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Abstract: Self-similar growth and fractality are important properties found in many real-world
networks, which could guide the modeling of network evolution and the anticipation of new links.
However, in technology-convergence networks, such characteristics have not yet received much
attention. This study provides empirical evidence for self-similar growth and fractality of the
technology-convergence network in the field of intelligent transportation systems. This study further
investigates the implications of such fractal properties for link prediction via partial information
decomposition. It is discovered that two different scales of the network (i.e., the micro-scale structure
measured by local similarity indices and the scaled-down structure measured by community-based
indices) have significant synergistic effects on link prediction. Finally, we design a synergistic link
prediction (SLP) approach which enhances local similarity indices by considering the probability of
link existence conditional on the joint distribution of two scales. Experimental results show that SLP
outperforms the benchmark local similarity indices in most cases, which could further validate the
existence and usefulness of the synergistic effect between two scales on link prediction.

Keywords: intelligent transportation systems; international patent classification; technology convergence;
patent; fractal analysis; self-similarity; partial information decomposition; emergence; link prediction

1. Introduction

Technology innovation is the major competitiveness of enterprises and an essential
driving force for the high-quality development of the national economy. The innovation
of technology could be broadly classified into two categories: (1) technology substitution,
which refers to the innovative breakthrough of new technologies that replace the existing
ones, and (2) technology convergence, which refers to the transfer and combination of
existing knowledge among multiple areas of technology [1,2]. The former is a linear,
step-by-step approach along with challenging difficulties and lengthy transition periods,
whereas the latter is a nonlinear and complementary method of technology fusion that
brings with it additional cooperation and inspiration. Technology convergence is regarded
as an increasingly significant characteristic of current trends of technology innovations due
to more realization paths and faster outcome emergence [3–5].

A prominent research strand of technology convergence is its anticipation, which
aims to predict potential technology convergence or identify convergence movements
at an early stage [6–8]. In many studies, the emergence of new technology convergence
is defined as the first co-occurrence of two International Patent Classification (IPC) sub-
classes in the patent data [9,10], and the anticipation is formulated as a link-prediction
problem on an IPC co-occurrence network [11–13]. Two main objectives of the literature for
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anticipation of technology convergence are developing new methods and their practical ap-
plications [8]. From the perspective of network science, these anticipation approaches could
be categorized into three categories: (1) topology-based [9,11–14], (2) ensemble-learning-
based [7,15,16], and (3) multi-modal-based [17–19]. These methods are successfully applied
in a wide range of industries, such as power systems [15], smartphones [11], electric
vehicles [13], manufacturing [14], and telecommunications [17].

Despite the success of applying link-prediction algorithms to the anticipation of
technology convergence, as noted in a recent milestone review by Sick et al. [8], there is
relatively little research on theoretical underpinnings for such applications, especially from
the perspective of network science. A major research topic that has not yet been adequately
explained is particularly addressed in this study: As a time-evolving network, what
evolutionary process may the technology-convergence network undergo? This question
is extremely essential for the anticipation of technology convergence, since studying the
evolution process of a network could help us understand the growth mechanism of its links
and hence develop better link-prediction algorithms [20–25].

To answer the above question, we employed the theory of fractal networks as a tool
for analysis. According to the dynamic evolutionary process, fractal networks could be
generated by self-similar growth [26–28]. From the viewpoint of static topological structure,
typical properties of fractal networks include self-similarity and scale invariance [29–32].
Using historical patent data in the ITS field, this study first provides empirical evidence for
the self-similar growth of the time-evolving technology-convergence network based on the
commonly adopted rescaled network statistics [28,33–37] and then verifies the fractality
of each snapshot using a community-structure-based approximation of the box-cover
algorithm [38].

After discovering the fractal property of the technology-convergence network, another
intriguing research question emerges: How does the microscopic structure of the original
technology-convergence network and its scaled-down replica provide information for the
prediction of future technology convergence? This research question has some significant
theoretical implications, since it could give insights into the multi-scale modeling and
prediction of technology convergence, which has not yet been thoroughly studied.

As an attempt to answer the issue raised, this study adopts the partial information
decomposition (PID) framework for the link-prediction problem. In particular, we dis-
covered that the IPC hierarchy naturally provides community partitions for the original
network, based on which the scaled-down network could be obtained. We further define
a microscopic variable and a macroscopic variable based on two-hop link predictors and
IPC hierarchy, respectively, to represent the two scales of the network. With PID, the joint
contribution of the original and the corresponding scaled-down networks is decomposed
into four components: the synergistic and redundant information between two scales,
and the unique information provided by each scale. It is found that the joint contribution is
mainly in the form of synergistic information and much redundant information.

The synergistic effect of two different scales on link prediction implies that the joint
distribution of the two scales could be more informative than the marginal distributions
of each scale. To further validate the existence and usefulness of the synergistic effect, we
designed a synergistic link prediction (SLP) approach, which is essentially the probability
of link existence on the condition of both the microscopic and the macroscopic variables.
We adopted a cumulative distribution function (CDF)-like formula to score the likelihood
of link existence between two nodes to address the sparsity issue of the network, while
ensuring that the link-prediction score is monotonically increasing with the likelihood of
link existence. SLP could be categorized as the link/community-based strategy [39–47],
which enhances local similarity measures based on community information (see Section 2.4).
Compared with existing link/community strategies, SLP could be used more easily in a
plug-and-play manner, since it does not require manual adjustment of the formulae for
local similarity measures.
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Experiments were conducted by using the ITS-related patent data from November
1995 to July 2022. A time-evolving technology-convergence network was constructed
on the basis of the IPC co-occurrence relationships obtained from the historical patent
applications. Further, the new technology convergence of the next year is anticipated
based on annual snapshots. Experimental results show that, in most cases, our designed
SLP algorithm outperforms the benchmark algorithms that only consider one of the two
scales. As a very interesting phenomenon, the link-prediction performance is highly
consistent with PID results. The PID framework provides an appropriate theoretical
underpinning for deeply interpreting the link-prediction performance. In most cases where
SLP outperforms the benchmark algorithms, synergistic information also dominates the
interaction between two scales of the network in the PID results. In the few cases where
SLP has not managed to outperform the benchmark algorithms, significant redundant
or unique information can be observed in the PID results. These results imply that the
performance improvement provided by multi-scale fusion for link prediction is primarily
due to synergy between different scales, and the presence of significant redundant or
independent information may weaken the performance and necessitates special treatment.
Our findings shed light on the development of multi-scale link-prediction algorithms for
the anticipation of technology convergence and demonstrate that PID could be a powerful
tool for exploring the evolutionary mechanisms of networks.

In summary, the main contributions of this study could be summarized as follows:

• We provide empirical evidence for the fractal characteristic of the technology-
convergence network in the ITS field. In terms of the time-evolving mechanism,
the technology-convergence networks grow in a self-similar paradigm, in which the
rescaled topological properties remain stable. In terms of spatial properties, the annual
snapshots of the technology-convergence networks are identified as fractal networks.

• We discovered that the structural information at two different scales has a synergistic
effect on link prediction. The structural information at two different scales is measured
by local similarity measures and community-based indices, respectively. Therefore,
this discovery implies that the joint distribution of the two could be more informative
than the marginal distributions of either the local or the community-based indices.

• We designed a link-prediction approach, namely, the SLP approach, based on the
joint conditional probability of link existence given both the local and the community-
based indices. Experimental results show that the SLP approach could enhance
the corresponding local similarity measures by incorporating community structures,
which further validates the existence and usefulness of the synergistic effect on link
prediction between two scales.

The rest of this article is organized as follows. Theoretical background and related work
for the research in this paper are provided in Section 2. Section 3 details the methodology
of this study, including the empirical criteria for self-similar growth and fractality, the use
of PID, and our developed SLP algorithm. Section 4 presents experimental results obtained
from applying the new methodology and the benchmark algorithms. Finally, Section 5
presents the conclusions drawn from this research and directions for future research.

2. Related Work

The aims of this study were to analyze properties of the technology-convergence net-
work based on fractal network theory and PID, and to propose a link-prediction algorithm
for the anticipation of future technology convergence. In this section, related work in the
following four research areas is discussed: technology convergence and its anticipation,
fractal analysis of complex networks, PID, and link prediction.

2.1. Technology Convergence and Its Anticipation

The concept of technology convergence could be traced back to Rosenberg’s study
on the technology changes in the machine tool industry in the 1960s [48]. However,
little attention was paid to technology convergence until the 1980s, when information
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and communication technology (ICT) was extended to and integrated with various other
industrial sectors [49–51]. In 1992, Kodama’s milestone of an article [49] symbolized that
technology convergence began to attract attention. Some prior studies on convergence
emerged in the 2000s, including theoretical definitions of convergence [52], the distinction
between demand-side and supply-side convergence [53], and the partitioning of the four
stages (i.e., science, technology, market, and industry) of the convergence process [52]. This
study follows the theoretical definition of convergence as, “The blurring of boundaries
between at least two hitherto disjoint areas” [54], and addresses the stages of technology
convergence from a supply-side perspective.

Data-driven research on technology convergence has gained appeal since the 2010s,
as publicly available data have drastically multiplied. An important data source for tech-
nology convergence studies is patent data, which are considered an up-to-date and reliable
indicator of creative activities and knowledge accumulation within technology fields [55–58].
In many early studies of technology convergence, citation relationships among patents
were used to measure technology convergence [55,59,60]. However, a recent argument is
that such citation-based measurements focus on modeling the stretching process of the
knowledge from one technology field to another and may not clearly characterize the
events that represent the occurrence of technology convergence [10]. The emergence of
new technology convergence could be clearly defined as the first co-occurrence of two
IPC subclasses in the patent data based on the International Patent Classification (IPC) of
patents [9,10]. This definition of technology convergence was widely adopted in subsequent
studies [5,13,17,61–63].

Benefiting from the IPC-based definition of the technology convergence, several stud-
ies anticipating prospective technology convergence based on IPC co-occurrence networks
have emerged in recent years [9,13,17]. This branch of research constructs networks based
on IPC co-occurrence relationships and forecasts potential technology convergence as
missing links in the networks. A wide range of studies are based on topological similarity
indices, such as the weighted resource allocation (RA) index [13], the weighted common
neighbor (WCN) index [11], the Adamic-Adar index [9], and modified versions of these
indices. Another stream of research applies ensemble approaches to link prediction, which
employs supervised classification models to learn combinations of several individual link
predictors [7,15,16]. A novel research paradigm is to develop machine learning algorithms
that predict missing links based on a combination of multi-modal information, such as
topology, bibliometric, and semantic information [17–19].

Despite the successful implementations of the proposed methods in a variety of in-
dustries, there is a paucity of research on the theoretical underpinnings of anticipating
technology convergence [8]. In particular, studies that analyze the properties and evolu-
tionary processes of technology-convergence networks from a network science perspective
are very scarce. Hence, the key contributions of this paper are considering the technology-
convergence network as a time-evolving network and providing its three properties: (1) the
self-similar growth of the evolutionary process, (2) the fractality of the snapshots, and
(3) the synergy between different scales in link prediction.

2.2. Fractal Analysis of Complex Networks

The complex network provides a powerful theoretical tool for the abstract characteri-
zation of many real-world systems composed of various objects and mutual relationships,
such as technological [13,64,65], biological [66–69], and social systems [70–74]. A wide
range of real-world networks have the fractal property, which could be roughly described
as, “The network looks similar under different magnification levels” [75].

The rigorous definition of fractality in a complex network is based on the box-covering
approach. Given a box of size lB, the box-covering approach groups a set of nodes into
a box br such that the shortest distance between each pair of nodes in br is less than lB.
By partitioning all the nodes into boxes, a network is covered, and the minimum number
of boxes required is denoted as NB(lB). The circumstance where a network is covered by
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NB(lB) boxes is referred to as the optimal covering. If the scaling of NB(lB) of the optimal
covering follows a power law as

NB ∼ l−dB
B , (1)

then the network is identified as a fractal network and dB is denoted as its fractal dimension.
The optimal covering problem is known to be NP-hard [38,76]. Many heuristic algo-

rithms have been proposed to solve this problem approximately, such as the greedy coloring
algorithm [76], the compact-box-burning algorithm [76], the max-excluded mass-burning
algorithm [76], the overlapping-box-covering algorithm [77], and the MCWR algorithm [78].
For a comparative analysis of the aforementioned box-covering algorithms, see the study
in [79].

Most existing box-covering algorithms are designed for unweighted networks , whereas
the technology-convergence network constructed in this study is a weighted network.
For the box-covering problem of weighted networks, Wei et al. [80] proposed a method that
transforms edge weights using a power function. Nevertheless, the partitioning of boxes
in this method is affected not only by lB, but also by the exponent of the power function,
which increases the difficulty of modifying parameters in actual use. Hence, selecting a
proper exponent in the practical application remains a problem. Another recent step was
the community-structure-based method proposed by Giudicianni et al. [38], which approx-
imates the box-covering problem with community detection algorithms. Since there are
many off-the-shelf algorithms for community detection on weighted networks, this method
provides many reliable options for the coarse-graining of weighted networks. Therefore,
we chose to apply this community-structure-based approach to analyze the fractal property
of the technology-convergence network.

The inverse process of the box-covering algorithm mirrors the evolution of fractal
networks to some extent [26,75,81]. For a time-evolving network, if its growth mechanism
approximates the inverse process of the box-covering algorithm, the snapshot at time t− 1
could be considered as a scaled-down replica of the snapshot at time t. As a result, we
could observe self-similar behaviors of the network statistics on the rescaled snapshots.
Commonly adopted empirical evidence for the self-similar growth is the curve overlapping
of rescaled network statistics, including rescaled degree distribution, rescaled clustering
coefficient, rescaled degree–degree correlation, and the community structure [28,33–37].
Following the convention in the literature, this study provides empirical evidence for the
self-similar growth of the time-evolving technology-convergence network based on the
aforementioned rescaled network statistics.

2.3. Partial Information Decomposition

Information theory, pioneered by Claude Shannon [82], is widely used to analyze the
interactions between components in complex systems. However, the commonly applied
mutual information only concerns the interaction between two variables, as it measures the
information provided by a single variable about another. Instead, this study considers a
three-way system involving the original technology-convergence network and its scaled-
down replica as two inputs and the future technology convergence as an output.

A recent extension of information theory, the partial information decomposition (PID),
provides a powerful tool for analyzing the three-way system with two inputs, X1 and X2,
and one output, Y [83]. Specifically, the information that X1 and X2 jointly provide for Y is
defined as

I(Y; X1, X2) = ∑
x1

pY,X1,X2
(y, x1, x2)

[
log

1
pY (y)

− log
1

pY|X1,X2
(y | x1, x2)

]
. (2)
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The joint mutual information I(Y; X1, X2) is further decomposed into four terms:

I(Y; X1, X2) = Ired(Y; X1, X2) + Iunq(Y; X1 | X2)

+ Iunq(Y; X2 | X1) + Isyn(Y; X1, X2),
(3)

where Ired, Iunq, and Isyn are named redundant information, unique information and
synergistic information, respectively.

Ired is defined as “the expected value of the minimum information provided by either
X1 or X2 about each possible outcome of Y” [83], which is formally written as

Ired(Y; X1, X2) = ∑
y

pY (y)min{I(Y = y; X1), I(Y = y; X2)}. (4)

Given the definition of Ired, the other three terms could be induced as

Iunq(Y; X1 | X2) = I(Y; X1)− Ired(Y; X1, X2), (5)

Iunq(Y; X2 | X1) = I(Y; X2)− Ired(Y; X1, X2), (6)

Isyn(Y; X1, X2) = I(Y; X1, X2)− Iunq(Y; X1 | X2)

− Iunq(Y; X2 | X1)− Ired(Y; X1, X2). (7)

The practical meanings of these four terms are as follows:

• Ired(Y; X1, X2) represents the information that both X1 and X2 could provide for Y.
• Iunq(Y; X1 | X2) represents the information about Y that could be provided by X1 but

not by X2.
• Iunq(Y; X2 | X1) represents the information about Y that could be provided by X2 but

not by X1.
• Isyn(Y; X1, X2) represents the information about Y that could only be obtained by

jointly considering both X1 and X2.

PID has been applied in various research fields, such as neuroscience [84–86], artificial
intelligence [87–90], and emergent behavior recognition and analysis [91–93]. Among all
these, the most relevant is the information-theoretic framework for causal emergence
proposed by Rosas et al. [91].

In the proposed information-theoretic framework, a complex system composed of n
microscopic states Xt =

[
X(1)

t , X(2)
t , · · · , X(n)

t

]
is taken into account. It is assumed that the

system conforms to Markovian stochastic dynamics with the transition probability pXt′ |Xt
,

where t and t′ are two time points satisfying the condition t < t′. An emergent behavior
is deemed to have occurred if some macroscopic states Vt of the system could provide
unique information beyond that provided by microscopic states Xt separately. The unique
information provided by Vt is denoted as Iunq(Vt; Xt′ | Xt), and Vt demonstrates causal
emergence if

Iunq(Vt; Xt′ | Xt) > 0, (8)

(see Definition 2 in [91]).
By analogy with the above information-theoretic framework, the original technology-

convergence network corresponds to the microscopic state, and its scaled-down replica
corresponds to the macroscopic state. However, defining microscopic and macroscopic
variables is not a trivial or intuitive task. The microscopic variables of a system should
not contain information about the high-order interactions among its components, and the
definition of macroscopic variables relies on manually designed coarse-graining functions.
Since there is no universal methodology for defining microscopic variables and the coarse-
graining functions for deriving macroscopic variables, this study contributes to the PID
literature by proposing definitions of microscopic variables and coarse-graining functions in
complex networks from the perspective of link prediction. This study could be considered
as an attempt to apply PID to the field of link prediction in complex networks. In addition,
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from a machine learning perspective, the link-prediction method proposed in this study
could be viewed as a PID-inspired feature fusion algorithm. Compared with previous
studies on PID-inspired feature engineering [88,89], this study proposes a novel feature
fusion method based on the cumulative distribution function (CDF).

2.4. Link Prediction

Link prediction, a basic issue in the study of complex networks, aims to predict
unobserved missing links based on the the observed current network structure. The formal
settings of link prediction are given as follows.

An observed network G(N, E) is considered, where N and E represent the node set
and the edge set, respectively. It is assumed that G(N, E) is an undirected network without
multi-edges and self-loops. The number of nodes is denoted as N = |N|, and the number
of the observed edges is denoted as E = |E|. The adjacency matrix of G(N, E) is denoted
as A =

[
aij
]
, which is an N × N real symmetric matrix with ai,i = 0. The entry aij = 0

indicates that no link is observed between node i and node j—i.e., (i, j) /∈ E, whereas aij > 0
indicates that a link is observed between node i and node j with a weight of aij. Note
that only the undirected weighted network with positive edge weights is considered in
this study.

In such a network, the total number of node pairs is N(N−1)
2 , and the number of un-

connected node pairs is N(N−1)
2 − E. We use U to denote the set of unconnected node pairs.

The link-prediction problem assumes that there are unobserved or future links between
some node pairs (i, j) ∈ U, the set of which is denoted as E′. The task of link prediction is
to find the missing links in E′ based on the observed network G(N, E). Generally, a link-
prediction algorithm f , also known as a link predictor, computes a score s f

ij for each node
pair (i, j) ∈ U based on the adjacency matrix A, which could also be written in a matrix
form as

S f =
[
s f

ij

]
N×N

= f (A). (9)

The node pairs with higher scores are the most likely to be the missing links.
The existing link predictors could be broadly classified into three categories:

(1) similarity-based indices, which score node pairs according to their topological sim-
ilarities [94–97]; (2) maximum likelihood methods, where some parametric network models
are presumed and the parameters of the models are estimated by maximizing the likelihood
of the observed network structure [98–100]; (3) machine-learning-based methods, in which
the link-prediction problem is regarded as a binary classification problem and is solved
through machine learning algorithms (e.g., embedding learning [101–103], ensemble learn-
ing [104–106], and graph neural networks [107–109]). For the latest advances in the field of
link prediction, two seminal reviews were published in 2020 [110] and 2021 [111].

The similarity-based indices are the most widely used approaches in the anticipation
of technology convergence [9,11–14], mainly due to their low computational complex-
ity and high interpretability. Widely applied similarity-based indices include the com-
mon neighbor (CN) index [94], the preferential attachment (PA) index [112], the Jaccard
(JC) index [95], the resource allocation (RA) index [96], and the Adamic-Adar (AA) in-
dex [97]. Since the technology-convergence networks are essentially weighted networks,
the weighted similarity-based indices have attracted much attention, such as the weighted
resource allocation (WRA) index [13] and the weighted common neighbor (WCN) in-
dex [11]. Other weighted similarity-based indices that could be applied or extended for
technology-convergence networks include the weighted Jaccard coefficient (WJC) [113],
the weighted preferential attachment (WPA) index [113], the selectivity index [114], and
the inverse selectivity index [114]. In particular, Martinčić-Ipšić et al. [114] provided a clear
and comprehensive example of how to design and evaluate similarity-based indices for
real-world weighted networks.

The above-mentioned mainstream methods could be summarized as local similarity
measures, since they mainly exploit the information of 2-hop paths in complex networks.
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However, due to the hierarchical structure of the IPC system, technology-convergence
networks naturally have a priori community structures (i.e., IPC subclasses belonging to
the same IPC class can be considered as nodes from the same community), which could
provide information beyond local similarity measures. Therefore, link prediction indices
that jointly consider the local similarity and the community structure could be particularly
suited for the anticipation of technology convergence.

In the link prediction literature, the methods that enhance local similarity mea-
sures based on community information are known as the link/community-based strate-
gies [39–42,44,45,47]. A pioneering work in this research was [39], which was based on
the assumption that two nodes are more likely to connect if their common-first-neighbors
form a strongly inner-linked cohort (i.e., a local-community). Based on this assumption,
the CN, JC, AA, and RA indices were extended to the CAR, CJC, CAA, and CRA indices.
Subsequently, Ding et al. [41] proposed a link/community-based method that is suitable for
sparse networks. The method first performs community detection based on local informa-
tion only, and then scores each node pair based on the relevance between the communities
the two nodes belong to. The community relevance indices, namely, CRCN, CRJC, CRAA,
and CRRA, could be regarded as community-based extensions of the CN, JC, AA, and RA
indices. Other methods that enhance local similarity measures based on community struc-
tures include [40,42,44,45,47]. Other seminal studies that exploit community structures
to address the sparsity issue are [43,46], which propose cluster-based meta-paths for the
link-prediction problem in multiplex networks.

From the perspective of link prediction, the SLP method proposed in this study could
be regarded as a link/community-based strategy that enhances local similarity measures
by incorporating community structures. The motivation and novelty of the SLP approach
originate from our discovery of the synergistic information between local similarity mea-
sures and community structures in the technology-convergence network of ITS. It is the
existence of the synergistic information that makes the joint distribution of the two more
informative than either of the marginal distributions. Most of the existing link/community-
based strategies require manual adjustment of the formulae for local similarity measures.
In comparison, one advantage of the SLP method is that it could be used as a plug-and-play
method without the need to manually design new computational formulas. In addition,
the community information that could be integrated by the SLP method is not limited to
link density. Other community-based indices (e.g., CRCN, CRJC, CRAA, and CRRA) can
be directly applied to the SLP method to enhance the local similarity measures.

Moreover, the SLP approach proposed in this study is quite intuitive, lacking a careful
design for the formula of the link prediction index. In particular, the sparsity of the
links in real-world networks could cause serious issues for the estimation of probabilities,
although this study tries to tackle this issue, at least partially, via a CDF-like formula.
In the future, we would like to extend this study from the perspective of link prediction.
First, we would like to examine whether the synergy between community structures and
local similarity measures is widespread in real-world networks. Second, a better-designed
link/community-based strategy could be proposed to make greater use of the synergistic
effect. Third, extensive comparisons with different link/community-based strategies could
be conducted in a broad diversity of real-world networks.

3. Methodology

This section outlines the methodology of this study, which includes four steps: (1) con-
structing the technology-convergence network based on IPC co-occurrence relationships
obtained from patent data; (2) empirically analyzing the self-similar growth and fractality of
the technology-convergence network; (3) applying the PID framework to the link-prediction
problem to analyze the contributions of the original and the scaled-down networks to the
anticipation of technology convergence; (4) proposing a synergistic link-prediction algo-
rithm to predict the future technology convergence. Each of these steps is described in
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detail in the following four subsections, and the research framework and main findings are
shown in Figure 1.

Time-evolving technology convergence networks

𝑡

(A)

RQ 1: What evolutionary process may the 

technology convergence network undergo?

Temporal property:

Self-similar growth

(C) Spatial property:

Fractality of snapshots

Rescaled topological properties remain stable.
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Figure 1. The research framework and main findings of this study. Sub-figure (A) shows the time-
evolving technology-convergence network, in which each year’s snapshot is constructed based on
patent applications up to that year; that is, the future technology convergence at time t + 1 could be
regarded as missing links of the snapshot at time t. Sub-figure (B) shows the formulation of technology
convergence anticipation as a link-prediction problem. Two main research questions of this study (i.e.,
RQ 1 and RQ 2) are answered in sub-figures (C,D), respectively. Sub-figure (C) presents the empirical
evidence for the self-similar growth and the fractality of snapshots. Sub-figure (D) demonstrates
that a synergistic effect between two scales on link prediction is discovered based on PID, and this
synergistic effect is utilized via a SLP approach by considering the probability of a link’s existence
being conditional on the joint distribution of two scales.

3.1. Constructing Technology-Convergence Networks

The first step in constructing a technology-convergence network for a particular
industry is obtaining the relevant patents. Patent data were collected from the Derwent
Innovation database, a widely adopted tool for patent analysis [13,115,116], in this study.
Then, a search string was created based on the keywords of the industry, and all the query
results were exported. The retrieved patent data included the title, application number,
application date, IPC code, etc.

Subsequently, the annual technology-convergence network was constructed based
on the collected patent data. All the IPC subclasses appearing in the patent data were
first extracted as nodes in the node set in the technology-convergence network. Each IPC
subclass is represented by a 4-digit IPC code (IPC4) in the patent data. An annual IPC co-
occurrence network was then derived based on the patent applications filed each year. For a
patent application assigned to two IPC subclasses, i and j, in year t, an IPC co-occurrence
(i, j) will be recorded. For a patent with three IPC subclasses i, j, and k, three additional IPC
co-occurrences are recorded as (i, j), (j, k), and (i, k). By scanning all the patent applications
in year t, the annual IPC-occurrence network Gannl

t is constructed. The adjacency matrix

of Gannl
t is denoted as Aannl

t =
[

aannl
ij (t)

]
, where aannl

ij (t) > 0 indicates the times of co-
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occurrences between i and j in year t, and aannl
ij (t) = 0 indicates no co-occurrence in

year t.
Finally, the historically cumulative IPC co-occurrence network Ghist

t is constructed
with adjacency matrix defined as Ahist

t = ∑t
τ=1 Aannl

τ . From the perspective of the time-
evolving network, Ghist

t is the snapshot of the technology-convergence network taken at
the end of year t. With all the snapshots stacked in a chronological order, the time-evolving
technology-convergence network could be represented by a sequence of snapshots as
Ghist =

{
Ghist

1 , Ghist
2 , · · · , Ghist

T

}
. The following analyses in this study were conducted

based on Ghist. The complete procedure for the technology-convergence network construc-
tion is depicted in Figure 2.

Patent and its IPC subclasses IPC co-occurrence(A)

(B)

···

𝑡

(C)

···

(D)

G06T
G06F

H04W

Figure 2. The complete procedure for the technology-convergence network construction. Sub-figure
(A) shows an example of the patent data, to which three IPC4 codes were assigned. The three IPC4
codes are highlighted by red underlines. The patent in sub-figure (A) corresponds to three pairwise
co-occurrence relationships. Sub-figure (B) shows the number of patent applications in each year. Sub-
figures (C,D) show the annual and historically cumulative IPC co-occurrence networks, respectively.
This study focuses on the historically cumulative IPC co-occurrence network, which is essentially a
time-evolving network. The emerging IPC co-occurrence relationships could be considered as new
links in the historically cumulative network.

3.2. Empirical Analysis of Self-Similar Growth and Fractality

In this subsection, the growth mechanism of the IPC co-occurrence network based
on fractal analysis is examined. This study first identifies a self-similar growth process in
network evolution, and then analyzes the fractality of the historical data. The self-similar
growth provides the inspiration to predict the future evolution of the network based on the
historical data, and the fractality of the historical data offers a motivation to explore the
interaction between the original network and its scaled-down replica. The above findings
inspire the PID analysis for link prediction in the next subsection.

The self-similar growth of a time-evolving network is characterized by the fact that
its topological property remains in a steady state while its average degree increases mod-
erately over time [28]. Based on the analysis framework widely adopted in the previous
literature [28,33–37], this study first illustrates the evolution of the average degree in Ghist,
and then demonstrates the stability of five topological properties: (1) complementary
cumulative distribution of the rescaled degree Pc(dres); (2) clustering coefficient over the
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rescaled degree C(dres); (3) normalized average degree of neighbors over the rescaled
degree d

res
nn (dres); (4) modularity Q of the community partitions by the Louvain method;

(5) adjusted mutual information (AMI) between the community partitions of two consecu-
tive snapshots. The detailed definitions of the average degree and the five rescaled network
statistics are presented in Appendix A.

The concept of self-similarity is closely related to fractality [29,117]. In particular,
Figure 6a shows that the rescaled degree of the snapshots in Ghist approximately follows a
power-law distribution, which could be regarded as an evidence of fractal scaling. There-
fore, this study further explores the fractality of each snapshot in Ghist.

To analyze the fractality of the technology-convergence network, we employed a
recently proposed community-structure-based approximation of the box-covering algo-
rithm [38], whose detailed procedures are presented in Appendix B. The basic idea of the
community-structure-based box-covering algorithm is to perform community detection
η times by setting η different resolutions for the Louvian algorithm. The average com-
munity size obtained from each time of community detection is denoted as lB, and the
corresponding number of communities is denoted as NB. Based on the sequences lB = [lB]
and NB = [NB], the relationship between lB and NB could be investigated. If the scal-
ing of NB(lB) over lB approximately follows a power-law distribution as Equation (1),
the snapshot Ghist

t could be identified as a fractal network, and dB is referred to as its
fractal dimension.

3.3. Link-Prediction-Motivated Partial Information Decomposition for
Technology-Convergence Networks

The fractality of complex networks reveals the structural similarity between the origi-
nal network and its scaled-down replica. This study uses PID to investigate the implication
of such self-similarity, in particular, to answer the following research question: How does
the microscopic structure of the original network and its scaled-down replica provide infor-
mation for link prediction? Intuitively, the structural self-similarity implies the existence
of redundant information between the original network and its scaled-down replica. In
addition, the scaling-down process may result in information loss, allowing the original net-
work to provide unique information for link prediction. By adopting the PID framework to
the link-prediction problem, this paper quantifies such redundant, unique, and synergistic
information, and analyzes the role that the scaled-down replica plays in link prediction.
Figure 3 provides a overview of the link-prediction-motivated PID framework for the
technology-convergence network.

In this subsection, microscopic variables represent the microscopic structure of the orig-
inal network, and macroscopic variables represent the scaled-down replica. Subsequently,
the link-prediction formulation is presented for the anticipation of future technology con-
vergence and is incorporated into the PID framework. The terminology used in this
subsection (e.g., microscopic variables and macroscopic variables) follows the convention
in the PID-related literature [91].
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Figure 3. Overview of the link-prediction-motivated PID framework. Sub-figure (A) shows the
motivation of this framework: A priori community structures in the technology-convergence network
naturally provide a scaled-down replica of the original network, and we would like to explore how this
multi-scale property contributes to link prediction. Sub-figure (B) shows that the micro-scale structure
and its scaled-down replica are measured by local similarity measures and community-based indices,
respectively. Sub-figure (C) demonstrates the PID of the joint mutual information I

(
amiss; s, B

)
,

in which significant synergistic information could imply that the joint conditional probability, given
two scales, could be more informative than either scale alone. Note that, in the right image of sub-
figure (C), the colors blue, red, orange and green represent the relative redundant information ρred,
the relative synergistic information ρsyn, and two types of relative unique information, ρunq(B | s)
and ρunq(s | B), respectively.
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3.3.1. Definitions of Microscopic Variables Based on Two-Hop Link Predictors

A key issue for the definitions of microscopic variables is to ensure that they do not
contain information beyond microscopic structures in the network. This study considers the
most fundamental microscopic structure, i.e., the two-hop paths in the network. From the
perspective of link prediction, two-hop paths could be quantified by the scores of two-hop
link predictors such as CN, AA, and RA. Therefore, microscopic variables in the network
are defined based on the scores of two-hop link predictors. The detailed procedure is given
as follows.

For a snapshot whose adjacency matrix is denoted as A, first, a score matrix S =
[
sij
]

is calculated based on A using a two-hop-based link predictor f (·), which is formally
written as

S =
[
sij
]
= f (A). (10)

Then, the score sij for a randomly chosen node pair (i, j) is considered as a random
variable, and each element in the matrix S f is a sample of sij. The random variable sij is
defined as the microscopic variable in the technology-convergence network.

It is worth noting that the link predictor f is restricted to be based only on two-hop
paths to filter out the information provided by the paths with three hops or more. This
study considers six commonly used two-hop link predictors for weighted networks, which
are listed in Table 1. To simplify the expression, the time t is omitted, and the adjacency
matrix is denoted as A. In Table 1, Γ(i) and Γ(j) denote the neighbor sets of nodes i and j.
The element in the i-th row and k-th column of A is denoted as ai,k. Note that ai,k is a positive
integer rather than a binary variable, since the networks are weighted. The definition of dk
is given in Equation (A2).

Table 1. Six local similarity measures based on two-hop paths .

Names Definitions

Weighted common neighbor (WCN) index [118] sWCN
ij = ∑k∈|Γ(i)∩Γ(j)|

(
ai,k + aj,k

)
Weighted Adamic–Adar (WAA) index [118] sWAA

ij = ∑k∈|Γ(i)∩Γ(j)|
ai,k+aj,k

ln(1+dk)

Weighted resource allocation (WRA) index [118] sWRA
ij = ∑k∈|Γ(i)∩Γ(j)|

ai,k+aj,k
dk

Reliable-route weighted common neighbor (rWCN) index [119] srWCN
ij = ∑k∈|Γ(i)∩Γ(j)|

(
ai,k · aj,k

)
Reliable-route weighted Adamic–Adar (rWAA) index [119] srWAA

ij = ∑k∈|Γ(i)∩Γ(j)|
ai,k ·aj,k

ln(1+dk)

Reliable-route weighted resource allocation (rWRA) index [119] srWRA
ij = ∑k∈|Γ(i)∩Γ(j)|

ai,k ·aj,k
dk

3.3.2. Definitions of Macroscopic Variables Based on Coarse-Graining

Macroscopic variables are obtained by a scaling-down (i.e., coarse-graining) procedure
of the network, which consists of two parts: (1) a many-to-one mapping from the nodes
of the original network to those of the scaled-down network; (2) a function that computes
the properties of the scaled-down network based on the original network. The following
part first discusses the reasons why existing coarse-graining methods in the fractal analysis
may not be fully applicable to the technology-convergence network, then identifies the
hierarchical structure of IPC as a natural way for coarse-graining the network. Finally,
a coarse-graining function is defined based on the edge density of the original network.

A critical challenge for the coarse-graining procedure is the possible incomplete con-
nection of the technology-convergence network. In fact, the evolution of the technology-
convergence network is accompanied by the addition of new nodes (i.e., technology areas).
If these new nodes are ignored and only the maximum connected component of a snapshot
Ghist is considered, some important potential technology convergence may be omitted.
Therefore, all the nodes for each year need to be considered to avoid such omissions. How-
ever, this may result in an incomplete connection of Ghist and many unconnected nodes.
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Most existing box-covering algorithms have not elaborately dealt with the unconnected
nodes. A conventional approach is to assign each unconnected node to a random box
(e.g., Algorithm 2 in [30]). However, due to large amounts of unconnected nodes existing in
the technology-convergence network (i.e., the IPC co-occurrence network), especially in the
early stage of ITS development, completely random coarse-graining of unconnected nodes,
which may entail much original network information loss, would lack some feasibility in
this study.

The hierarchical structure of the IPC system naturally provides a criterion for coarse-
graining the IPC co-occurrence network, which consists of four levels: section, class,
subclass, and group. For an IPC subclass represented by a 4-digit IPC code (IPC4), the first
digit and the first three digits in IPC4 represent its section and class, respectively. For ex-
ample, for the IPC subclass “G06F”, “G” stands for its section “PHYSICAL”, and “G06”
represents its class “COMPUTING; CALCULATING OR COUNTING”. As mentioned
previously in Section 3.1, IPC subclasses are selected as nodes in the IPC co-occurrence
network in this study. By grouping all the nodes (i.e., IPC subclasses) belonging to the same
IPC class into a box br, the original network is naturally coarse-grained. The number of
boxes NB equals the number of IPC classes that appear in ITS-related patents.

From another perspective, the coarse-grained (i.e., scaled-down) network GCG could
be viewed as a network constructed with IPC classes as nodes. However, unlike the
network constructed directly based on IPC classes, each node and edge in GCG contains
a property calculated by a coarse-grained function FCG(·) based on the original network
Ghist. To simplify the expression of macroscopic variables, a scalar variable Brs is used to
represent the properties of each node (r = s) or edge (r 6= s) in the coarse-grained network
GCG. The definition of FCG(·) is given in the following paragraph.

The coarse-graining function FCG(·) is a deterministic function that maps the N × N
matrix A to a NB × NB matrix. The vector g = [g1, g2, · · · , gN ] denotes the mapping
relationship from nodes of the original network to nodes of the coarse-grained network,
where gi = r indicates that node i in the original network is covered by box br, and thereby
mapped to node r in the coarse-grained network. Then, FCG(·) is defined as

Brs = FCG(A, r, s) =
∑N

i=1 ∑N
j=1 1

(
aij > 0, gi = r, gj = s

)
∑N

i=1 ∑N
j=1 1

(
gi = r, gj = s

) , (11)

where 1(·) is the indicator function. The denominator and numerator of Equation (11)
represent, respectively, the numbers of node pairs (i, j) and edges (i, j) in the original
network with node i covered by box br and node j covered by box bs.

Finally, Brs is selected as the macroscopic variable, which represents the value of
a randomly chosen entry (r, s) in the matrix B = [Brs]. Without loss of generality, this
study assumes that all the edge weights in the original network are positive. Therefore,
with Equation (11), Brr represents the density of edges in box br of the original network,
and Brs is the density of edges between box br and bs.

3.3.3. Problem Formulation and Partial Information Decomposition

In this study, the anticipation of technology convergence is formulated as a link-
prediction problem. The potential technology convergence relationship is defined as the
IPC co-occurrence which is nonexistent before time t but will appear at a future time point
t′. The problem is simplified by restricting t′ = t + 1. For each year t, the information
contained in Ghist

t is used to predict the links in Ghist
t+1 that do not exist in Ghist

t . These links
are referred to as the missing links in year t. The set of missing links in year t is denoted as
an N × N matrix Amiss

t =
[

amiss
ij (t)

]
, where amiss

ij (t) is formally defined as

amiss
ij (t) =

{
1 , if ahist

ij (t) = 0 and ahist
ij (t + 1) > 0,

0 , otherwise.
(12)
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This study aims to analyze how the microscopic structure of the original network sij
and its scaled-down replica Bgi gj provide information for the prediction of future technology

convergence amiss
ij . Therefore, the PID of the joint mutual information I

(
amiss

ij ; sij, Bgi gj

)
is

considered and given as

I
(

amiss
ij ; sij, Bgi gj

)
= Ired

(
amiss

ij ; sij, Bgi gj

)
+ Iunq

(
amiss

ij ; sij | Bgi gj

)
+ Iunq

(
amiss

ij ; Bgi gj | sij

)
+ Isyn

(
amiss

ij ; sij, Bgi gj

)
,

(13)

where Ired, Iunq, and Isyn are the redundant information, unique information, and synergis-
tic information, respectively.

First, the redundant information, Ired, is calculated based on Equation (4) as

Ired

(
amiss

ij ; Bgi gj , sij

)
= p(amiss

ij = 1)×min
(

I(amiss
ij = 1, Bgi gj), I(amiss

ij = 1, sij)
)

+ p(amiss
ij = 0)×min

(
I(amiss

ij = 0, Bgi gj), I(amiss
ij = 0, sij)

)
,

(14)

where min(·) chooses the smaller of the two types of mutual information, and I(amiss
ij = 1, Bgi gj)

is defined as

I(amiss
ij = 1, Bgi gj) = ∑

Bgi gj

p(Bgi gj | amiss
ij = 1) log2

p(amiss
ij = 1 | Bgi gj)

p(amiss
ij = 1)

, (15)

(see Equations (1)–(3) in [83]). The other three types of mutual information in (14) follow
similar definitions as (15).

The unique information provided by Bgi gj beyond sij is given as

Iunq

(
amiss

ij ; Bgi gj | sij

)
= I
(

amiss
ij ; Bgi gj

)
− Ired

(
amiss

ij ; Bgi gj , sij

)
, (16)

where I
(

amiss
ij ; Bgi gj

)
denotes the mutual information of amiss

ij and Bgi gj ,

I
(

amiss
ij ; Bgi gj

)
= ∑

Bgi gj

p(amiss
ij = 1, Bgi gj) log

p(amiss
ij = 1, Bgi gj)

p(amiss
ij = 1)p(Bgi gj)

+ ∑
Bgi gj

p(amiss
ij = 0, Bgi gj) log

p(amiss
ij = 0, Bgi gj)

p(amiss
ij = 0)p(Bgi gj)

.

(17)

Similarly, the unique information provided by sij beyond Bgi gj is given as

Iunq

(
amiss

ij ; sij | Bgi gj

)
= I
(

amiss
ij ; sij

)
− Ired

(
amiss

ij ; Bgi gj , sij

)
. (18)

Furthermore, the synergistic information is calculated as

Isyn

(
amiss

ij ; Bgi gj , sij

)
= I
(

amiss
ij ; Bgi gj , sij

)
− I
(

amiss
ij ; sij

)
− Iunq

(
amiss

ij ; Bgi gj | sij

)
, (19)

which quantifies the joint contribution of Bgi gj and sij to link prediction, and can be further
formulated as

I
(

amiss
ij ; Bgi gj , sij

)
= ∑

Bgi gj

∑
sij

p(amiss
ij = 1, Bgi gj , sij) log

p(amiss
ij = 1 | Bgi gj , sij)

p(amiss
ij = 1)
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+ ∑
Bgi gj

∑
sij

p(amiss
ij = 0, Bgi gj , sij) log

p(amiss
ij = 0 | Bgi gj , sij)

p(amiss
ij = 0)

. (20)

Since the missing links are rather sparse at each time point t, p(amiss
ij = 1) will be very

small, and p(amiss
ij = 0) will be close to one. As a result, the value of mutual information

will be quite small. To highlight the relative contribution of each PID component, this study
proposes three relative PID measures, namely, the relative redundant information, the rela-
tive unique information, and the relative synergistic information, which are defined as the
corresponding PID component normalized by the mutual information I

(
amiss

ij ; Bgi gj , sij

)
.

The formal definitions of the relative PID measures are given as

ρred

(
amiss

ij ; Bgi gj , sij

)
=

Ired

(
amiss

ij ; Bgi gj , sij

)
I
(

amiss
ij ; Bgi gj , sij

) , (21)

ρunq

(
amiss

ij ; Bgi gj | sij

)
=

Iunq

(
amiss

ij ; Bgi gj | sij

)
I
(

amiss
ij ; Bgi gj , sij

) , (22)

ρunq

(
amiss

ij ; sij | Bgi gj

)
=

Iunq

(
amiss

ij ; sij | Bgi gj

)
I
(

amiss
ij ; Bgi gj , sij

) , (23)

ρsyn

(
amiss

ij ; Bgi gj , sij

)
=

Isyn

(
amiss

ij ; Bgi gj , sij

)
I
(

amiss
ij ; Bgi gj , sij

) . (24)

For convenience of following expression, the above four measures will be simplified
to ρred, ρunq(B | s), ρunq(s | B), and ρsyn

(
amiss

ij ; Bgi gj , sij

)
, respectively. Notice that ρred +

ρunq(B | s) + ρunq(s | B) + ρsyn = 1.
As the final essential issue in PID, the estimate of mutual information will be discussed.

The mutual information is estimated using the most direct binning-based approach in this
study. B = [min(B), max(B)] and S = [min(S), max(S)], which denote the ranges of
values of Bij and sij, are divided into sets of bins of finite size. All the probabilities used for
the calculation of mutual information are estimated by counting the number of samples
falling into the bins [120,121]. n+

B (x) and n−B (x) represent the numbers of positive samples
(i.e., node pairs (i, j) with amiss

ij = 1) and negative samples (i.e., node pairs (i, j) with

amiss
ij = 0) falling into the x-th bin of B. Since there are N(N−1)

2 node pairs in an undirected
network,

p(amiss = 1, Bgi gj) =
2 · n+

B (x)
N(N − 1)

, (25)

p(Bgi gj) =
2 ·
(
n+

B (x) + n−B (x)
)

N(N − 1)
, (26)

where the value of Bgi gj falls into the x-th bin of B—i.e., Bgi gj ∈ binx.
We could further calculate p(Bgi gj | amiss = 1) and p(amiss = 1 | Bgi gj) based on

Equations (25) and (26). Note that p(amiss = 1 | Bgi gj) is set to 0 when its denominator is
zero. Other distributions, such as p(sij) and p(sij, amiss

ij = 0), could be estimated in the
same way, so their detailed expressions are omitted.
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The joint distribution is estimated by counting the intersection of samples in the x-th
bin of B and the y-th bin of S . The number of positive samples falling into the intersection
of the bins x and y is denoted as n+

B,s(x, y), which is given as

n+
B,s(x, y) =

N

∑
i=1

N

∑
j=1

1
(

amiss
ij > 0, Bgi gj ∈ binx, sij ∈ biny

)
. (27)

The number of negative samples in the intersection of x and y is denoted as n−B,s(x, y).
The joint probability p(amiss

ij , Bgi gj , sij) is estimated as

p(amiss
ij = 1, Bgi gj , sij) =

2 · n+
B,s(x, y)

N(N − 1)
, (28)

p(amiss
ij = 0, Bgi gj , sij) =

2 · n−B,s(x, y)
N(N − 1)

. (29)

By plugging the aforementioned distributions into Equations (15), (17) and (20),
the mutual information of I(amiss

ij = 1, Bgi gj), I
(

amiss
ij ; Bgi gj

)
, and I

(
amiss

ij ; Bgi gj , sij

)
is ob-

tained. Other mutual information, such as I(amiss
ij = 0, Bgi gj) and I

(
amiss

ij ; sij

)
, can be

obtained using a similar approach. Based on the mutual information estimated above,
the relative PID measures defined in this research, ρred, ρunq(B | s), ρunq(s | B), and ρsyn,
can finally be calculated.

3.4. Synergistic Link-Prediction Approach for the Anticipation of Technology Convergence

Based on the PID of I
(

amiss
ij ; Bgi gj , sij

)
in Equation (13), it can be observed that if Bgi gj

could provide unique information beyond sij or synergistic information in conjunction
with sij, we have

I
(

amiss
ij ; Bgi gj , sij

)
> I
(

amiss
ij ; sij

)
, (30)

which implies that considering both Bgi gj and sij may achieve better performance than
considering sij alone. In this study, experimental results show that the contribution of Bgi gj

mainly takes the form of the synergistic information. Therefore, a link-prediction algorithm
is proposed to combine the information provided by Bgi gj and sij, which is named the
synergistic link prediction (SLP) approach.

Consider a snapshot Ghist
t at time t. The mutual information could be written as

I
(

amiss
ij (t); Bgi gj(t), sij(t)

)
. From Equation (20), we discover that p(amiss

ij (t) = 1 | Bgi gj(t),
sij(t)) naturally provides a link-prediction score for each node pair. For a node pair (i, j),
a higher p(amiss

ij (t) = 1 | Bgi gj(t), sij(t)) means that a missing link is more likely to exist.

However, it is worth noting that amiss(t) is unknown at time t, since ahist
ij (t + 1) can

only be observed at time t + 1 according to the definition in Equation (12). Therefore,
the joint probability p(amiss

ij = 1 | Bgi gj , sij) cannot be estimated directly at time t.
To solve this problem, we introduce the historically cumulative missing links, which

is an N × N matrix Atrain
t =

[
atrain

ij (t)
]

defined as

atrain
ij (t) =

1 , if
t−1

∑
τ=1

amiss
ij (τ) > 0,

0 , otherwise.

(31)

The matrix Atrain
t is the aggregation of all the historical missing links Amiss

τ from τ = 1
to τ = t − 1. Since Atrain

t does not contain any future information, it could be used as
our training labels. Based on the binning-approach described in the previous subsection,
p(atrain

ij (t) = 1 | Bgi gj(t), sij(t)) is estimated as
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p(atrain
ij = 1 | Bgi gj(t), sij(t)) =

∑N
i=1 ∑N

j=1 1
(

atrain
ij (t) = 1, Bgi ,gj(t) ∈ binx, sij(t) ∈ biny

)
∑N

i=1 ∑N
j=1 1

(
Bgi ,gj(t) ∈ binx, sij(t) ∈ biny

) . (32)

We set p(atrain
ij = 1 | Bgi gj(t), sij(t)) = 0 if the denominator is zero, which indicates

that no sample falls into the intersection of the bin x and y.
It seems that an N × N score matrix could be constructed based on p(atrain

ij = 1 |
Bgi gj(t), sij(t)) to quantify the likelihood for the existence of edges between node pairs (i, j).
However, such a direct approach may not perform well in practice, since the score matrix
may be very sparse. In fact, for two node pairs (i1, j1) and (i2, j2), if Bgi1

gj1
(t) > Bgi2 gj2

(t)
and si1 j1(t) > si2 j2(t), the node pair (i1, j1) is more likely to be connected than the node pair
(i2, j2). Such a property is not reflected in Equation (32).

To compensate for the limitation of p(atrain
ij = 1 | Bgi gj(t), sij(t)), this study finally

proposes the precise definition of the synergistic link-prediction score as

sSLP
ij (t) = ∑

B≤Bgi gj (t)
∑

s≤sij(t)
p(atrain

ij = 1 | B, s), (33)

which could be regarded as the cumulative distribution function (CDF) of p(atrain
ij = 1 |

Bgi gj(t), sij(t)).

4. Experiments

We chose ITS as the technological area for experimental research for three reasons.
First, ITS is one of the most cutting-edge branches of transportation, providing innovative
and sustainable solutions to notable transportation problems such as traffic congestion,
traffic accidents, and high maintenance costs [122]. Second, ITS is an interdisciplinary
technology field that involves sensors, communications, algorithms, vehicles, traditional
transportation infrastructure, etc. Third, to the best of our knowledge, little work has
been done to analyze the ITS development from a technology convergence perspective.
This section describes our experiments based on the ITS-related patents, including data
description, empirical evidence on self-similar evolution and fractality, PID analysis of the
technology-convergence network, and performance evaluation of our proposed synergistic
link prediction method.

4.1. Data Description

In this study, the patent data were collected from the Derwent Innovation database,
one of the most widely used databases for patent analyses [5,13,116,123–125]. The patent
data were selected from all the authorities worldwide on the date of 1 July 2022 and
searched using the following query: TAB = (intelligent ADJ transportation). This query
retrieves patents with the phrase intelligent transportation in the title or abstract.

It is worth noting that the choice of keywords and query rules is a trade-off between
accuracy and comprehensiveness. Overly broad query rules may lead to many completely
irrelevant patents in the search results. For instance, the topic of a patent with the term
“smart traffic” in the title could be “smart traffic scheduling in wireless networks”. On the
contrary, excessively rigorous query rules may result in the absence of some relevant
patents. There is no clear criterion for this trade-off, since it is rather challenging to strictly
define which patents are “relevant” to ITS. This research applied strict search criteria to
ensure high accuracy and avoid including utterly irrelevant patents.

The data collected cover 8057 ITS-related patent applications for the period from
November 1995 to July 2022. Each patent’s data contain a title, application number, appli-
cation date, International Patent Classification (IPC), etc. Figure 4 shows the number of
patent applications in each year from 1995 to 2022. It can be observed that the number of
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patent applications is generally increasing annually. Note that the numbers of applications
in 2021 and 2022 may not be accurate, since there is a delay between patent application and
patent publication, and some patent applications in 2021 and 2022 have not been made
publicly available yet.
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Figure 4. Number of patent applications per year. The number of patent applications has generally
been increasing. The apparent decline in 2021 and 2022 could have been due to the delays from the
application dates to the disclosure dates of the patents’ applications.

By scanning all 8057 patents, 306 related technology fields were identified (i.e., IPC
subclasses represented by IPC4). Among the 8057 patents, 3763 patents contain two or
more IPC subclass codes, based on which the IPC co-occurrence network was constructed.

4.2. Empirical Evidence of the Self-Similar Growth and Fractality of the
Technology-Convergence Network

This subsection presents the empirical evidence demonstrating the self-similar growth
and fractality of the technology-convergence network. According to the existing litera-
ture [28,33–37], the main criterion for the self-similar growth of a time-evolving network
is that its size increases moderately over time while its topological property remains in a
steady state. In terms of the growth of network sizes, Figure 5 shows that the number of
nodes and the average weighted degree of the historically cumulative IPC co-occurrence net-
work Ghist moderately increase over time. In terms of the stability of topological properties,
Figures 6 and 7 show that the rescaled global (i.e., degree distributions), local (i.e., clus-
tering coefficients and degree of neighbors), and meso-scale (i.e., community structures)
topological properties of Ghist remain in a steady state. Figure 8 demonstrates the fractality
of the snapshots of Ghist.

Since the IPC co-occurrence network may not be fully connected, Figure 5a presents
the evolution of the node number in the maximum connected component per year, denoted
as NLCC. In addition, since this study models the IPC co-occurrence network as a weighted
graph, Figure 5b illustrates the evolution of the average weighted degree d̄ in each snapshot.
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Figure 5. Evolution of network statistics of the technology-convergence network. It can be observed
that both the number of nodes and the average degree moderately increase in most years, which
matches with the characteristic of self-similar growth, in that the network size moderately grows
over time. (a) Number of nodes in the largest connected component of Ghist. (b) Average weighted
degree of Ghist.

It can be observed that NLCC and d̄ increase over time, and both showed high growth
rates in 1997–2003 and 2015–2019. During other years, NLCC and d̄ grew relatively slowly
and even exhibited flat behavior. This observation is consistent with the history of ITS.
The study of ITS dates back to the 1970s, during which, the United States, Europe, and
Japan were pioneers [122,126]. Some early representative achievements appeared in the
1990s, such as DEMO’97 in the United States [127] and the Vehicle Information and Com-
munication System (VICS) in Japan [128]. Analogously, ITS-related patent applications
began in the 1990s and increased significantly in 1997 and 1998, coinciding with the emer-
gence of DEMO’97 and VICS. The remarkable growth of NLCC and d̄ around 2015 matches
the development of connected vehicles and autonomous vehicles [129]. Since snapshots
before 2003 are relatively sparse and their growth became stable after 2003, we examined
snapshots from 2003 and after.

Figure 6a–c present the complementary cumulative distributions of dres, clustering
coefficients over the rescaled degree C(dres), and normalized average degree of neighbors
over the rescaled degree d

res
nn (dres), respectively. Each color in Figure 6 represents a snapshot.

The curve overlaps of different snapshots demonstrate the self-similar growth of the IPC
co-occurrence network. In addition, Figure 6a shows that the distribution of the rescaled
degree dres approximates a power-law distribution, which could be regarded as an evidence
for the fractality of the snapshots.
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Figure 6. Self-similar evolution of the technology-convergence network. (a) The complementary
cumulative distributions of dres. (b) The clustering coefficients over the rescaled degree C(dres).
(c) The normalized average degree of neighbors over the rescaled degree d

res
nn (dres). Each color

corresponds to a different year. The curve overlaps demonstrate that the topological properties
remain stable over time, which reflects the self-similarity characteristic of the growth process.

Figure 7 depicts the self-similarity of network evolution from the perspective of com-
munity structure. In the figure, the orange and green bars represent the modularity Q
of community partitions in each snapshot and the AMI between the community parti-
tions in the current and prior snapshots. The Louvain method [130] was used to obtain
the community partitions. We can observe that the modularity Q remained stable over
time, and the community partitions of two consecutive snapshots are highly overlapping.
Such observations indicate that the community structure of the network does not change
drastically during the evolution of the network.
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Figure 7. Consistency of the community structure during the evolution of the technology-convergence
network. It can be observed that the modularity remains stable and the AMI between two consecutive
snapshots is relatively high, which matches with the characteristic of self-similar growth: that the
community structure of the network remains stable.

Finally, Figure 8 provides evidence for the fractality of snapshots in Ghist, where each
subplot corresponds to five snapshots. For each snapshot, the number of boxes NB and the
average size of boxes lB obtained by Algorithm A1 are plotted in a logarithmic plane. Clear-
cut linear relationships can be observed between ln(NB) and ln(lB). We further confirmed
the linear relationship by performing linear regressions between ln(NB) and ln(lB) for each
snapshot. The coefficient of determination, R2, of the linear regression of each snapshot
is presented in Figure 8. With R2 > 0.95 holding for all the snapshots, the power-law
relationship between lB and NB is further confirmed, indicating the fractality of snapshots
in the time-evolving technology-convergence network.
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Figure 8. Power-law relationships between the number of boxes NB and the average size lB. Clear-
cut linear relationships can be observed between ln(NB) and ln(lB), which reveal the fractality of
the snapshots. (a) Snapshots of 2003–2007. (b) Snapshots of 2008–2012. (c) Snapshots of 2013–2017.
(d) Snapshots of 2018–2022.

4.3. Partial Information Decomposition of the Technology-Convergence Network

In this subsection, we investigate how the microscopic structure of the original
technology-convergence network and its scaled-down replica provide information for
link prediction. The main results are shown in Figure 9. It can be observed that the syner-
gistic information (represented by the red bars for each year) is significant in most cases,
which implies that the joint distribution of the two scales could be more informative than
the marginal distribution of each individual scale.

For a randomly chosen node pair (i, j), the microscopic structure is represented by the
microscopic variable sij, and the scaled-down replica is represented by the macroscopic
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variable Bgi gj . It is worth noting that the calculation of sij depends on the specific two-
hop link predictors. In this study, six two-hop link predictors, as shown in Table 1, were
considered. For Figure 9a–f, the microscopic variables sij were calculated by the link
predictors WCN, rWCN, WAA, rWAA, WRA, and rWRA, respectively.

Figure 9 shows the relative PID measures (i.e., ρred, ρunq(B | s), ρunq(s | B), and ρsyn)

of the joint mutual information I
(

amiss
ij ; Bgi gj , sij

)
, which are colored in blue, orange, green,

and red, respectively. The four relative PID measures belonging to the same year are
marked by the gray regions. It can be observed that the interplay between sij and Bgi gj is
primarily represented by redundant and synergistic information, whereas sij could provide
unique information beyond Bgi gj . In most circumstances, Bgi gj cannot provide unique
information beyond sij.
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Figure 9. PID decomposition components with different two-hop link predictors. Shown are the
relative PID measures (see legend) of the joint mutual information I

(
amiss; B, s

)
, namely, the relative

redundant information ρred, the relative synergistic information ρsyn, and two types of relative
unique information, ρunq(B | s) and ρunq(s | B). The microscopic variable s for each sub-figure
was calculated based on a type of two-hop link predictor, and the macroscopic variable B for all
the sub-figures was calculated in the same way (i.e., the link density of communities). It can be
observed that, in most years, especially in the middle and late stages of the development of ITS,
the relative synergistic information ρsyn plays a dominant role. Such observation implies that the
joint conditional distribution p

(
amiss | B, s

)
could be more informative than any of the two marginal

conditional distributions, p
(
amiss | B

)
and p

(
amiss | s

)
. (a) Two-hop link predictor: WCN. (b) Two-

hop link predictor: rWCN. (c) Two-hop link predictor: WAA. (d) Two-hop link predictor: rWAA.
(e) Two-hop link predictor: WRA. (f) Two-hop link predictor: rWRA.
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4.4. Performance Evaluation of Synergistic Link Prediction

In this last set of experiments, we evaluated the performance of the SLP algorithm.
We implemented six synergy-based link prediction indices by incorporating a community-
based index into six local similarity measures via the SLP algorithm. Pairwise comparisons
were conducted between the synergy-based index and its corresponding local similarity
measure, and the results are shown in Table 2. It is observed that the synergy-based indices
outperform both the community-based index and the local similarity measures in most
cases, which could validate the existence and usefulness of the synergistic effect between
two scales on link prediction.

The evaluation metric was the area under the receiver operating characteristic curve
(AUC), which is widely adopted for the evaluation of link-prediction algorithms [20,25,111,131].
The AUC for the link predictor f in the snapshot of year t is calculated as

AUC( f , t) = P
(

s f
i1,j1

(t) > s f
i2,j2

(t) | amiss
i1,j1 (t) = 1, amiss

i2,j2 (t) = 0
)

+
1
2
P
(

s f
i1,j1

(t) = s f
i2,j2

(t) | amiss
i1,j1 (t) = 1, amiss

i2,j2 (t) = 0
)

,
(34)

where (i1, j1) and (i2, j2) are two randomly selected node pairs with amiss
i1,j1

(t) = 1 and

amiss
i2,j2

(t) = 0. Intuitively, Equation (34) measures the probability that the link predictor f
ranks a randomly selected positive sample (i1, j1) higher than a randomly selected negative
sample (i2, j2). See the two surveys [20,111] for additional details of the AUC.

Table 2. Performance evaluation of the synergistic link-prediction methods based on AUC. Six
synergy-based indices were implemented in this study, namely, S-WCN, S-WAA, S-WRA, S-rWCN,
S-rWAA, and S-rWRA, which aim at enhancing the corresponding local similarity measures (i.e.,
WCN, WAA, WRA, rWCN, rWAA, and rWRA) by incorporating the community-based index Bgi gj .
Pairwise comparisons were conducted between the synergy-based index and its corresponding local
similarity measure. The one with the better performance is underlined. The best link predictor for
each year is marked in bold. It is observed that the synergy-based indices outperformed both Bgi gj

and the corresponding local similarity measures in most cases, which could validate the existence
and usefulness of the synergistic effect between two scales on link prediction.

Year Bgi gj WCN S-WCN WAA S-WAA WRA S-WRA rWCN S-rWCN rWAA S-rWAA rWRA S-rWRA

2003 0.7580 0.7192 0.8013 0.7194 0.8028 0.7199 0.8030 0.7192 0.8016 0.7193 0.8021 0.7198 0.8046
2004 0.7513 0.5926 0.7500 0.5926 0.7500 0.5922 0.7489 0.5926 0.7497 0.5926 0.7506 0.5925 0.7501
2005 0.6785 0.6962 0.7693 0.6964 0.7697 0.6968 0.7840 0.6957 0.7683 0.6960 0.7533 0.6963 0.7520
2006 0.7926 0.7145 0.8454 0.7142 0.8233 0.7134 0.8220 0.7148 0.8462 0.7145 0.8238 0.7137 0.8252
2007 0.7698 0.8121 0.8844 0.8130 0.8872 0.8143 0.8892 0.8106 0.8823 0.8112 0.8860 0.8129 0.8874
2008 0.7700 0.7694 0.8844 0.7697 0.8850 0.7697 0.8712 0.7689 0.8849 0.7690 0.8841 0.7692 0.8713
2009 0.6869 0.8813 0.8512 0.8823 0.8554 0.8841 0.8583 0.8797 0.8486 0.8804 0.8526 0.8828 0.8582
2010 0.6926 0.7940 0.8295 0.7936 0.8342 0.7914 0.8072 0.7935 0.8313 0.7933 0.8299 0.7916 0.8304
2011 0.7769 0.6914 0.7658 0.6914 0.7628 0.6904 0.7661 0.6904 0.7646 0.6904 0.7647 0.6899 0.7666
2012 0.6698 0.7068 0.7059 0.7062 0.7115 0.7043 0.6620 0.7069 0.7090 0.7066 0.7075 0.7051 0.7096
2013 0.7049 0.7301 0.7525 0.7312 0.7572 0.7335 0.7606 0.7303 0.7180 0.7310 0.7192 0.7334 0.7582
2014 0.7089 0.7165 0.7476 0.7176 0.7429 0.7199 0.7590 0.7153 0.7450 0.7160 0.7402 0.7181 0.7498
2015 0.6978 0.7045 0.7539 0.7052 0.7474 0.7064 0.7560 0.7036 0.7594 0.7041 0.7559 0.7056 0.7522
2016 0.7336 0.7259 0.7743 0.7282 0.7767 0.7301 0.7774 0.7245 0.7738 0.7260 0.7785 0.7284 0.7787
2017 0.6748 0.7555 0.7635 0.7565 0.7671 0.7553 0.7573 0.7533 0.7485 0.7540 0.7544 0.7541 0.7521
2018 0.7396 0.7678 0.8108 0.7699 0.8148 0.7712 0.8164 0.7662 0.8190 0.7677 0.8082 0.7703 0.8157
2019 0.7144 0.8231 0.8201 0.8248 0.8238 0.8237 0.8181 0.8209 0.7962 0.8221 0.8036 0.8216 0.7889
2020 0.7640 0.8357 0.8612 0.8392 0.8667 0.8421 0.8684 0.8327 0.8379 0.8355 0.8453 0.8398 0.8603
2021 0.5090 0.5506 0.5321 0.5521 0.5399 0.5539 0.5391 0.5483 0.5503 0.5499 0.5508 0.5514 0.5483
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Table 2 shows the performances of 13 link predictors, where the first column displays
the AUCs when only macroscopic variables Bgi gj are used as link-prediction scores for node
pairs (i, j). From columns 2 to 13, two adjacent columns represent the AUCs of a two-hop
link predictor f , and the AUCs of the synergistic link prediction that combines f and Bgi gj ,
respectively. For example, the column “WCN” shows the AUCs for the link-prediction
scores sWCN

ij , which are calculated by the WCN link predictor as

sWCN
ij = ∑

k∈|Γ(i)∩Γ(j)|

(
ai,k + aj,k

)
, (35)

(see Table 1). The column “S-WCN” represents the AUCs for the synergistic link prediction
that combines sWCN

ij and Bgi gj . The link-prediction score of S-WCN is calculated based on
Equation (33) as

sS−WCN
ij (t) = ∑

B≤Bgi gj (t)
∑

s≤sWCN
ij (t)

p(atrain
ij = 1 | B, s). (36)

In Table 2, we first compared the performance of the 13 link predictors and marked
the optimal AUC in bold font. It can be observed that synergistic link predictors obtained
the best performance in the majority of years (14 out of 19). S-WRA, S-WAA, S-rWCN, and
S-rWRA achieved the best AUC in 5, 4, 3, and 2 years, respectively. Exceptions occurred
in 2004, 2009, 2011, 2019, and 2021. The best link predictor in 2004 and 2011 was Bgi gj .
WRA achieved the best performance in 2009 and 2021, and the best link predictor in 2019
was WAA.

We then compared the performance of each two-hop link predictor with that of its
synergistic counterpart and underlined the one with better performance. The results show
that in most cases, the synergistic link predictor outperformed the corresponding two-hop
link predictors. Exceptions occurred in a few years. In 2009 and 2019, all of the two-hop link
predictors outperformed their synergistic counterparts. In 2012, WCN and WRA achieved
better performance than their synergistic counterparts. In 2013, the performances of rWCN
and rWAA exceeded the performances of their synergistic counterparts. In 2017, rWCN
and rWRA performed better than their synergistic counterparts. In 2021, four algorithms
outperformed their synergistic counterparts, namely, WCN, WAA, WRA, and rWRA.

Such results demonstrate the superiority of synergistic link predictors over the link
predictors that consider only microscopic or macroscopic variables. Further, intriguing
phenomena can be observed when we compare the link-prediction performance in Table 2
with the PID analysis in Figure 9.

• For 2004, the values of ρunq(B | s) are significantly greater than zero, unlike any other
years. Such an observation indicates that the macroscopic variable Bgi gj provides much
unique information for link prediction beyond sij. At the same time, the redundant
information ρred approaches (Figure 9a,b) or even exceeds (Figure 9c–f) the synergistic
information ρsyn. Correspondingly, Table 2 shows that Bgi gj outperformed any two-
hop link predictor or synergistic link predictor and achieved the best performance.

• For 2009, Table 2 indicates that for each pair of two-hop and synergistic link predictors,
the two-hop link predictors remarkably outperform the synergistic ones. Correspond-
ingly, Figure 9 shows that the values of ρunq(s | B) are very large and clearly exceed
the values of ρred and ρsyn. Meanwhile, the values of ρunq(B | s) approach zero for all
the six two-hop link predictors.

• The situation for 2011 is similar to that for 2004. Bgi gj outperformed all the two-
hop and synergistic link predictors in Table 2 and the redundant information ρred
approaches (Figure 9a,b), and even exceeded (Figure 9c–f) the synergistic information
ρsyn in the PID results in Figure 9. In addition, it is shown that the values of ρunq(s | B)
are relatively small, and ρunq(B | s) exceeds zero in Figure 9a,b.
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• The results for 2012, 2013, and 2017 in Table 2 could be summarized in the same
way; that is, there are some two-hop link predictors that outperformed their syner-
gistic counterparts, but the best performance among all the 13 link predictors was
still achieved by some kind of synergistic link predictors. Such phenomena could be
partially explained by relatively large unique information ρunq(s | B). Meanwhile,
it is noteworthy that most of the differences in performance between two-hop link
predictors and their synergistic counterparts are not significant for 2012 and 2017.
This might be attributed to the poor performance of Bgi gj (AUCs of 0.6698 and 0.6748,
respectively), which resulted in incorporating inaccurate information, hence the unsat-
isfactory performance of some of the synergistic link predictors.

• The link-prediction performance of 2019 is similar to that of 2009 in Table 2, whereas
their PID results in Figure 9 are noticeably different. The 2019 PID results show that
although ρunq(s | B) is relatively large, it does not exceed ρsyn and ρred in most cases.
Given the fact that the performance of Bgi gj is remarkably weaker than that of the
two-hop link predictors, we speculate that the main reason for the unsatisfactory per-
formance of the synergistic link predictors in 2019 may be the inaccurate information
brought by Bgi gj .

• The year of 2021 is a special case. The experiments of 2021 aimed to predict the new
links that appear in 2022 based on the snapshot of 2021, but the data collected in 2022
are incomplete and only cover the first half of the year. Since the AUCs for 2021 in
Table 2 are relatively small compared to the AUCs for the year before and after 2021,
we suspect that the current experimental results in 2021 could not reflect the general
characteristics of link prediction.

• For other years, all the synergistic link predictors outperformed the corresponding
two-hop link predictors, and the best performance was also achieved by some syn-
ergistic link predictors. Moreover, in some representative years, such as 2014–2016,
the synergistic link predictors achieved noticeable performance improvements com-
pared to Bgi gj and two-hop link predictors, and relatively large amounts of synergistic
information ρsyn can be observed in the PID results.

Based on the above observations, we could summarize the following three properties
of link prediction on technology-convergence networks from the PID perspective. First,
combining two different scales (i.e., microscopic and macroscopic) of the network structure
commonly yields better link prediction results, mainly because the two scales jointly
provide a large amount of synergistic information. Second, jointly considering two scales
may not be superior to using a single scale when there is too much redundant or unique
information and not enough synergistic information. Finally, when one scale provides
much more inaccurate information than the other, jointly considering two scales may not
be preferable to focusing just on one scale.

Furthermore, another intriguing observation is that in the early stage of the devel-
opment of ITS (i.e., 2003 to 2008), a large amount of redundant information existed in
the PID results shown in Figure 9. Meanwhile, the AUCs of Bgi gj in Table 2 approach or
exceed the AUCs of the two-hop link predictors in most cases. In the middle of the ITS
technology’s development (i.e., 2009 to 2013), remarkable unique information ρunq(s | B)
existed in the PID results in most instances, and the two-hop link predictors outperformed
Bgi gj . Synergistic information progressively dominated the PID results in the late stages of
ITS technology development (i.e., 2014 and after), for which the synergistic link predictors
noticeably outperformed both Bgi gj and two-hop link predictors in most circumstances.

The aforementioned findings may provide key insights into the generation mechanism
of technology convergence in ITS. In the early stages of ITS development, technology
convergence often occurs between IPC subclasses belonging to the same IPC class. In other
words, technologies in similar domains tend to converge. In the middle stages, microscopic
structures in technology-convergence networks become the primary driving forces of
technology convergence. Finally, in the late stages, the dominant factor in the generation of
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technology convergence is the synergistic effect between technologies’ similarity and their
microscopic structures in the technology-convergence network.

5. Conclusions

This study aimed to provide theoretical underpinnings for previous empirical research
on the anticipation of technology convergence using link-prediction algorithms. Existing
studies mainly focused on using different link-prediction algorithms to produce accurate
predictions of technology convergence in a variety of technology domains, such as ICT,
3D printing, and electric vehicles. However, theoretical explanations for such a prediction
paradigm are still relatively lacking: What properties and growth mechanisms of the
technology-convergence network guarantee the predictability of future links? To answer
that question, we analyzed the ITS-related patent applications between November 1995 and
July 2022 and provided empirical evidence to demonstrate that technology-convergence
networks are fractal networks with self-similar growth processes. Such findings provide
a possible theoretical explanation for the success of link-prediction algorithms in the
anticipation of technology convergence, which means that the topological structure of the
future snapshot is similar to that of the present snapshot.

Further, the mechanism of how the fractality of snapshots contributes to link pre-
diction was also explored. This study adopted the PID framework to the link-prediction
problem and found that the scaled-down replica is attributable to its synergy with mi-
croscopic structures. A link-prediction method based on joint probability distributions
was then proposed to utilize such synergistic information. Experiments on the ITS-related
patent applications demonstrated that our proposed synergistic link-prediction algorithm
outperforms benchmark methods in most cases. In addition, the PID results imply that
the main driving force of technology convergence varies at different stages of technology
development. The results of this study could help researchers better comprehend the gener-
ation mechanisms of technology convergence from a network science perspective, which in
turn could also assist companies and policymakers in developing more accurate predictive
algorithms and R&D policies for potential technology convergence opportunities.

The main limitation of this study is that it overlooks the higher-order interactions of
technology areas in technology-convergence networks. For example, for three technology
areas (i.e., IPC4 codes) that apply for the same patent, their interactions were modeled as
three pairwise connections in this study. However, such a conventional pairwise modeling
approach could lead to a loss of information, since the patent could only be created when the
three technology areas were combined together. Therefore, future research on technology
convergence could benefit from using higher-order networks [132–134], in which the links
are “simplicial complexes” that can connect more than two nodes [135–137].

Moreover, the SLP approach proposed in this study is quite intuitive, lacking a careful
design for the formula of the link prediction index. In particular, the sparsity of the
links in real-world networks could cause serious issues for the estimation of probabilities,
although we tried to tackle this issue, at least partially, via a CDF-like formula. In the
future, we would like to extend this study from the perspective of link prediction. First,
we would like to examine whether the synergy between community structures and local
similarity measures is widespread in real-world networks. Second, a better-designed
link/community-based strategy could be proposed to make greater use of the synergistic
effect. Third, extensive comparisons with different link/community-based strategies could
be conducted in a broad diversity of real-world networks.
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Appendix A. Rescaled Networks Statistics as Measures of Self-Similar Growth

The definitions of the average degree and the five rescaled network statistics for
each snapshot in Ghist are given below. Note that the snapshots in Ghist may not be fully
connected, so only the largest connected component in each snapshot is considered in
this study.

Average degree. The average degree d̄ of a snapshot is defined as

d̄ =
∑N

i=1 di

N
, (A1)

where N is the number of nodes and di is the weighted degree of node i. Since the IPC
co-occurrence network considered in this study is a weighted network and the weight of
the edge (m, i) is denoted as am,i, the weighted degree di is given as

di = ∑
m∈Γ(i)

am,i, (A2)

where Γ(i) denotes the set of neighbors of node i. The weighted degree di is the sum of
weights of all the associated links of node i, also known as the strength of node i.

Rescaled degree: The rescaled degree of node k is given as

dres
k =

dk

d̄
, (A3)

where d̄ and dk are defined in Equations (A1) and (A2), respectively.

https://derwentinnovation.clarivate.com.cn/ui/zh/
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Clustering coefficient over the rescaled degree: The clustering coefficient of node k is
given as

C(k) =
2

dres
k
(
dres

k − 1
) ∑

ij

(
ãk,i · ãij · ãj,k

) 1
3 , (A4)

where ãk,i, ãij, and ãj,k are the normalized weights of links (k, i), (i, j), and (j, k), respec-
tively, [138]. In this study, the normalization was performed by dividing the largest weights,
i.e., ãij = aij/ max

(
aij
)

[139]. Then, the clustering coefficient over the rescaled degree is the
average of Ck of all the nodes with the same rescaled degree, whose formal definition is
given as

C(dres) =
∑k∈N (dres) C(k)
|N (dres)| , (A5)

where N (dres) denotes the set of nodes whose rescaled degrees are dres [140].
Normalized average neighbor degree: For the node k, the average degree of its neigh-

bors is given as

dres
nn (k) =

∑i∈Γ(k) dres
i

dres
k

, (A6)

and the normalized average neighbor degree over the rescaled degree is given as

d
res
nn (d

res) =
∑k∈N (dres) dres

nn (k)d

|N (dres)|d2
, (A7)

where d = ∑N
i=1 di
N and d2 =

∑N
i=1 d2

i
N [141,142].

Modularity: The modularity of the community partitions is given as

Q =
NB

∑
r=1

[
∑i∈N (r) ∑j∈N (r) aij

m
− γ

(
∑i∈N (r) di

2m

)2]
, (A8)

where the summation is from r equal to one to all NB communities, N (r) denotes the set of

nodes in the r-th community, and m = ∑N
i=1 di

2 is the summation of all the edge weights [143].
The communities in each snapshot are detected based on the Louvain method [130].

AMI: For the snapshot at time t, we measure the AMI between its community partitions
gt and the community partitions of the previous snapshot gt−1. The formal definition of
AMI is given as

AMI(gt, gt−1) =
I(gt, gt−1)−E[I(gt, gt−1)]

max{H(gt), H(gt−1)} −E[I(gt, gt−1)]
, (A9)

where I(·), H(·), and E[·] denote the mutual information, the entropy, and the expectation,
respectively.

Appendix B. A Community-Structure-Based Approximation of the
Box-Covering Algorithm

The detailed procedures of the community-structure-based box-covering algorithm
are given in Algorithm A1. It is worth noting that minor adjustments were made, so some
details are different from those in the original paper [38]. In addition, the parameters
in Algorithm A1 were set specifically for this study. The resolution list was set as R =
[12.25, 12, 11.75, · · · , 0.25], and ζmin and ζmax were set as 0.05 and 0.3, respectively.
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Algorithm A1 Giudicianni’s community-structure-based box-covering algorithm.

Input:
A snapshot Ghist

t .
A list of η different resolutions R =

[
R1, R2, · · · Rη

]
;

Output:
A list of the number of boxes NB.
A list of the average size of boxes lB.

1: NB ← [].
2: lB ← [].
3: Obtain the largest connected component of Ghist

t as GLCC
t .

4: Obtain the number of nodes in GLCC
t as NLCC.

5: for i = 1 to η do
6: Set NB(i) = 0.
7: Set lB(i) = 0.
8: Perform community detection on GLCC

t using Louvian algorithm with setting the
resolution as Ri.

9: for Each detected community c do
10: NB(i) = NB(i) + 1.
11: Obtain the diameter of the subgraph c as lc.
12: lB(i) = lB(i) + lc.
13: end for
14: if ζmin · NLCC < NB(i) < ζmax · NLCC then
15: NB ← NB ∪ NB(i).
16: lB ← lB ∪ lB(i)

NB(i)
.

17: end if
18: end for
19: return NB, lB.
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