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Abstract: The current paper proposes an extension for two controller design procedures for a two-axis
positioning mechatronic system, followed by a comparison between them. As such, the first method
consists in formulating an optimization problem in terms of linear matrix inequalities (LMIs) in
order to impose the location of the closed-loop poles, considering an uncertain model of such a
system. The uncertain model is treated using various forms of linear differential inclusions (LDIs),
namely, polytopic LDI (PLDI) and diagonal norm-bound LDI (DNLDI). Additionally, the problem
regarding the command signal constraints is characterized in terms of LMIs. The imposed structure
of the controller is a cascade one, with a PI controller for the position loop and a P controller for the
velocity loop, having an additional feedforward term. On the other hand, the second method consists
in designing a cascade controller with an inner P controller, as in the previous method, the outer
controller being a fractional-order IλI DλD (FO–ID) controller. In terms of degrees of freedom, both
methods present four degrees of freedom for each axis. The presented controller design procedures
will be applied for a numerical example of such a positioning system, and a comparison of the
obtained performance metrics will be performed.

Keywords: LMIs; D-region; fractional-order controller; postion control; mechatronic system

1. Introduction
1.1. Literature Review

Recent years have been marked by an increase in the popularity of position-based
mechatronic systems, especially due to the technological level they have reached, in terms
of speed, performance and versatility [1]. In order to have the resulting performance at
the highest possible level, it is necessary for the control system to ensure a good reference
tracking in a short time, without overshoot. Moreover, one of the main problems which a
control system must deal with for such an equipment consists in parametric uncertainties.
To take all these into consideration, rather than classical control techniques, other methods
are proposed in recent studies, based on robust, fractional or adaptive control approaches.

Starting from the classical control methods based on the idea of pole placement,
the authors of [2] present the principle according to which, to ensure a certain transient
response, it is not necessary to place the poles in an exact location, but in a certain region in
the complex plane. These regions are called D-regions, being convex and symmetrical to
the real axis. Thus, by solving a set of linear matrix inequalities (LMIs), the state feedback
matrix which ensures D-stability (i.e., all poles of the resulting closed-loop system are
placed into a certainD-region) is obtained. The possibility to include and overimpose many
design requirements, like transient response performances, command signal saturation
constraints and model uncertainties, illustrates the great advantage of LMIs [3].

Due to its powerful advantage, the LMI-based control approach was proposed for
various processes and applications. In [4], the authors proposed an LMI approach to design
a H∞ fuzzy controller with pole location constraints. Moreover, Ref. [5] presents an LMI-
based control design that deals with the stabilization of a bilinear system with a guaranteed
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stability region. Parametric uncertainties are included in the control design problem using
LMIs for a wind turbine, in [6], proving that using this approach better performances are
obtained compared with those obtained using a classical designed controller. The journal
paper [7] proposes an LMI-based H∞ output-feedback controller, taking into consideration
the input and output delays from sensors and actuators for a vehicle roll stability problem.
In the conference paper [8] regarding LMI-based controllers, the authors present an energy-
based control strategy with nonlinear state feedback controller for a quadrotor used for
transporting payload.

In the case of PWM-driven voltage converters, an LMI-based approach used for
robust linear-quadratic-regulator (LQR) design is presented in the paper [9], alongside
the work of [10] in which a similar approach is considered for robust structured controller
design. An LMI use case is also compared to a linear-quadratic-Gaussian (LQR) control in
the paper [11], which proved that the proposed approach presented clear improvements
for a MIMO helicopter process modelled at variable operating points. In the case of a
pressure control process on wet clutches, as studied in the work [12], favorable results have
been obtained regarding both robustness to sensor noise and modeling errors, alongside
performance indices in the transient response of the closed-loop system.

Fractional-order PID controllers generalize classical PID controllers by adding extra
degrees of freedom which proved to be more robust for many benchmark problems. In [13],
the authors proposed a fractional-order PID (FO-PID) controller designed in order to meet
both robustness and performance specifications for a DC motor used in a mechatronic
system. Better performance indices have also been found in DC motor control with uncer-
tainties and nonlinear dynamics using FO-PI regulators in [14]. Improved performances
by also obtaining a reduced-order regulator through intelligentH∞ techniques have been
reported in [15], while a general-purpose quasi-experimental method which generalizes the
well-established Kessler’s symmetrical optimum principle was proposed and implemented
in [16]. Moreover, a simple tuning method based in the limit cycle oscillations is proposed
in [17], with application on a DC servo motor. Such a FO-PID regulator for a two-axis CNC
machine is proposed in [18], designed using µ-synthesis and the minimization problem is
solved using a metaheuristic Artificial Bee Colony (ABC) algorithm. In a similar manner, a
different application for a highly-nonlinear twin rotor aerodynamic system with its inherent
difficulties, has been studied in [19]. The integration of the fractional-order design into the
robust control framework gathers the advantages of both control domains, as presented
in [20]. Extensions of FO regulators directly designed for fractional-order plants have
been proposed in [21,22], where the first paper presents a comprehensive theorem and
corresponding algorithm for the robust stabilization problem, while the latter proposes and
discusses a novel graphical tuning method for such control systems.

Position-based mechatronic systems are widely used in industry and mainly in pro-
duction lines and manufacturing. Because of this, it is necessary for the control system
to ensure high precision and response speed. In the last years, many studies have been
made in order to find the best option when it comes to the design procedures and controller
types for these classes of positioning systems. Although classical controllers are mainly
used [23], such as P, PI or PID controllers, in cascade configuration or not, more advanced
design techniques are proposed. In [24], an optimal ABC-based LQR is proposed, and in
another paper [25], we propose a cascade control configuration obtained based on the state
feedback gains designed by solving LMIs.

1.2. Contributions

The current paper proposes two control structures for an uncertain two-axis mecha-
tronic positional system: one using the state-feedback approach, by extending our previous
paper’s results [25], and one based on the behavior of bringing the system to a limit cycle,
which extends the ideas presented in [17]. Based on the literature review performed in the
previous subsection and their limitations, the main contributions of the current paper are:
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(i) To include the parametric uncertainties of a two-axis mechatronic positional system
into the LMI-based control problem in order to impose a D-region where the poles
are real and under a prescribed value, by converting the linear differential inclusion
(LDI) into a polytopic LDI (PLDI), against the initial method proposed in [25],
where the problem has been formulated for the nominal model of a single axis
positional system;

(ii) To reduce the size of the resulting LMI-based control problem by converting the
PLDI into a diagonal norm-bound LDI (DNLDI), and to include the constraints
given by the saturation phenomenon which appears on the command signal, which
has not been considered in the previous paper even for the case of nominal system;

(iii) To impose a specific structure on the LMI variables such that the resulting state-
feedback can be converted into a cascade control structure for both axes, using a
similar idea as in [25] for a single axis;

(iv) To present an autotuning-type design procedure for a fractional-order integral-
derivative controller by considering a relay-type nonlinearity to force a limit cycle
to obtain the value of the gain-crossover frequency, and then to impose the desired
phase margin, by extending the idea from [17];

(v) To perform a set of numerical simulations to compare the performance obtained
with the proposed methods in terms of quantifiable metrics, such as settling time,
rise time and overshoot, robustness and implementability.

1.3. Paper Structure

The rest of the paper is organized as follows. Described in Section 2 is the LMI-based
problem formulation to impose the D-stability through a full state-feedback. Section 3
presents the two-axis positional mechatronic system, along with the possibility to convert
the full state-feedback controller into a cascade control structure. The second controller
design procedure is described in Section 4, while Section 5 presents the obtained results. A
thorough discussion and a set of further research directions are given in Section 6, and the
paper closes with some conclusions in Section 7.

2. State Feedback Controller

The purpose of the current section is to briefly describe the LMI approach to design
a state feedback controller for a system described using a polytopic linear differential
inclusion (PLDI). To impose a performance set, the D regions will be used. Consider a
continuous-time PLDI described by:

(Σδ) : ẋ(t) = A(δ)x(t) + B(δ)u(t), (1)

where x ∈ Rnx , u ∈ Rnu , δ ∈ Uδ ⊂ Rnδ is the uncertainty from the state and input matrices,
and Uδ closed and bounded. The PLDI should be characterized by the following L-vertex
convex hull:

{(A(δ), B(δ))|δ ∈ Uδ} ⊂ Ω ≡ Conv
{
(Ai, Bi), i = 1, L

}
. (2)

Assumption 1. Each pair (A(δ), B(δ)) with δ ∈ Uδ is detectable.

Considering a full state feedback matrix K ∈ Rnu×nx which gives the control law
u = Kx, the following PLDI closed-loop system results:

ẋ(t) = (A(δ) + B(δ)K)︸ ︷︷ ︸
Ao(δ)

x(t). (3)

To ensure the asymptotic stability of the closed-loop autonomous system from (3), a
quadratic Lyapunov function V : Rnx → R+ having the structure V(x) = x>Px should be
constructed. To construct such a quadratic function, the following linear matrix inequalities
should have a common solution P ∈ S+nx :
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Ao(δ)P + PA>o (δ) < 0, ∀δ ∈ Uδ,

which is an uncountable set of LMIs. However, using the convex hull Ω from (2), the
feasibility problem which guarantees the asymptotic stability of the closed-loop system is:

P ∈ S+nx and (Ai + BiK)P + P(Ai + BiK)> < 0, i = 1, L. (4)

However, the problem is to design a state feedback, so the set of LMIs from (4) are
bilinear matrix inequalities (BMIs), which are not convex by nature. However, using the
substitution Z = KP ∈ Rnu×nx , the resulting problem can be described using LMIs:

Find P ∈ S+nx and Z ∈ Rnu×nx such that AiP + PA>i + BiZ + Z>B>i < 0, i = 1, L. (5)

A feasible point from the convex cone of the solution of the problem (5) leads to a
stabilizable feedback K = ZP−1 for the PLDI. If an additional set of requirements should be
imposed, the closed-loop eigenvalues must be placed into a specific region of the complex
plane. Each convex region symmetrical to the real axis can be expressed using a combination
of transformations given by two matrices L, M ∈ Rm×m, L = L>:

D(L, M) =
{

λ ∈ C : L + λM + λ∗M> < 0
}

. (6)

Definition 1 ([26]). A matrix A ∈ Rnx×nx is D-stable if all its eigenvalues lie in a convex region
D(L, M) defined in (6). This D-stability is characterized using the LMI approach as follows:

MD(A, P) = L⊗ P + M⊗ (AP) + M> ⊗ (PA>) < 0, (7)

where ⊗ is the symbol for the Kronecker product.

For the purpose of this paper we consider only two regions: the vertical strip and the
conic sector. The vertical strip is used to impose the condition of having real part less than
a prescribed value α < 0, which imposes one important closed-loop performance regarding
the settling time: ts ≈ 4

|α| . On the other hand, the conic sector is used to impose:

λ + λ

|λ− λ|
≤ π

tan θ
, (8)

which leads to having a damping factor ζ ≥ cos(θ), thus, implying a limitation for the
overshoot of the closed-loop system. For the vertical strip the D-region is characterized
using L = −2α and M = 1, while for the conic region L = 0 and M = Rθ are used, where
Rθ is the 2× 2 matrix corresponding to the rotation with angle θ. We further call this region
as a D(α, θ)-region. A set of necessary and sufficient conditions to ensure D(α, θ)-regional
stability for a PLDI system (Σδ) is presented in the following theorem.

Theorem 1 (D-stability controller [3]). All eigenvalues of the closed-loop system Acl(δ) ≡
A(δ) + B(δ)K could be set in a specificD(α, θ)-region if and only if all pairs (A(δ), B(δ)), δ ∈ Uδ,
are controllable and there are two matrices P ∈ S+nx and Z ∈ Rnu×nx such that:

AiP + BiZ + (AiP + BiZ)> − 2αP < 0, i = 1, L, (9a)(
AiP + BiZ + (AiP + BiZ)> 1

tan θ (AiP + BiZ− (AiP + BiZ)>)
1

tan θ (AiP + BiZ− (AiP + BiZ)>)> AiP + BiZ + (AiP + BiZ)>

)
< 0, i = 1, L. (9b)

Then the full state feedback gain is given by K = ZP−1.



Fractal Fract. 2023, 7, 122 5 of 17

3. Position-Based Mechatronic System
3.1. Plant Model

The described plant is a general purpose two-axis positional system, each axis being
operated individually by a servo motor. In this paper, a translational two-axis Computer
Numerical Control machine (CNC), also used in our previous works [25,27], will be consid-
ered. The mathematical model of the system can be written as follows:

Gδ(s) :



ω̇x(t)
θ̇x(t)
ω̇y(t)
θ̇y(t)
θx(t)
θy(t)

 =



− 1
TMx

0 0 0 KMx
TMx

Kxy

1 0 0 0 0 0

0 0 − 1
TMy

0 Kyx
KMy
TMy

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0





ωx(t)
θx(t)
ωy(t)
θy(t)
ux(t)
uy(t)

, (10)

where ωx, ωy, θx and θy are the angular speeds and the positions of the X axis and Y axis,
respectively, while ux, uy ∈ [−1, 1] are the duty cycles, scaled to relative values, of the PWM
command signals for each axis. The mathematical model has been obtained based on a
priori knowledge of the physical process and then fine-tuned using system identification
techniques. The electrical part presents a time constant which can be neglected against
the time constant of the mechanical part, resulting in a first order model for the system
from input command to angular speed. Moreover, the mechanical part presents a set
of nonlinearities mainly as a result of Coulombian friction, leading to slightly different
values of the model’s parameters. As such, these parameters present uncertainties which
encompass differences appearing in various equilibrium points. Such differences lead to
the system Gδ, possible to be described using a PLDI.

The first method proposed in this paper implies an extension of finding a cascade
structure from [25], comprised of a PI controller for the outer position loop and a P-type
controller for the inner velocity loop. In our previous work, the controller gains have been
computed using an optimal full state feedback gain matrix which is a solution for the
nominal case of the LMI problem described in Section 2. The main improvement of this
particular method considered in this paper consists in finding the optimal state-feedback
which satisfies the constraints imposed through regional LMIs for both the nominal and
uncertain plants, as in Theorem 1. As such, the initial plant model must be augmented
with two additional states zx and zy having the state equations żx = θx and ży = θy. This
augmentation leads to an extended uncertain state-space model:

Gδ(s) :



ω̇x(t)
θ̇x(t)
żx(t)
ω̇y(t)
θ̇y(t)
ży(t)
θx(t)
θy(t)


=



− 1
TMx

0 0 0 0 0 KMx
TMx

Kxy

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 0 − 1
TMy

0 0 Kyx
KMy
TMy

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0





ωx(t)
θx(t)
zx(t)
ωy(t)
θy(t)
zy(t)
ux(t)
uy(t)


. (11)

To model an uncertain parameter c ∈ [c, c], the following transformation can be used:

c = c(n) + rcδc, with rc = c− c, (12)

where c(n) is the nominal value of the parameter and |δc| ≤ 1 is a normalized uncertainty
element. Using this transformation, the extended PLDI system can be converted into a di-
agonal norm-bound LDI (DNLDI) system, having the following state-space representation:
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ẋ(t)
y(t)
v(t)

 =

 A Bu Bd
Cy Dyu Dyd
Cv Dvu Dvd

x(t)
u(t)
d(t)

 (13)

where x =
(
ωx θx zx ωy θy zy

)> ∈ Rnx is the state vector, u =
(
ux uy

)> ∈
R2 is the command input vector, d =

(
dTMx

dTMy
dKMx

dKMy
dKxy dKyx

)>
∈ R6

is the disturbance input vector, y =
(
θx θy

)> ∈ R2 is the output vector, and v =(
vTMx

vTMy
vKMx

vKMy
vKxy vKyx

)>
∈ R6 is the disturbance output vector. The

matrices involved in the state-space realization are:

A =



− 1
T(n)

Mx

0 0 0 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 − 1

T(n)
My

0 0

0 0 0 1 0 0
0 0 0 0 1 0


Bu =



K(n)
Mx

T(n)
Mx

K(n)
xy

0 0
0 0

K(n)
yx

K(n)
My

T(n)
My

0 0
0 0


Bd =



1
T(n)

Mx

0 1
T(n)

Mx

0 − 1
T(n)

Mx

0

0 0 0 0 0 0
0 0 0 0 0 0
0 1

T(n)
My

0 1
T(n)

My

0 − 1
T(n)

My

0 0 0 0 0 0
0 0 0 0 0 0


(14a)

Cv =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−
rTMx

T(n)
Mx

0 0 0 0 0

0 0 0 −
rTMy

T(n)
My

0 0


Dvu =



rKMx
0

0 rKMy

rKxy 0
0 rKyx

rTMx

K(n)
Mx

T(n)
Mx

rTMx
K(n)

xy

rTMy
K(n)

yx rTMy

K(n)
My

T(n)
My


Dvd =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

rTMx

T(n)
Mx

0
rTMx

T(n)
Mx

0 −
rTMx

T(n)
Mx

0

0
rTMy

T(n)
My

0
rTMy

T(n)
My

0 −
rTMy

T(n)
My


(14b)

Cy =

(
0 1 0 0 0 0
0 0 0 0 1 0

)
Dyu =

(
0 0
0 0

)
Dyd =

(
0 0 0 0 0 0
0 0 0 0 0 0

)
. (14c)

The conversion of a PLDI into DNLDI offers the possibility to avoid using L LMIs
to impose the vertical strip region, leading to the following LMI problem: find P ∈ S+nx ,
T ∈ S+nd

, and Z ∈ Rnu×nx such that:(
AP + PA> + BuZ + Z>B>u − 2αP ?

TB>d + CvP + DyuZ TDvd + D>vdT − 2T

)
< 0. (15)

Additionally, to impose the allowed maximum command input in a symmetrical
manner u ∈ [u = −u, u] for an initial value of the state vector lying in the ellipsoid:

EQ = {x ∈ Rnx |x>Qx ≤ 1},

with Q ∈ S+nx , the following LMI can be used:(
diag(u)2 Z

Z> Q

)
≥ 0, (16)

where diag(u) is the diagonal matrix formed using the vector u.

3.2. From State Feedback to Cascade Control

To convert the state-feedback control structure to a cascade control structure in the
case of a two-axis mechatronic system, the following forms of the matrices P and Z will
be considered:
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P =

(
P1 O
O P2

)
∈ S+6 and Z =

(
Z1 O
O Z2

)
∈ R2×6, (17)

with P1, P2 ∈ S+3 and Z1, Z2 ∈ R1×3. The resulting form of the static state-feedback gain
matrix K is:

K =

(
k1 k2 k3 0 0 0
0 0 0 k4 k5 k6

)
. (18)

For brevity, we consider the behavior on a single axis K1 =
(
k1 k2 k3 0 0 0

)
,

and we analyze the equivalence between the the control law given by the state-feedback and
the control law given by the cascade structure. As such, on X-axis we have the following
command signal given by the state-feedback approach:

ux,K(t) = θ?x(t) + K1x(t) = θ?x(t) + k1ωx(t) + k2θx(t) + k3

∫
θx(t)dt, (19)

with θ? being the outer position loop reference signal. On the other hand, for a cascade
control scheme having a P controller on the inner loop, along with a PI controller on the
outer loop, the control law resulted in this case can be rearranged as:

ux,PI−P(t) = P(x)
v

(
−ωx(t)− P(x)

p θx(t)− I(x)
p

∫
θx(t)dt + Ppθ?x(t) + I(x)

p

∫
θ?x(t)dt

)
, (20)

with inner loop proportional gain Pv, and the pair Pp and Ip as the outer loop proportional
and integral regulator gains, respectively. In the exact same manner, the signals uy,K and
uy,PI−P can be expressed. Therefore, using the relations exposed in Equations (19) and (20),
the following equivalence between the aforementioned gains from the cascade control
structure and those obtained using the state feedback controller can be performed:

P(x)
v = −k1, P(x)

p =
k2

k1
, I(x)

p =
k3

k1
, (21)

P(y)
v = −k4, P(y)

p =
k5

k4
, I(y)p =

k6

k4
. (22)

3.3. Feedforward Component

As noticed in Equations (19) and (20), an extra integral term in θ?x appears in the
cascade control structure case. As such, an extra analysis should be performed to emphasize
this difference. For state-feedback control, the obtained transfer function from θ?x to θx is:

Ho,K(s) = Cy,1(sIn − (A + Bu,1K1))
−1Bu,1 =

KMx
TMx

s

∏(s− λi)
, (23)

where λi are the closed-loop state matrix A + Bu,1K1 eigenvalues, while the index 1 is used
to mark the first row or column of the matrices which describes the augmented plant.
Similarly, in the case of using the PI–P cascade control strategy, the resulting closed-loop
transfer function from θ?x to θx becomes:

Ho,PI−P(s) =
P(x)

v KMx (P(x)
p s + I(x)

p )

∏(s− λi)
. (24)

Therefore, in both cases, transmission zeros appear in closed-loop, causing changes in
terms of the performance indices initially imposed through the position of the closed-loop
system’s poles. For the state-feedback strategy for the augmented model, a transmission
zero in the origin s̊ = 0 is obtained. On the other hand, the cascade controller brings a

transmission zero in the value s̊ = − Ip(x)

Pp(x) .
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To cancel the effect of the resulting transmission zero, the feedforward gain will be
used as an additional degree of freedom. To cancel the closed-loop zero for the cascade
control structure, the feedforward gains must be:

K(x)
f f = −P(x)

p and K(y)
f f = −P(y)

p . (25)

Moreover, using this feedforward term, the integral action present on the reference
manages to cancel the transmission zero s̊ = 0 which shows in the state-feedback case.
Therefore, the additional feedforward gains K(x)

f f and K(y)
f f lead to obtaining two closed-loop

systems without transmission zeros, so the performances imposed through D-region are
kept unchanged.

4. 4DOF Fractional-Order Controller

The previous section described a 4DOF controller for each axis organized in a cascade-
type structure, having an outer loop PI controller and an inner loop P controller, along
with a feedforward gain. It must be pointed out that this structure is imposed by the
physical stand, as mentioned in [25]. In the current section we propose an alternative
control structure having four degrees-of-freedom as well. As such, for each axis:

• For the inner loop, a simple P controller is used;
• For the outer loop, a particular structure of fractional-order PID controller is proposed:

KFO−ID(s) = Ki ·
Tis + 1

sλ
. (26)

The differential equations which describe the dynamics of the velocities ωx and ωy in
terms of command inputs ux and uy are:

ω̇x = − 1
TMx

ωx +
KMx

TMx

ux + Kxyuy; (27a)

ω̇y = − 1
TMy

ωx + Kyxux +
KMy

TMy

uy. (27b)

The inner P controllers Kωx and Kωy should be designed to impose the desired speed
profile. The dynamics of the resulting inner closed-loop systems are given by:

Hin,X(s) =
Kωx

s + 1
TMx

(1 + Kωx KMx )
and Hin,Y(s) =

Kωy

s + 1
TMy

(
1 + Kωy KMy

) . (28)

For designing the FO–ID controller we impose a limit cycle oscillation. Let us consider
a symmetrical bipositional relay having a hysteresis width of ε and an amplitude h, denoted
by R(ε, h), having the inverse describing function:

Ni(R(ε, h)) = −πε

4h

√(A
ε

)2
− 1 + j

, A > ε,

where A is the amplitude of the input sinusoidal signal. If such a nonlinearity is inserted
into a negative feedback system next to a linear system, a stable limit cycle appears. The
parameters of the resulting limit cycle can be determined using the intersection between
the negative inverse description locus and the Nyquist diagram of the linear system. The
limit cycle is characterized by a frequency ωosc and an amplitude Aosc. Moreover, using
the Fourier decomposition of Ni(R(ε, h)), the equivalent gain of the relay nonlinearity is:

Keq =
4h

πAosc
. (29)
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The outer open-loop systems have the following dynamics:

Hol,out,i(s) =
Kωi

s
(

s + 1
TMi

(
1 + Kωi KMi

)) , i ∈ {X, Y}. (30)

The time constant of the FO–ID controller is set to be in both cases:

T(x)
1 =

TMx

1 + Kωx KMx

and T(y)
1 =

TMy

1 + Kωy KMy

, (31)

and we want to impose in each case the frequency ωosc of the resulting limit cycle as the
gain-crossover frequency ωgc, while the fractional order of the integral effect is designed
such that a prescribed value of the phase margin γ?

k is met. The resulting equation is:

γ?
k = arg(Ni(R(ε, h))) + arctan

(
T(i)

1 ωosc

)
− λ(i) π

2
, (32)

which implies:

λ(i) =
2
π

(
arg(Ni(R(ε, h))) + arctan

(
T(i)

1 ωosc

)
− γ?

k

)
. (33)

Additionally, to ensure ωgc = ωosc, the gain of the FO–ID controller should be:

Ki =
4h

πAosc

ωλ
osc√

1 + (T1ωosc)
2
= Keq ·

ωλ
osc√

1 + (T1ωosc)
2

. (34)

5. Numerical Results

The purpose of this section is to illustrate the numerical results obtained by imple-
menting the proposed controllers for the plant described in Section 3.1. The mathematical
model for the MIMO system was obtained based on the measured data in various op-
erating points for the described two axes of the mechatronic system. The mechanical
system inherent to each CNC axis is presented in Figure 1a), showing its components and
interconnections, alongside the brushless DC (BLDC) motor characteristics involved in
the system dynamics in Figure 1b). The actuation, measurements and control laws are
managed through a Siemens CNC Sinumerik and MC206X Motion Coordinator devices.
As such, considering various persistent inputs around a value u0, i.e., by considering an
additional pseudo-random binary signal over the constant component, a set of numerical
values have been identified using an auto-regressive with exogenous inputs method in
MATLAB. The resulting parameters for the state-space model (10) are described in Table 1,
with their nominal values and the uncertainty ranges based on the previously mentioned
identification steps.

Figure 1. Single-axis mechanical model for the case study in (a), with the brushless DC motor
characteristics in (b), used for system identification and control.
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Table 1. Nominal values of the system’s parameters, along with their uncertainty ranges.

Parameter Nominal
Value Percentage Parameter Nominal

Value Percentage

TMx 0.0245 ±10% KMx 25.8017 ±10%
TMy 0.0114 ±10% KMy 24.9174 ±10%
Kxy 26.65 ±10% Kyx 24.46 ±10%

Cascade Control from State-Feedback Structure

As mentioned in the theoretical part, in order to formulate the control problem of
finding the PI-P cascade structure for each axis subsystem, it is necessary to augment the
plant model with two extra states. The extended state-space model used is:

Gδ(s) :



ω̇x(t)
θ̇x(t)
żx(t)
ω̇y(t)
θ̇y(t)
ży(t)
θx(t)
θy(t)


=



−40.85 0 0 0 0 0 1054 26.65
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 −87.81 0 0 24.46 2188
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0





ωx(t)
θx(t)
zx(t)
ωy(t)
θy(t)
zy(t)
ux(t)
uy(t)


. (35)

Moreover, for the matrices corresponding to the DNLDI system in (14), A, Bu, Bd,
Cv, Dvu, Dvd, Cy, Dyu and Dyd, the nominal values from Table 1 are used, along with the
following terms for the uncertainties:

rTMx
= 0.0024;

rTMy
= 0.0011;

rKMx
= 2.5802;


rKMy

= 2.4917;

rKxy = 2.6650;
rKyx = 2.4460.

The performances for the closed loop system imposed through the D(α, θ)-region are:

• A settling time ts ≈ 0.2[sec], imposed using the corresponding vertical strip parameter
α = 20.

• A very small overshoot, tending to zero, imposed by the conic region corresponding
parameter θ = 0.01.

• The command signal allowed values ux, uy ∈ [−1, 1], imposed by the corresponding
LMI, having the initial conditions in the ellipsoid described using Q = I6.

As such, one LMI using the DNLDI form of the system is necessary for the settling
time constraints, while for imposing the maximum overshoot, 32 LMIs are necessary.
Considering the input saturation, the final problem involves finding a common solution to
the 35 LMIs. Using the LMI Solver from MATLAB’s Robust Control Toolbox [28], a feasible
solution has been successfully found:

P = 103 ×



2.4209 −0.0835 0.0031 0 0 0
−0.0835 0.0031 −0.0001 0 0 0
0.0031 −0.0001 0.00004 0 0 0

0 0 0 1.1275 −0.0249 0.0007
0 0 0 −0.0249 0.0007 0.00002
0 0 0 0.0007 0.00002 0.00007

,

Z =

(
−0.0453 −0.9385 0.0395 0 0 0

0 0 0 −0.1431 −0.4835 0.0149

)
, (36)
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which leads to the following state-feedback matrix:

K =

(
−0.8719 −47.9103 −616.4164 0 0 0

0 0 0 −0.4557 −33.7512 −497.9665

)
. (37)

Using the equivalence between the gains obtained for the state-feedback controller
and the gains needed for the PI-P cascade control structure, we have:

P(x)
v = 0.8719, P(x)

p = 54.9470 I(x)
p = 706.9512,

P(y)
v = 0.4557, P(y)

p = 74.0668, I(y)p = 1092.8.

Figure 2 shows the step responses obtained for the nominal models of each axis, along
with 50 uncertain samples obtained with Monte Carlo simulations. As noticed, the imposed
settling time for both axes is fulfilled, along with a zero steady-state error. The overshoot
appears due to the transmission zero, as proved in Section 3.2. As such, a feedforward
component is necessary to mitigate the transmission zero causing the overshoot and so
that the performances imposed through the D(α, θ)-region are fully met. The values of the
feedforward gains are:

K(x)
f f = −54.947 and K(y)

f f = −74.0668.

Figure 2. The step responses of the nominal (red) closed-loop system, along with 50 Monte Carlo
simulations (blue) for X axis (left) and Y axis (right), without considering the feedforward component.

The final configuration of the cascade control and feedforward component, together
with the mutual effect between the axes and integrating the uncertainties, is depicted
in Figure 3. The two resulting closed-loop systems have no transmission zeros and the
eigenvalues obtained for the nominal state-space representation become:

Λ
(

H(x)
0

)
= {−904.85, −33.72, −21.29};

Λ
(

H(y)
0

)
= {−1013, −50.6, −21.3}.

The step responses for both nominal and uncertain systems of each axis obtained using
the final control structure from Figure 3 are presented in Figure 4. As noticed, the settling
time is robustly kept at ts ≈ 0.2 [s], with no detectable overshoot or steady-state error.

Next, we consider several numerical simulations obtained with the second proposed
control structure, described in Figure 5. The inner P controller used for the speed loop
should be designed considering the desired speed profile. For the purpose of this paper, we
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considered the same values K(x)
v = 0.8719 and K(y)

v = 0.4557 as in the previous structure in
order to have a fair comparison.

Figure 3. Cascade and feedforward configuration for the MIMO system.

Figure 4. The step responses of the nominal closed-loop system, along with 50 Monte Carlo simula-
tions for X axis (left) and Y axis (right), obtained by adding the feedforward component.

Figure 5. Closed-loop control structure for the two-axis positional mechatronic system having a P
controller on the inner speed loop, and a FO–ID controller on the outer position loop, the switching
element being used to commute between the controller (working mode) and the relay (design mode).
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For both axes we considered a bipositional relay with a hysteresis h = ±0.5 and with
the switching points at ±0.05. The resulting limit cycle for the X axis has the frequency
ωosc = 71.23 [rad/s] and the amplitude Aosc = 0.01, while the resulting Y axis limit
cycle has the frequency ωosc = 69.38 [rad/s] and the amplitude Aosc = 0.01. Because
the amplitudes of both limit cycles are the same, the equivalent gains will be equal for
both axes:

K(x)
eq = K(y)

eq = 63.662. (38)

The resulting time constants of the outer fractional-order integral-derivative controllers
presented in (31) are T(x)

1 = 0.01 [s] and T(y)
1 = 9.21× 10−4 [s]. By imposing the phase

margin γ? = 13π
30 , the resulting fractional orders of both controllers are λ

(x)
I = λ

(y)
I = 0.133.

Moreover, to ensure ωgc = ωosc, the controllers’ gains are K(x)
I = 112.1283 and K(y)

I =
111.8148. As such, the outer controllers are:

H(x)
FO−ID(s) = 112.1283

0.01s + 1
s0.133 and H(y)

FO−ID(s) = 111.8148
9.21 · 10−4s + 1

s0.133 . (39)

For the numerical results, the FO–ID controllers has been simulated using MATLAB’s
FOMCON toolbox [29]. The approximation order of the fractional-order elements has been
set to 5, while the frequency range is [0.1, 104] [rad/s]. The performance of the closed-loop
systems is illustrated in Figure 6. As noticed, the value of the settling time is ts ≈ 0.2 [s],
comparable to the value obtained using the previous structure, and there is no steady-
state error. However, due to the lack of coupling consideration between the axes, a small
overshoot σ ≈ 5% appears, being the main limitation of the proposed method.

Figure 6. The step responses of the nominal closed-loop system, along with 50 Monte Carlo simula-
tions for X axis (left) and Y axis (right).

Moreover, the fractional-order ID controller requires an approximation for the numeri-
cal implementation, which cannot be considered on the equipment described in [27] and
whose model has been considered in the current paper.

6. Discussions

The comparison between the two proposed methods should be on even grounds, as
both ensure zero steady-state error and comprise of four degrees of freedom. Regarding
the time-domain performances, the settling time values are similar, with an average value
of 0.22 [s] for both axes with the first method, having the values between 0.215 [s] and
0.225 [s], while with the second method, the settling time has an average value of 0.185 [s],
varying between 0.17 [s] and 0.2 [s]. Moreover, the second method presents a smaller
rise time of ≈0.07 [s] against to the first method where the rise time is ≈0.12 [s]. The
overshoot has been imposed to be 0 in the first method, while using the second method the
resulting overshoot is ≈9.5 [%] for the X axis and ≈7.5 [%] for the Y axis, varying between
8.5 [%] and 10 [%] for the X axis and between 7 [%] and 8 [%] for the Y axis. Regarding
the implementability, the first structure manages to deal with the limitations imposed by
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the control structure given by the MC206X Motion Coordinator, which provides five servo
gains for control that allow the design of a PID controller for the outer position loop, a P
controller for the inner angular speed loop and a feedforward angular speed gain [27]. As
such, regarding the implementability of the proposed control laws, the FO–ID regulator
cannot be implemented on a generic industrial controller where the structure could be
fixed, as in our case.

Comparing the proposed methods with the available results in the literature, the
first method presents a set of improvements against the similar method proposed in [25],
where the uncertainties and the command signal limitations have not been considered,
while the coupling between axes has been studied as a disturbance and only the capacity
of globally rejecting such disturbances has been analyzed. Moreover, against the second
paper which has been extended here, the problem of designing a FO–ID controller for each
axis considering the positional systems has been treated in the current paper, compared
to [17], where only a single axis angular velocity control system has been treated. The
overshoot presented using the second controller can be justified by the lack of consideration
of the interconnections between the axes, but the approximation of the fractional-order
element could also represent a problem. As noticed in other available research papers, the
problem of a small overshoot appears even in the case of a single axis position system,
as in [14–16]. However, the great advantage of the second method consists in being an
autotuning method which manages to fulfill the vast majority of constraints imposed by
such a problem: fast response with zero steady-state error.

As future work, we propose to investigate the possibility to mitigate the small over-
shoot presented in the case of using the FO–ID controller by adding an extra degree of
freedom such that the coupling between axes can also be removed. Moreover, a possible
extension will be to add both control structures in the µ-synthesis control framework by
considering the possibility to integrate the fractional-order element into the Robust Control
Framework, starting from the ideas underlined in [19,20]. Additionally, another research
direction will be the possibility to develop a graphical tuning method for such a system
having a fractional-order model instead of an integer-order one, as in [21,22].

7. Conclusions

The current paper presents two design techniques for a two-axis positional-based
mechatronic system. The first technique converts the well-known full state-feedback control
structure into a cascade structure having a P controller on the inner loop and a PI controller
on the outer loop. The state-feedback matrix has been computed based on the solution of
an LMI-based problem in which a set of performances have been imposed by describing
a D-region where the closed-loop poles will be placed, along with an extra condition to
overcome the saturation effect which appears on both command signals. The results show
that the settling time requirements are fulfilled, having an average value of 0.22 [s] for
X axis and 0.175 [s] for Y axis, with no steady state-error, but with a small overshoot
caused by a transmission zero. This transmission zero effect has also been canceled using a
feedforward gain for each axis, leading to an average value of the settling time of ≈0.2 [s]
for each axis, as imposed. Moreover, a great advantage of this method compared to the
classical LQR scheme, as part of an extended range of optimal-control based control laws,
is the ability to impose the regional location of the closed-loop system poles in order to
obtain specific time-domain performances and counteract uncertainties.

The second technique presents a methodology to design a similar control structure,
with two modifications: the feedforward gain has been removed, and the outer PI controller
has been replaced with a FO–ID controller designed by bringing the system to the limit
cycle using a relay-type nonlinearity. However, the numerical results reveal one issue with
this approach: the overshoot appears due to the design procedure of the outer controller
which does not consider the coupling between the axes. The settling time has similar values
in both control structures, with no steady-state error, but the first control structure presents
no overshoot, while the second structure induces a small overshoot. As such, based on our
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findings, the LMI-based controller is suitable for this particular problem. Regarding the
robustness, as illustrated in the previous section, the uncertainties do not significantly affect
the imposed performances in both cases. Moreover, the method presents the advantage of
being an autotuning one.
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CNC Computer Numerical Control
DNLDI Diagonal Norm-Bound Linear Differential Inclusion
FO-ID Fractional-Order Integral-Derivative
FO-PID Fractional-Order Proportional-Integral-Derivative
LDI Linear Differential Inclusion
LMI Linear Matrix Inequality
LQG Linear-Quadratic-Gaussian
LQR Linear-Quadratic-Regulator
MIMO Multiple-Inputs and Multiple-Outputs
PID Proportional Integral Derivative
PLDI Polytopic Linear Differential Inclusion
PWM Pulse Width Modulation
List of Symbols
S+n The set of symmetric and positive definite matrices of order n
ωx,ωy Angular speed for X and Y axes, respectively
θx,θy Angular position for X and Y axes, respectively
ux,uy Command signal for X and Y axes, respectively
θ?x ,θ?y Angular position’s reference for X and Y axes, respectively
ux,uy Command signal for X and Y axes, respectively
zx,zy Additional states resulting after augmentation
TMx , TMy Time constant of the subsystem u→ ω for X and Y axes, respectively
KMx , KMy Gain factor of the subsystem u→ ω for X and Y axes, respectively
Kxy, Kyx Gain factor representing the interconnection between X and Y axes
c(n) The nominal value of an uncertain parameter c
dc The disturbance input corresponding to an uncertain parameter c
vc The disturbance output corresponding to an uncertain parameter c
c, c Lower and upper bound of an uncertain parameter c

P(x)
v , P(y)

v The resulting inner loop controllers’ parameters for both X and Y axes, respectively

P(x)
p , I(x)

p , P(y)
p , I(y)p The resulting outer loop controllers’ parameters for both X and Y axes, respectively

K(x)
f f , K(y)

f f The feedforward gains for both X and Y axes, respectively

T(x)
1 , T(y)

1 Time constant of the outer FO–ID controller for both X and Y axes, respectively

λ
(x)
I , λ

(y)
I Fractional order of the outer FO–ID controller for both X and Y axes, respectively

K(x)
I , K(y)

I The gain of the outer FO–ID controller for both X and Y axes, respectively
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