β3 = 0, β4 = 0.

Figure 15. Change of solution (21) with z, t, β1 for c = 0.5, v = 0.7, β2 = 1, β3 = 0, β4 = 0.

Figure 16. Change of solution (22) with z, t, β1 for c = 0.5, v = 0.7, β2 = 1, β3 = 0, β4 = 0.
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Figure 17. Change of solution (14) with z, t, β3 for c = 0.5, v = 0.7, β1 = 0.1, β2 = 1, β4 = 0.2.

Figure 18. Change of solution (14) with z, t, β3 for c = 0.5, v = 0.7, β1 = 0.1, β2 = 1, β4 = 0.2.

Figure 19. Change of solution (14) with z, t, β4 for c = 0.5, v = 0.7, β1 = 0.1, β2 = 1, β3 = 0.3.
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Figure 20. Change of solution (14) with z, t, β4 for c = 0.5, v = 0.7, β1 = 0.1, β2 = 1, β3 = 0.3.

4. Conclusions

In this work, the unified solver approach was used to modify resultant structures such
as breather envelopes, dark, bright, huge, rational, explosive waves, and other higher-order
solitary waves. In addition, the reliance on sensitivity to higher-order coefficients has been
carefully considered. It was determined that higher-order coefficients impose dominance
over new wave excitations such super-freak waves as well as the structure properties and
energy. Additionally, a variety of significant complicated phenomena in wave energy and
its applications are explained by the novel HONLSE solutions.
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