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Abstract: This paper addresses the problems of structure design and trajectory tracking control of
a mobile chassis of life support robots. First, a novel omnidirectional mobile chassis structure is
proposed, which consists of three pairs of modular wheel sets with independent drive and steering
capability. This allows robots to possess omnidirectional mobility and structural reliability. Then, the
trajectory tracking control law is established by combining kinematics analysis and Lyapunov theory.
Furthermore, considering the requirement of life support robots to be used under network control,
this paper proposes an event-triggered trajectory tracking control scheme to improve the utilization
efficiency of communication resources. Finally, the effectiveness of the omnidirectional mobile chassis
and the event-triggered control law designed in this paper are demonstrated by numerical simulation
results.

Keywords: life support robotic; omnidirectional mobile chassis; trajectory tracking control; event-trigger
control

1. Introduction

In order to solve the problem of increased elderly care brought about by an ageing
population, one of the most effective ways is to develop life support robotics with functions
of life assistance, daily nursing, emotional care, etc. Thus, an outstanding mobile perfor-
mance is the key function of life support robotics to realize this purpose [1]. However, the
placement of indoor items on the ground and the living habits of people will lead to an
irregular operation area of the robot. This typical unstructured environment requires a
robotic chassis with enough flexible mobility, a simple and reliable structure, low move-
ment noise and the ability to not get easily tangled in ground debris. Moreover, the motion
control should be safe, precise and stable. For the motion requirements of life support
robotics, how to design a reliable omnidirectional mobile chassis and derive the efficient
trajectory tracking control law are the main research contents of this paper.

Most of the existing typical indoor mobile robots are differential wheeled robots
(Figure 1a), which use two parallel ordinary wheels as driving wheels, and the turning ra-
dius, generated by the difference in their speeds, is used to realize the steering of robots [2].
They are widely used for their simple and reliable structure. However, robots with differ-
ential drive are a kind of nonholonomic robot; that is, the change in the motion direction
of the robot requires a certain turning radius, which will consume extra time and space
and reduce the overall flexibility. In contrast, holonomic robots can move immediately
in an arbitrary direction without a turning radius. Typical holonomic robots adopt the
structure of a Mecanum wheel (Figure 1b) or an omni wheel (Figure 1c). These robots
can be used in work scenarios that require high motion performance and have a narrow
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working space [3–5]. However, the ground contact point is discontinuous, and because of
that, their circumferences consist of free rollers rather than a complete circle, which will
lead to unavoidable vertical vibration and a low load capacity [6].

As an alternative, the structure of orthogonal wheels (Figure 1d), which have two
spherical-segment wheels, can ensure continuous contact with the ground and realize
omnidirectional driving at the same time [7]. However, the gap between the spherical
crowns is large, and the rotation axis is easy to be interfered with by debris. In addition,
the spherical wheel (Figure 1e) can also realize omnidirectional movement, but robots with
a single spherical wheel structure are statically unbalanced robots [8], which decreases the
control of the robot. In addition, the multi-ball wheel structure is extremely complex [9],
leading to a low reliability and a low practical value. The caster wheel (Figure 1f) has been
proposed to solve the structural problems caused by the above unique wheels [10]. A caster
wheel can achieve the steering of the driving wheel itself by adding an offset rotary joint
above the rotation axis of the ordinary driving wheel. However, omnidirectional mobile
robots using caster wheels may have shock and motion uncertainty, since the motion
direction changes too fast [11].

(a) (b) (c)

(d) (e) (f)

Figure 1. Varieties of wheel constructions. (a) Differential wheel. (b) Mecanum wheel. (c) Orthogonal
wheel. (e) Spherical wheel. (f) Caster wheel.

As none of the above wheels can meet the movement requirements of life support
robotics in an indoor unstructured environment, to solve this problem, a novel omnidi-
rectional mobile chassis structure is proposed in this paper. The omnidirectional mobile
chassis is mainly composed of three modular wheel sets, mounting plates, a control unit,
etc. Based on the non-offset caster wheel and a modular design, each wheel set can drive
and steer independently, which eliminates the vibration caused by Mecanum wheels or
omni wheels, and the structure is more compact than that of orthogonal wheels. Moreover,
compared with ordinary caster wheels, the stability during the process of sharp steering is
guaranteed because the motion pattern can be smoothly changed by the non-offset design.
Meanwhile, the steering of each driving wheel is realized by a worm gear drive. The self-
locking property of its drive can prevent the movement direction from being deviated by
lateral force as it works, and the modular design is convenient for subsequent disassembly
and debugging.

Trajectory tracking is the core of robot motion control. The achievement of efficient
trajectory tracking can directly determine the degree of robot intelligence. The main control
methods of robot trajectory tracking include the backstepping technique [12], adaptive
control [13], sliding mode control [14], neural network control [15], etc. The goal of trajectory
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tracking control is to derive a suitable control law so that the error between the reference
path and the current pose of robots converges to the origin asymptotically.

In general, the trajectory tracking control approaches realizes the motion control of
the robot by updating the control law periodically, which takes a small sampled interval to
guarantee a high-class tracking performance. Nevertheless, for network control systems,
frequent updating of the control law may increase energy consumption and waste the
limited communication resources.

To solve this problem, event-triggered control (ETC) methods have been broadly
developed in [16–28]. The core idea of ETC is that only when a certain index of the system
meets the preset conditions can data be transmitted, which ensures that the system can
simultaneously meet the desired performance and reduce the occupation of computing
and communication resources [16–19]. For linear systems, Ref [20] introduced an event-
triggered mechanism (ETM) to save the communication between the controller and the
actuator for optimal control of linear systems. An event-triggered strategy was proposed
to address the robust output regulation problem for linear systems in [21]. For nonlinear
systems, to make better use of the communication resources, the controller and parameter
estimator were both under an ETM in [22]. In [23], based on an ETM, the problem of
continuous-time dynamic sliding mode control for T-S fuzzy nonlinear systems was solved.
As for multiagent systems, Ref [24] proposed an ETC strategy for cooperative manipulation
tasks. The system nonlinearities were solved by an event-triggered sliding mode tracking
protocol in [25]. The common problem of linear multiagent systems on directed graphs
was addressed by adaptive event-triggered protocols in [26]. Ref [27] combined ETM and
input quantization to reduce the action frequency of a controller. In order to alleviate
the burden of network communication, Ref [28] presented an event-triggered fixed-time
distributed observer and a fixed-time controller. Although some works have been reported
on the theoretical and practical aspects of ETC, little research exists focusing on solving the
trajectory tracking control problem of wheeled mobile robots under an ETM.

Aiming at the application of life support robotics in different scenarios, and combining
Lyapunov theory with ETM, this paper proposes a periodic trajectory tracking control
method applied to the independent operation of life support robots and an event-triggered
trajectory tracking control method under network control in order to meet different control
performance requirements.

2. Novel Omnidirectional Mobile Chassis

The research of this paper is based on a modular three-wheeled omnidirectional mobile
chassis of a life support robot. The chassis, which has been independently developed and
designed by our team, can move flexibly in an indoor unstructured environment and
achieve zero radius steering in a narrow space. This section analyzes the principles of
omnidirectional chassis movement and proposes the mechanical structure of the novel
omnidirectional chassis based on these principle.

2.1. Principle Analysis of Omnidirectional Movement

In this part, the motion constraint conditions of common wheeled robots are analyzed,
and the motion principle of the omnidirectional mobile chassis designed in this paper is
presented.

In order to discuss omnidirectional movement conditions, the global reference frame
XGOGYG, the robot reference frame XRORYR and the wheel reference frame XLOLYL of
a common wheeled mobile robot are shown in Figure 2a. The pose of the robot in the
global reference frame is represented by the vector ξ = (x, y, θ)>, the velocity of the robot
reference frame is represented by the vector v =

(
vx, vy, ω

)> and the conversion formula
between the two is represented as follows:

v = R(θ)ξ̇ (1)
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where θ is the angle between XR and XG and R(θ) is the rotation matrix that transforms
the vector in the global reference frame to the vector in the robot reference frame, where

R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

. (2)

(a) (b)

Figure 2. A wheeled mobile robot reference frame. (a) The pose of the robot in the global reference
frame. (b) The pose of the wheel in the robot reference frame.

The position of the wheel is shown in Figure 2b. The distance from the center of the
wheel, OL, to the origin, OR, is l, and the OROL, called the mounting line, is at an angle
α from XR. The axis of the wheel is at an angle of β from the mounting line. Thus, by
projecting the velocity of the robot reference frame in the wheel forward direction and the
wheel axis direction, respectively [10], the constraints of one wheel are as follows:

• Along the wheel forward direction:[
sin(α + β) − cos(α + β) −l cos(β)

]
R(θ)ξ̇ + ẎL = 0. (3)

• Along the wheel axis direction:[
cos(α + β) sin(α + β) l sin(β)

]
R(θ)ξ̇ − ẊL = 0. (4)

where the parameter ẎL denotes the velocity of wheel travelling in a forwards direction,
corresponding to the wheel rotating counterclockwise about its axis. The parameter ẊL
denotes the velocity perpendicular to ẎL. ẎL = rϕ̇ is a common expression of a wheel,
where r and ϕ are the radius and the rotation angle of the wheel, respectively. For ẎL,
however, its establishment depends on the type of wheel. To be more specific, when the
wheel is a differential wheel, ẊL = 0, as long as there is no skidding. For the Mecanum
wheel or the omni wheel, ẊL = −rr ϕ̇r, because of the existence of freely rotating rollers [11],
where rr and ϕr are the radius and the rotation angle of the free rollers, respectively. As for
the caster wheel, ẊL = d

(
θ̇ − β̇

)
, as given in [29], since there is an offset distance, d.

As shown above, when the wheel is a differential wheel, substituting ẊL = 0 into (4)
means that (4) is a nonholonomic constraint, and a robot with nonholonomic constraint
cannot realize omnidirectional movement. For the rest of the wheels, in contrast, ẎL and
ẊL in (3) and (4) have fixed expressions separately, which means that ẎL and ẊL can take
any value within a certain range, i.e., the robot is under holonomic constraints and can use
multiple wheels to realize omnidirectional movement. In particular, when the wheel is a
caster wheel and d = 0, (4) also becomes a nonholonomic constraint. Unlike the differential
wheel, in this case, β is not a constant but a variable. Therefore, a robot with non-offset
caster wheels can still move in any direction in the plane without a turning radius by
changing the value of β.
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Thus, based on the motion principle of a non-offset caster wheel, an innovative
omnidirectional mobile chassis suitable for life support robots in an indoor unstructured
environment is designed in this paper.

2.2. Structure of Omnidirectional Mobile Chassis

Here, based on the above analysis of the omnidirectional movement principle, a novel
modular three-wheeled omnidirectional mobile chassis is proposed in this subsection. As
shown in Figure 3a, the omnidirectional mobile chassis was mainly composed of three
modular wheel sets and mounting plates. The three pairs of wheel sets were fixed on
the mounting plate at an angle of 120◦ to each other. Each pair of wheel sets was mainly
composed of a steering motor, a hub motor, a transmission assembly, mounting plates, etc.,
which could drive and steer independently (Figure 3b).

(a) (b)

Figure 3. Construction of a modular omnidirectional mobile chassis. (a) Overall structure. (b) Mecha-
nism of a single wheel set.

On the one hand, because the steering of the hub motor is realized by a worm gear
drive, the self-locking of its drive means that the value of β is unaffected by external
force, which ensures the speed stability of the chassis when static or moving. On the
other hand, when the chassis is at rest, the wheel plane of each driving wheel has a
common intersection line, which means that the chassis will not be influenced by the rolling
friction due to external force in the parking state, and has static self-locking ability to a
certain extent.

Then, in order to discuss the motion ability of the chassis proposed in this paper,
the motion modes of the chassis are divided into four types according to the motion
requirements of the robot including parking, turning in situ, straight driving (no steering)
and meandering path driving. Certainly, different motion modes have different hub motor
layouts. For the parking model, the wheel plane of each driving wheel has a common
intersection line (Figure 4a), i.e., β = ±π

2 . For the turning in situ model (Figure 4b), the
wheel plane of each driving wheel is perpendicular to the mounting line, corresponding to
β = 0. As shown in Figure 4c, when the chassis is driving in a straight line, the direction of
each hub motor is consistent with the movement direction of the chassis. As opposed to
driving straight, when the chassis is moving in a meandering path, β is not fixed but varies
with time (Figure 4d).
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(a) (b)

(c) (d)

Figure 4. Motion models of the omnidirectional chassis. (a) Parking. (b) Turning in situ. (c) Driving
in a straight line (no steering). (d) Meandering path driving.

3. Kinematics Analysis

In order to derive the kinematics formulas, the reference frame of the proposed chassis
is established in Figure 5a. A wheel set with a mounting line collinear with YG of the
reference frame is assigned as wheel set 1, and the others as wheel sets 2 and 3 counter-
clockwise.

(a) (b)

Figure 5. Kinematics reference frame. (a) Three-wheeled omnidirectional mobile chassis reference
frame. (b) The velocity of wheel set 2.

First, based on the vector v obtained by (1), let vo =
(
vx, vy

)
, then the velocity of the

wheel set i can be expressed as

vi = vo + ω×OROLi (5)

where vi is the velocity of wheel set i, vo is the velocity of the centroid of the chassis, ω is the
angular velocity with which the chassis rotates around the centroid and OROLi is the radius
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vector. That is, the speed of each hub motor is |vi| and the orientation is consistent with
vi. Take wheel set 2 as an example, shown in Figure 5b. Then, combining the geometric
characteristics of the chassis and the conditions (3) and (4), the constraint conditions of
wheel set i can be represented as follows:[

sin(αi + βi) − cos(αi + βi) −li cos(β)
]
R(θ)ξ̇ + rϕ̇i = 0 (6)[

cos(αi + βi) sin(αi + βi) li sin(βi)
]
R(θ)ξ̇ = 0. (7)

Next , the following equation is obtained from (6) and (7).sin α1 − cos α1 −l1
sin α2 − cos α2 −l2
sin α2 − cos α3 −l3

R(θ)ξ̇ +

cos β1 0 0
0 cos β2 0
0 0 cos β3

rϕ̇1
rϕ̇2
rϕ̇3

 = 0. (8)

Therefore, the forward kinematics of the omnidirectional chassis proposed is repre-
sented by

ξ̇ = R(θ)−1

sin α1 − cos α1 −l1
sin α2 − cos α2 −l2
sin α2 − cos α3 −l3

−1− cos β1 0 0
0 − cos β2 0
0 0 − cos β3

rϕ̇1
rϕ̇2
rϕ̇3

 = 0. (9)

Here, α1 = π
2 , α2 = 7π

6 , α3 = 11π
6 and l1 = l2 = l3 = 1

4 are constants and ϕ̇i = ±|vi|/r.
βi is variable, with initial values β1 = −π

2 , β2 = 5π
6 and β3 = π

6 .

4. Tracking Controller Design
4.1. Design of Control Law

In this section, the objective is to design the control law, so that the tracking error
converges to the origin asymptotically. The tracking error system of the robot reference
frame is first established. The velocity v =

(
vx, vy, ω

)> in (1) is used as the virtual input
variable of the system, and the actual input variable is vi(i = 1, 2, 3). The conversion of
these two variables is realized by (5).

In the global reference frame, the actual pose of the robot is defined as ξ = (x, y, θ)>and
the reference pose is ξr = (xr, yr, θr)

>. Taking e =
(
ex, ey, eθ

)> as the tracking error in the
robot reference frame, the error equations of trajectory tracking in the robot reference frame
are established as follows:

e =

ex
ey
eθ

 = R(θ)(ξr − ξ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

xr − x
yr − y
θr − θ

. (10)

From (1), we can obtain that

ξ̇ = R(θ)−1v =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

vx
vy
ω

 (11)

ξ̇r = R(θr)
−1vr =

cos θr − sin θr 0
sin θr cos θr 0

0 0 1

vxr
vyr
ωr

 (12)
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where vr =
(
vxr, vyr, ωr

)> is the reference velocity of the robot in the robot reference frame.
Then, by differentiating (10) and substituting (11) and (12), the tracking error dynamics can
be represented by the following equation:

ė =

ėx
ėy
ėθ

 =

−1 0 ey
0 −1 −ex
0 0 −1

vx
vy
ω

+

cos eθ − sin eθ 0
sin eθ cos eθ 0

0 0 1

vxr
vyr
ωr

. (13)

Inspired by [30], the trajectory tracking control law can be derived as:

v =

vx
vy
ω

 =

vxr cos eθ − vyr sin eθ + kxex
vyr cos eθ + vxr sin eθ + kyey

ωr + kθeθ

 (14)

where kx, ky and kθ are positive constants.
Based on the Lyapunov stability theory, the asymptotic stability condition for the

tracking error dynamics in (13) is proposed in Theorem 1.

Theorem 1. Assume that vr is bounded for any t ∈ [0, ∞). Consider the error dynamic system
(13) and that the control law is derived by (14). Then, the asymptotic stability of the tracking error,
e, can be guaranteed when the control law (14) is applied.

Proof of Theorem 1. By substituting (14) into (13), we obtain

ė =

ėx
ėy
ėθ

 =

−1 0 ey
0 −1 −ex
0 0 −1

vxr cos eθ − vyr sin eθ + kxex
vyr cos eθ + vxr sin eθ + kyey

ωr + kθeθ


+

cos eθ − sin eθ 0
sin eθ cos eθ 0

0 0 1

vxr
vyr
ωr

.

(15)

The Lyapunov function can be selected as:

V =
1
2

e2
x +

1
2

e2
y +

1
2

e2
θ . (16)

The derivative of (16) is given by

V̇ = ex ėx + ey ėy + eθ ėθ . (17)

By substituting (15) into (17), we obtain

V̇ = −kxe2
x − kye2

y − kθe2
θ . (18)

According to (16) and (18), it can be easily confirmed that V ≥ 0 and V̇ ≤ 0. Based
on this, V is the lower bound because V ≥ 0 and the upper bound of V is determined by
V̇ ≤ 0. Thus, we can deduce that V is bound. From (16), it is easy to conclude that e is
bound. In addition, vr is certainly bound and v is bound since kx, ky and kθ are positive
constants in (14). Moreover, using (13), ė is also bound.

Then, by differentiating (18), we obtain

V̈ = −2k2
xex ėx − 2k2

yey ėy − 2k2
θeθ ėθ . (19)

That V̈ is bound is guaranteed since e and ė are bound. Therefore, V̇ is uniformly
continuous. According to Barbalat’s lemma in [13], we obtain

lim
t→∞

V̇ = 0. (20)
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The validity of (20) implies

lim
t→∞

ex = 0, lim
t→∞

ey = 0, lim
t→∞

eθ = 0. (21)

Thus, the tracking error e is asymptotically stable. The proof is complete.

Remark 1. The means of deriving control law (14) is a Lyapunov direct method [30]; that is, by
appropriately choosing the Lyapunov candidate function to make the derivative of the corresponding
candidate function along the system solution be negative definite or semi-negative definite, so that
a stable control law can be given. On the one hand, the tracking performance can be guaranteed
by the control law from the direct Lyapunov method. On the other hand, the control law can make
the derivative of Lyapunov function for tracking error systems become orderly as well, which may
simplify the design of subsequent ETM.

4.2. Trajectory Tracking Control Based on ETM

When a life support robot works in a hospital, nursing home or other large-scale
environments, in order to satisfy the requirements for long-term continuous work and
the reasonable utilization of system resources, the upper-level control system of the robot
will be shut down. Meanwhile, only the embedded system and the sensor work normally,
so the object will be controlled via a remote network control method. At this time, the
traditional period control will cause high-frequency updating of the control law, which will
not only occupy a lot of computing and communication resources, but also accelerate the
ageing of the actuator. In fact, when the system becomes stable, the certainty index can
be maintained even without updating the control law [20]. Therefore, to save the limited
communication resources in the case of network control, an event-triggered strategy for
trajectory tracking control is proposed in this section.

In ETC (Figure 6), the control law is updated only at discrete time instants t0 and
{tk}, k = 1, 2, . . ., where t0 is the initial sampling instant and tk is kth event-triggering
instant satisfying tk+1 ≥ tk. Suppose tk is already known and the task is to design suitable
triggering conditions to determine tk+1 [22]. To this end, in the time period t ∈ [tk, tk+1),
the control inputs are v̂x = vx(tk), v̂y = vy(tk) and ω̂ = ω(tk), respectively. As a result, the
tracking error system (13) becomes

e =

ėx
ėy
ėθ

 =

−1 0 ey
0 −1 −ex
0 0 −1

v̂x
v̂y
ω̂

+

cos eθ − sin eθ 0
sin eθ cos eθ 0

0 0 1

vxr
vyr
ωr

. (22)

Next, the control variables are defined as evx = v̂x − vx, evy = v̂y − vy and eω = ω̂−ω,
and by substituting them into (22), we obtain

e =

ėx
ėy
ėθ

 =

−1 0 ey
0 −1 −ex
0 0 −1

evx + vx
evy + vy
eω + ω

+

cos eθ − sin eθ 0
sin eθ cos eθ 0

0 0 1

vxr
vyr
ωr

. (23)

For system (23), the following ETM can be designed:

tk+1 = in f
{

t ≥ tk

∣∣∣∣(√e2
vx + e2

ω − σ1

√
kxe2

x + k2
θe2

θ

)
≥ 0

&
(√

e2
vy + e2

ω − σ2

√
kye2

y + k2
θe2

θ

)
≥ 0

} (24)

where σ1 and σ2 are constants that satisfy 0 < σ1 < 1 and 0 < σ2 < 1.
We now analyze the designed ETM and establish the stability of the tracking error

system (23). The result is stated in the following theorem.



Fractal Fract. 2023, 7, 121 10 of 15

Figure 6. ETC frame of the life support robotic.

Theorem 2. Consider the constructed tracking error system (23), with a triggering mechanism as
established by (24). Then, the event-based control law can force the tracking error to be asymptotically
stable.

Proof of Theorem 2. Taking (14) as a Lyapunov function candidate, according to (14), (17)
and (23), we obtain

V̇ = ex ėx + ey ėy + eθ ėθ

= −
(

kxe2
x +

1
2

kθe2
θ

)
−
(

exevx +
1
2

eθeω

)
−
(

kye2
y +

1
2

kθe2
θ

)
−
(

eyevy +
1
2

eθeω

)
≤ −

(
kxe2

x +
1
2

kθe2
θ

)
+

√
e2

x +
1
4

e2
θ

√
e2

vx + e2
ω

−
(

kye2
y +

1
2

kθe2
θ

)
+

√
e2

y +
1
4

e2
θ

√
e2

vy + e2
ω

=

√
e2

x +
1
4

e2
θ

(√
evx + e2

ω +
√

kxe2
x + k2

θe2
θ

)
+

√
e2

y +
1
4

e2
θ

(√
e2

vy + e2
ω +

√
kye2

y + k2
θe2

θ

)
.

(25)

From (25), V̇ satisfies

V̇ ≤− (1− σ1)

√(
e2

x +
1
4

e2
θ

)(
kxe2

x + k2
θe2

θ

)
− (1− σ2)

√(
e2

y +
1
4

e2
θ

)(
kye2

y + k2
θe2

θ

)
≤ 0.

(26)

Therefore, the asymptotic stability of the system (24) is guaranteed. This completes
the proof.

Remark 2. Since the local high-frequency sampling and Zeno behavior can be avoided with maxi-
mum function [31], the ETM (24) is modified as follows:

tk+1 = in f
{

t ≥ tk

∣∣∣∣√e2
vx + e2

ω ≥ max
(

σ1

√
kxe2

x + k2
θe2

θ , ε1

)
&
√

e2
vy + e2

ω ≥ max
(

σ2

√
kye2

y + k2
θe2

θ , ε1

)} (27)

where ε1 and ε2 are constants that satisfy 0 < ε1 < 1 and 0 < ε2 < 1.
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5. Simulation

In order to verify the motion performance of the omnidirectional mobile chassis and
the availability of the trajectory tracking control method proposed in this paper, a numerical
simulation experiment was carried out first. The reference trajectory equation is as follows:

x = −0.24 + sin
(

t
5

)
y = −0.24 +

1
2

sin
(

2t
5

)
θ = 0

. (28)

The parameters were set as follows: the initial pose of the robot was set as ξ0 =

(−0.2,−0.5, 0.5)>. Secondly, due to the demand of safety for the life support robot, the
maximum speed of each hub motor was limited to 1 m/s and its steering speed was 8 rad/s.
Then, kx, ky and kθ determine the weight of the ex, ey and eθ in calculating the control inputs,
respectively, so they were chosen as kx = 3, ky = 4 and kθ = 2. In ETC, σ and ε should
be selected for a tradeoff between trajectory performance and event-triggered frequency,
and they were chosen through trial and error as σ1 = 0.1, σ2 = 0.1, ε1 = 1× 10−5 and
ε2 = 1× 10−5.

Simulation Results

The numerical simulation experiment was carried out based on the above settings,
and the results are shown in Figure 7.

As can be seen from the simulation results, the periodic control method could ensure
an accurate tracking path (Figure 7a), the tracking error could converge to zero rapidly and
the error curve was stable (Figure 7b–d). When the network control was adopted, the robot
could approximately catch up with the reference trajectory after the ETM was introduced
(Figure 7a) and the tracking error curve eventually approached near zero (Figure 7b–d).

However, it can be seen from Figure 7b that the curve about ex under ETC has obvious
local oscillations and sharp peaks, which deviate from the origin locally. On the one hand,
the time intervals of local deviations correspond to large triggering intervals in Figure 7e,
indicating that the triggering frequencies in these periods are low. On the other hand,
from the ETM (27), it can be seen that the control law will be updated only when both ex
and ey meet the trigger conditions. However, when the curve of ex has a peak period, the
corresponding curve of ey in Figure 7c fluctuates only a little, so the position error cannot
be corrected in time during this period.

To further improve the tracking efficiency, by combining the characteristics of periodic
control, a self-triggering mechanism (STM) was developed under the premise of (27), which
specifies the maximum event-triggering interval. Numerical simulation results are shown
in Figure 8.
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(a) (b)

(c) (d)

(e)

Figure 7. Simulation results by different control methods. (a) Trajectory tracking status. (b) Pose
error, ex. (c) Pose error, ey. (d) Pose error, eθ . (e) Triggering frequency.

It is observed that under the action of the STM, the convergence state of ex and ey
can be significantly improved compared with the ETM in Figure 8a,b. The curve of eθ is
almost coincident with its counterpart in ETC in Figure 8c. In addition, the STM can also
reduce the trigger frequency of the system, as shown in Figure 8d. These results show
that compared with the ETM proposed above, the STM can further improve the trajectory
tracking accuracy while guaranteeing a similar trigger frequency.

To sum up, compared to the periodic control method, the ETC leads to approximate
trajectory tracking rather than accurate trajectory tracking. However, the ETC significantly
lowers the updating frequency of the control law, which can observably reduce the burden
of the system communication. Moreover, the error of the pose converges quickly, regardless
of whether it is controlled by the period time-based control or the ETC, which also verifies
the flexibility of the chassis structure proposed in this paper, since it can rapidly change the
direction of motion.
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(a) (b)

(c) (d)

Figure 8. Simulation results with STM. (a) Pose error, ex. (b) Pose error, ey. (c) Pose error, eθ .
(d) Triggering frequency.

6. Conclusions

This paper has investigated the structure design and trajectory tracking control of a
chassis for life support robots. Firstly, considering the characteristics of life support robots
working in an indoor unstructured environment, this paper designed a modular three-
wheeled omnidirectional mobile chassis, which has the merits of flexible movement, low
movement noise, strong bearing capacity, long working life and so on. Then, the kinematics
of the omnidirectional mobile chassis were analyzed, and the trajectory tracking control
method based on the time-triggered mechanism and ETM were proposed for different
working scenarios of the life support robot. Finally, the advantages of the proposed chassis
structure and the effectiveness of the trajectory tracking method were verified by simulation
experiments. The universality of the trajectory tracking control method for life support
robots in realistic complex paths will be part of our future work.
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