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Abstract: Most complex physical phenomena are described by non-linear Burgers’ equations, which
help us understand them better. This article uses the transformation and the fractional Taylor’s
formula to find approximate solutions for non-linear fractional-order partial differential equations.
Solving non-linear Burgers’ equations with the right starting data shows that the method utilized
is correct and can be utilized. Based on the limit of the idea, a rapid convergence McLaurin series
is used to obtain close series solutions for both models with less work and more accuracy. To see
how time-Caputo fractional derivatives affect how the results of the above models behave, in three
dimension figures are drawn. The results showed that the proposed method is an easy, flexible, and
helpful way to solve and understand a wide range of non-linear physical models.

Keywords: fractional non-linear Burgers’ equations; caputo operator; residual power series transform
method; analytical solution

1. Introduction

Fractional differential equations have become more well known in recent years be-
cause they are useful in many scientific and engineering fields. For example, a fractional
derivative can be used to describe the non-linear oscillations of an earthquake, and the
fractional of the fluid traffic dynamic model can solve the insufficiency that comes from
assuming that traffic flows continuously [1,2]. Fractional differential problems are also used
to model a wide range of mathematical biology, chemical processes and applied sciences
models [3–6]. Different physical, biological, and chemical phenomena can be defined by
non-linear partial differential equations (NPDEs). The main goal of current research is to
find precise traveling wave solutions for equations like these. Scientists can better under-
stand the complicated physical phenomena and dynamic processes that NPDEs show [7–9]
when they become clear and exact answers. In the last 40 years, many important methods
for obtaining accurate answers to NPDEs [10,11] have been proposed [12–14].

Bateman came up with the Burgers’ equation in 1915 [15], later changing it to the
Burgers’ equation [16]. The Burgers’ equation is used extensively in engineering and science,
especially when solving problems with non-linear equations. More and more important
and interesting things are being conducted with Burgers’ equation by mathematicians and
researchers. It has been known for a long time that this equation can be used to model things
such as dynamics, heat conduction, acoustic waves, turbulence, and many more [17–22].
Most of the time, you need to use special methods to solve this kind of non-linear PDE
because it cannot be solved analytically. Some researchers and scientists have applied
analytical techniques such as the Variational iteration method, the Adomian decomposition
method, the Homotopy analysis method, the Homotopy perturbation method and the
differential transform method [23–27] to solve these kinds of problems.
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A numerical analytic method for solving many forms of ordinary, partial, integrodiffer-
ential equations and fractional fuzzy differential equations is known as the residual power
series (RPS) approach. Since it offers closed-form solutions of well-known functions, it is an
efficient optimization strategy. The RFPS technique solves fuzzy FDEs, various FDEs, and
integral equations having fractional order, such as the Newell–Whitehead–Segel equation of
fractional order [28], coupled fractional resonant Schrödinger equations [29], time fractional
Kundu–Eckhaus and massive Thirring equations [30], time fractional Fokker–Planck mod-
els [31], fractional partial differential equations [32], singular initial value problems [33],
dractional Fredholm integro-differential equations having order 2b [34], and several classes
of fractional fuzzy differential equations [35,36]. The Elzaki transform (ET) is a powerful
tool for resolving numerous complex models that appear in various branches of the natural
sciences. When analytical methods are combined with the ET operator, non-linear problems
can be solved more quickly and precisely.

The main goal of this work is to examine the approximate and analytical solutions
for linear and non-linear systems using the Elzaki residual power series (ERPS) method,
which was introduced and developed in [37]. The ET and RPS approaches are combined in
the ERPS approach, which provides both approximate and accurate solutions as quickly
fractional power series (FPS) solutions. The proposed problem is converted to Elzaki
space, and the solutions in the form of algebraic equations are created. Lastly, the inverse
Elzaki is applied to the proposed problem results. In contrast to the FRPS approach, which
depends on the fractional derivative and consumes time to compute the various fractional
derivatives in determining the solutions, the unknown coefficients in a modified Elzaki
expansion can be identified by employing the limit notion. The ERPS approach takes less
time and provides higher accuracy with minor computational requirements.

This work is arranged as follows: Section 2 revisits some valid basic results concerning
the Elzaki transformation and fractional power series representations. The proposed
technique for obtaining the solutions for the fractional partial differential equation is in
Section 3. In Section 4, the simplicity and applicability of RPSM are studied by solving
fractional order Burgers’ equations. Last, concluding remarks on our findings are drawn in
Section 5.

2. Preliminaries

In this section, we go over some basic concepts and definitions of the Caputo derivative
(CD), ET, and theorems that will be useful in this paper.

Definition 1. Assume that the existence axioms of the ET are satisfied by =(ϑ, τ). Then, the ET of
=(ϑ, τ) is formulated as [38]:

Ξ[=(ϑ, τ)] = ℵ(ϑ, ω) = ω
∫ ∞

0
=(ϑ, τ)e−

τ
ω dτ, τ ≥ 0, e1 ≤ ω ≤ e2.

Definition 2. The FD of =(ϑ, τ) of order $ in the CD sense is defined as follows [38]:

D$
τ=(ϑ, τ) = J r−$

$ =(n)(ϑ, τ), τ ≥ 0, n− 1 < $ ≤ n,

where J n−$
τ is the R− L integral of =(ϑ, τ).

Theorem 1. Assume that the multiple fractional power series (MFPS) representation for the
function Ξ[=(ϑ, τ)] = ℵ(ϑ, s) is given by [38]

ℵ(ϑ, ω) =
∞

∑
n=0

Θn(ϑ)ω
n$+2,
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then we have
Θn(ϑ) = Dn$

τ =(ϑ, 0),

where, Dn$
τ = D$

τ · D
$
τ . . . D$

τ(n− times). The conditions for the convergence of the MFPS is
determined in the following theorem.

Theorem 2. Let Ξ[=(ϑ, τ)] = ℵ(ϑ, ω) can be represented as the new form of MFPS explained in
Theorem 1. If

∣∣∣ 1
ω2 Ξ

[
D(n+1)$

τ =(ϑ, τ)
]∣∣∣ ≤ Z , then the remainderRn(ϑ, ω) of MFPS satisfies the

following inequality [38]: ∣∣Rj(ϑ, ω)
∣∣ ≤ Zω(n+1)$+2.

3. General Implementation of Elzaki Residual Power Series Method

Consider the general fractional partial differential equation

D$
τν(ϑ, τ) = cD2

ϑν(ϑ, τ) + aν(ϑ, τ)− bν4(ϑ, τ), (1)

with the initial condition
ν(ϑ, τ) = f0(ϑ). (2)

First, we use the Elzaki transformation to (1),

Ξ
[

D$
τν(ϑ, τ)

]
= cΞ

[
D2

ϑν(ϑ, τ)
]
+ aΞ[ν(ϑ, τ)2]− bΞ

[
ν4(ϑ, τ)

]
. (3)

By the fact that Ξ
[

D$
τw(ϑ, τ)

]
= saΞ[w(ϑ, τ)]− sa−1ν(ϑ, 0) and using the initial condition (2),

we rewrite (3) as

V(ϑ, s) = s2 f0(ϑ) + s$cD2
ϑV(ϑ, s) + s$aV(ϑ, s)− s$bΞ

[[
Ξ−1[V(ϑ, s)]2

]$]
, (4)

where V(ϑ, s) = Ξ[w(ϑ, τ)].
Second, we define the transform term V(ϑ, s) as the following expression

V(ϑ, s) =
∞

∑
n=0

sn$+1 fs(ϑ). (5)

The series form of kth-truncated of Equation (5)

Vk(ϑ, s) =
k

∑
n=0

sn$+1 fs(ϑ) = s2 fo(ϑ) +
k

∑
n=1

sn$+1 fk(ϑ). (6)

The Elzaki residual function to (5) is

ΞResk(ϑ, s) =Vk(ϑ, s)− s f0(ϑ)− s$cD2
s Vk(ϑ, s)− s$aVk(ϑ, s) + s$bΞ

[[
Ξ−1[Vk(ϑ, s)]

]q]
. (7)

Third, we use a few properties that come up in the standard RPSM [25,26] to point out
certain facts:
Ξ Res(ϑ, s) = 0 and limk→∞ Ξ Res sk(ϑ, s) = Ξ Res(ϑ, s) for each s > 0.
lims→∞ sΞ Res(ϑ, s) = 0⇒ lims→∞ sΞ Res(ϑ, s) = 0.
lims→∞ sk$+1Ξ Res(ϑ, s) = lims→∞ sk$+1Ξ Resk(ϑ, s) = 0, 0 < $ ≤ 1, k = 1, 2, 3, . . .

So, to find the co-efficient functions fn(ϑ), we solve the following scheme successively:

lim
s→∞

(
ska+1ΞResk(ϑ, s)

)
= 0, 0 < $ ≤ 1, k = 1, 2, 3, . . .

Finally, we use the inverse Elzaki to Vk(ϑ, s), to achieved the kth approximated supportive
result νk(ϑ, τ).
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4. Numerical Examples

Example 1. Consider the fractional two-dimensional Burger’s equation

D$
τν(ϑ, ζ, τ) = ν(ϑ, ζ)νϑ(ϑ, ζ) + νϑϑ(ϑ, ζ) + νζζ(ϑ, ζ), 0 < $ ≤ 1 (8)

with the initial condition (IC)

ν(ϑ, ζ, 0) = ϑ + ζ = f0(ϑ) (9)

The exact solution of (8) ($ = 1) is

ν(ϑ, ζ, τ) =
ϑ + ζ

1− τ
(10)

Using ET to (8) and applying the IC (9), we get

V(ϑ, s) = s2(ϑ + ζ) + s$Ξτ [[Ξ−1
τ {Vϑ(ϑ, ζ, s)}][Ξ−1

τ {Vϑ(ϑ, ζ, s)}]]
+ s$Ξτ [Ξ−1

τ {Vϑϑ(ϑ, ζ, s)}] + s$Ξτ [Ξ−1
τ {Vyy(ϑ, ζ, s)}].

(11)

The k-th truncated term series of (11) is

Vk(ϑ, ζ, s) = s2(ϑ + ζ) +
k

∑
n=1

sn$+1 fn(ϑ), (12)

and the k-th Elzaki residual function is

Ξτ Resk(ϑ, ζ, s) = Vk(ϑ, ζ, s)− s2(ϑ + ζ)− s$Ξτ [[Ξ−1
τ {V(ϑ, ζ, s)}][Ξ−1

τ {
∂

∂ϑ
Vϑ(ϑ, ζ, s)}]]

− s$Ξτ [Ξ−1
τ {

∂2

∂ϑ2 V(ϑ, ζ, s)}]− s$Ξτ [Ξ−1
τ {

∂2

∂ζ2 Vyy(ϑ, ζ, s)}].
(13)

Now, to calculate fk(ϑ, ζ), k = 1, 2, 3, · · · , we put the kth-truncate series (12) into the kth-Elzaki
residual term (13), multiply the solution equation by sk$+1, and then the relation is solved recursively
lims→∞[sk$+1Resk(ϑ, ζ, s)] = 0, k = 1, 2, 3, · · · for fk. The following are the some terms fk(ϑ, ζ)

f1(ϑ, ζ) = (ϑ + ζ)

f2(ϑ, ζ) = 2(ϑ + ζ)

f3(ϑ, ζ) = (ϑ + ζ)
[
4 +

Γ(1 + 2$)

Γ(1 + $)2

]
f4(ϑ, ζ) = 2(ϑ + ζ)

[
4 +

Γ(1 + 2$)

Γ(1 + $)2 +
2Γ(1 + 3$)

Γ(1 + $)Γ(1 + 2$)

]
....

(14)

Putting the value of fn(ϑ, ζ), (n ≥ 1) in Equation (12), we have

V(ϑ, ζ, s) = s2ϑ + ζ + s$+1(ϑ + ζ) + s2$+12(ϑ + ζ) + s3$+1(ϑ + ζ)
[
4 +

Γ(1 + 2$)

Γ(1 + $)2

]
+ s4$+1(ϑ + ζ)

[
4 +

Γ(1 + 2$)

Γ(1 + $)2 +
2Γ(1 + 3$)

Γ(1 + $)Γ(1 + 2$)

]
+ · · · .

(15)
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V(ϑ, ζ, s) = (ϑ + ζ)

[
s2 + s$+1 + 2s2$+1 + s3$+1

[
4 +

Γ(1 + 2$)

Γ(1 + $)2

]
+ s4$+1

[
4 +

Γ(1 + 2$)

Γ(1 + $)2 +
2Γ(1 + 3$)

Γ(1 + $)Γ(1 + 2$)

]
+ · · ·

]
.

(16)

Applying inverse Elzaki transform, we get

ν(ϑ, ζ, τ) = (ϑ + ζ)

[
1 +

τ$

Γ($ + 1)
+

2τ$

Γ(2$ + 1)
+

[4 + Γ(1+2$)
Γ(1+$)2 ]

Γ(3$ + 1)
τ3$

+
[4 + Γ(1+2$)

Γ(1+$)2 + 2Γ(1+3$)
Γ(1+$)Γ(1+2$)

]

Γ(4$ + 1)
τ4$ + · · ·

]
.

(17)

Now, if we substitute $ = 1 in Equation (17), it gives

ν(ϑ, ζ, τ) = (ϑ + ζ)
[
1 + τ +

τ2

2!
+

τ3

3!
+

τ4

4!
+ · · ·

]
(18)

The result of Equation (18) closed contact with the Maclaurin series of

ν(ϑ, ζ, τ) =
ϑ + ζ

1− τ
. (19)

In Figure 1, the exact and analytical solution of ν(ϑ, ζ, τ) at $ = 1 and 0.8 of Example 1.
In Figure 2, the analytical solutions of ν(ϑ, ζ, τ) at $ = 0.6 and 0.4 and similarly in Figure 3,
the different fractional order of $ of ν(ϑ, ζ, τ) of Example 1, which show that the close
contact with the exact solution.

Figure 1. Exact and analytical solution of ν(ϑ, ζ, τ) at $ = 1 and 0.8 of Example 1.

Figure 2. The analytical solutions of ν(ϑ, ζ, τ) at $ = 0.6 and 0.4 of Example 1.
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Figure 3. The different fractional-order of $ of ν(ϑ, ζ, τ) of Example 1.

Example 2. Consider the fractional two-dimensional Burger’s equation

D$
τν = ννϑ + νϑϑ + νyy + νzz, 0 < $ ≤ 1 (20)

with the IC

ν(ϑ, ζ, z, 0) = ϑ + ζ + z = f0(ϑ) (21)

The exact solution of (20) ($ = 1) is

ν(ϑ, ζ, z, τ) =
ϑ + ζ + z

1− τ
(22)

Using Elzaki transformation to (20) and applying the IC (21), we obtain

V(ϑ, ζ, z, s) = s2(ϑ + ζ + z) + s$Ξτ [[Ξ−1
τ {Vϑ(ϑ, ζ, z, s)}][Ξ−1

τ {Vϑ(ϑ, ζ, z, s)}]]
+ s$Ξτ [Ξ−1

τ {Vϑϑ(ϑ, ζ, z, s)}] + s$Ξτ [Ξ−1
τ {Vyy(ϑ, ζ, z, s)}] + s$Ξτ [Ξ−1

τ {Vzz(ϑ, ζ, z, s)}].
(23)

The k-th truncated term series of (23) is

Vk(ϑ, ζ, z, s) = s2(ϑ + ζ + z) +
k

∑
n=1

sn$+1 fn(ϑ, ζ, z). (24)

and the k-th Elzaki residual function is

Ξτ Resk(ϑ, ζ, z, s) = Vk(ϑ, ζ, z, s)− s2(ϑ + ζ + z)− s$Ξτ [[Ξ−1
τ {V(ϑ, ζ, z, s)}][Ξ−1

τ {
∂

∂ϑ
Vk(ϑ, ζ, z, s)}]]

− s$Ξτ [Ξ−1
τ {

∂2

∂ϑ2 Vk(ϑ, ζ, z, s)}]− s$Ξτ [Ξ−1
τ {

∂2

∂ζ2 Vk(ϑ, ζ, z, s)}] + s$Ξτ [Ξ−1
τ {

∂2

∂z2 Vk(ϑ, ζ, z, s)}].
(25)

Now, to calculate fk(ϑ, ζ), k = 1, 2, 3, · · · , we put the kth-truncate series (24) into the kth-Elzaki
residual term (25), multiply the solution equation by sk$+1, and then the relation is solved recursively
lims→∞[sk$+1Resk(ϑ, ζ, s)] = 0, k = 1, 2, 3, · · · for fk. The following are the some terms fk(ϑ, ζ)
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f1(ϑ, ζ, z) = (ϑ + ζ + z)

f2(ϑ, ζ, z) = 2(ϑ + ζ + z)

f3(ϑ, ζ, z) = (ϑ + ζ + z)[4 +
Γ(1 + 2$)

Γ(1 + $)2 ]

f4(ϑ, ζ, z) = 2(ϑ + ζ + z)
[
4 +

Γ(1 + 2$)

Γ(1 + $)2 +
2Γ(1 + 3$)

Γ(1 + $)Γ(1 + 2$)

]
....

(26)

put the value of fn(ϑ, ζ, z), (n ≥ 1) in Equation (24), we obtain

V(ϑ, ζ, z, s) = s2ϑ + ζ + z + s$+1(ϑ + ζ + z) + s2$+12(ϑ + ζ + z) + s3$+1(ϑ + ζ + z)
[
4 +

Γ(1 + 2$)

Γ(1 + $)2

]
+ s4$+12(ϑ + ζ + z)

[
4 +

Γ(1 + 2$)

Γ(1 + $)2 +
2Γ(1 + 3$)

Γ(1 + $)Γ(1 + 2$)

]
+ · · · .

(27)

V(ϑ, ζ, z, s) = (ϑ + ζ + z)

[
s2 + s$+1 + 2s2$+1 + s3$+1

[
4 +

Γ(1 + 2$)

Γ(1 + $)2

]
+ s4$+1

[
4 +

Γ(1 + 2$)

Γ(1 + $)2 +
2Γ(1 + 3$)

Γ(1 + $)Γ(1 + 2$)

]
+ · · ·

]
.

(28)

Applying inverse Elzaki transform, we obtain

ν(ϑ, ζ, z, τ) = (ϑ + ζ + z)

[
1 +

τ$

Γ($ + 1)
+

2τ$

Γ(2$ + 1)
+

[4 + Γ(1+2$)
Γ(1+$)2 ]

Γ(3$ + 1)
τ3$

+
[4 + Γ(1+2$)

Γ(1+$)2 + 2Γ(1+3$)
Γ(1+$)Γ(1+2$)

]

Γ(4$ + 1)
τ4$ + · · ·

]
.

(29)

Now, if we substitute $ = 1 in Equation (29), it gives

ν(ϑ, ζ, z, τ) = (ϑ + ζ + z)[1 + τ + τ2 + τ3 + τ4 + · · · ] (30)

The solution of Equation (30) agrees with the Maclaurin series is

ν(ϑ, ζ, z, τ) =
ϑ + ζ + z

1− τ
. (31)

In Figure 4, the exact and analytical solution of ν(ϑ, ζ, τ) at $ = 1 and 0.8 of Example 2. In
Figure 5, the analytical solutions of ν(ϑ, ζ, τ) at $ = 0.6 and 0.4 and similarly in Figure 6, the
different fractional order of $ of ν(ϑ, ζ, τ) of Example 2, which show that the close contact with the
exact solution.
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Figure 4. Exact and analytical solution of ν(ϑ, ζ, z, τ) at $ = 1 and 0.8 of Example 2.

Figure 5. The analytical solutions of ν(ϑ, ζ, z, τ) at $ = 0.6 and 0.4 of Example 2.

Figure 6. The different fractional-order of $ of ν(ϑ, ζ, z, τ) of Example 2.

Example 3. Consider the fractional one dimensional system Burger’s equation

D$
τν = 2ννϑ − νϑϑ + (νψ)ϑ,

D$
τψ = −2ψψϑ − ψϑϑ − (νψ)ϑ, 0 < $ ≤ 1

(32)

with the ICs

ν(ϑ, 0) = sin(ϑ), ψ(ϑ, 0) = − sin(ϑ). (33)
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Using Elzaki transformation to (32) and the ICs given in (32), we obtain

V(ϑ, s) = s2sin(ϑ) + 2s$Ξτ [Ξ−1
τ {V(ϑ, s)

∂

∂ϑ
V(ϑ, s)}]

+ s$Ξτ([Ξ−1
τ V(ϑ, s)][Ξ−1

τ V(ϑ, s)])ϑ − s${Ξ−1
τ [

∂2

∂ϑ2 V(ϑ, s)]},

Ψ(ϑ, s) = s2− sin(ϑ)− 2s$Ξτ [Ξ−1
τ {Ψ(ϑ, s)

∂

∂ϑ
Ψ(ϑ, s)}]

− s$Ξτ([Ξ−1
τ V(ϑ, s)][Ξ−1

τ Ψ(ϑ, s)])ϑ − s${Ξ−1
τ [

∂2

∂ϑ2 Ψ(ϑ, s)]}.

(34)

The k-th truncated term series of Equation (34) is

Vk(ϑ, s) = s2sin(ϑ) +
∞

∑
n=0

sn$+1 fn(ϑ),

Ψk(ϑ, s) = −s2sin(ϑ)s +
∞

∑
n=0

sn$+1gn(ϑ).
(35)

and the k-th Elzaki residual function is

Ξτ Resk(ϑ, s) = Vk(ϑ, s)− sin(ϑ)
s
− 2s$Ξτ [Ξ−1

τ {Vk(ϑ, s)
∂

∂ϑ
Vk(ϑ, s)}]

− s$Ξτ([Ξ−1
τ Vk(ϑ, s)][Ξ−1

τ Ψk(ϑ, s)])ϑ + s${Ξ−1
τ [

∂2

∂ϑ2 Vk(ϑ, s)]},

Ξτ Resk(ϑ, s) = Ψ(ϑ, s)− − sin(ϑ)
s

+ 2s$Ξτ [Ξ−1
τ {Ψk(ϑ, s)

∂

∂ϑ
Ψk(ϑ, s)}]

− s$Ξτ([Ξ−1
τ Vk(ϑ, s)][Ξ−1

τ Ψk(ϑ, s)])ϑ − s${Ξ−1
τ [

∂2

∂ϑ2 Ψk(ϑ, s)]}.

(36)

Now, to determine fk(ϑ) and gk(ϑ), k = 1, 2, 3, · · · , we substitute the kth-truncated series (35)
into the kth-Elzaki residual function (36), multiply the resulting equation by sk$+1, and then solve
recursively the relation lims→∞[sk$+1Resk(ϑ, s)] = 0, k = 1, 2, 3, · · · for fk and gk. Some terms
of the sequences fk(ϑ) and gk(ϑ)

f1(ϑ) = sin(ϑ),

g1(ϑ) = − sin(ϑ).

f2(ϑ) = sin(ϑ),

g2(ϑ) = − sin(ϑ).

f3(ϑ) = sin(ϑ),

g3(ϑ) = − sin(ϑ).

f4(ϑ) = sin(ϑ),

g4(ϑ) = − sin(ϑ).
....

(37)

Putting the values of fn(ϑ) and gn(ϑ) for (n ≥ 1) in Equation (35), we obtain

V(ϑ, s) = s2sin(ϑ) + s$+1sin(ϑ) + s2$+1sin(ϑ) + s3$+1sin(ϑ) + · · · ,

Ψ(ϑ, s) = −s2sin(ϑ)− s$+1sin(ϑ)− s2$+1sin(ϑ)− s3$+1sin(ϑ) + · · · .
(38)

V(ϑ, s) = sin(ϑ)
[
s + s$+1 + s2$+1 + s3$+1 + · · ·

]
,

Ψ(ϑ, s) = − sin(ϑ)
[
s + s$+1 + s2$+1 + s3$+1 + · · ·

]
.

(39)
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Applying the inverse Elzaki transform to Equation (39), we obtain

ν(ϑ, τ) = sin(ϑ)

[
1 +

τ$

Γ($ + 1)
+

τ2$

Γ(2$ + 1)
+

τ3$

Γ(3$ + 1)
+ · · ·

]
,

ψ(ϑ, τ) = − sin(ϑ)

[
1 +

τ$

Γ($ + 1)
+

τ2$

Γ(2$ + 1)
+

τ3$

Γ(3$ + 1)
+ · · ·

]
.

(40)

Putting $ = 1, we obtain the solution of Equation (32) in closed form

ν(ϑ, τ) = eτ sin(ϑ),

ψ(ϑ, τ) = −eτ sin(ϑ).
(41)

Figure 7 shows the exact and analytical solution of ν(ϑ, ζ, z, τ) at $ = 1 and 0.8 of Example 3.
Figure 8 shows the analytical solutions of ν(ϑ, ζ, z, τ) at $ = 0.6 and 0.4. Similarly, Figure 9, shows
the different fractional-order of $ of ν(ϑζ, z, τ) of Example 3, which show the close contact with the
exact solution. Figures 10–12 show the close relation with respect to ν(ϑ, ζ, z, τ) of Example 3.

Figure 7. Exact and analytical solution of ν(ϑ, ζ, z, τ) at $ = 1 and 0.8 of Example 3.

Figure 8. The analytical solutions of ν(ϑ, ζ, z, τ) at $ = 0.6 and 0.4 of Example 3.
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Figure 9. The different fractional-order of $ of ν(ϑ, ζ, z, τ) of Example 3.

Figure 10. Exact and analytical solution of ν(ϑ, ζ, z, τ) at $ = 1 and 0.8 of Example 3.

Figure 11. The analytical solutions of ν(ϑ, ζ, z, τ) at $ = 0.6 and 0.4 of Example 3.

Figure 12. The different fractional-order of $ of ν(ϑ, ζ, z, τ) of Example 3.
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Example 4. Consider the fractional two dimensional system of Burger’s equation

D$
τν = νϑϑ + νζζ − ννϑ − ψνζ ,

D$
τψ = ψϑϑ + νζζ − νψϑ − ψψζ , 0 < $ ≤ 1

(42)

with the ICs

ν(ϑ, ζ, 0) = ϑ + ζ, ψ(ϑ, ζ, 0) = ϑ− ζ. (43)

Applying Elzaki transform to Equation (42) and applying the ICs in Equation (43), we obtain

V(ϑ, ζ, s) = s2ϑ + ζ + s$ξτ{Ξ−1
τ [

∂2

∂ϑ2 V(ϑ, ζ, s)]}+ s$Ξτ{Ξ−1
τ [

∂2

∂ζ2 V(ϑ, ζ, s)]}

− s$Ξτ{Ξ−1
τ [V(ϑ, ζ, s)]Ξ−1

τ [
∂

∂ϑ
V(ϑ, ζ, s)]} − s$Ξτ{Ξ−1

τ [Ψ(ϑ, ζ, s)]Ξ−1
τ [

∂

∂ζ
V(ϑ, ζ, s)]},

Ψ(ϑ, ζ, s) = s2ϑ + ζ + s$Ξτ{Ξ−1
τ [

∂2

∂ϑ2 Ψ(ϑ, ζ, s)]}+ s$Ξτ{Ξ−1
τ [

∂2

∂ζ2 Ψ(ϑ, ζ, s)]}

− s$Ξτ{Ξ−1
τ [V(ϑ, ζ, s)]Ξ−1

τ [
∂

∂ϑ
Ψ(ϑ, ζ, s)]} − s$Ξτ{Ξ−1

τ [Ψ(ϑ, ζ, s)]Ξ−1
τ [

∂

∂ζ
Ψ(ϑ, ζ, s)]},

(44)

The k-th truncated functions series of Equation (44) is

Vk(ϑ, ζ, s) =
ϑ + ζ

s
+

∞

∑
n=0

fn(ϑ, ζ)

sn$+1 ,

Ψk(ϑ, ζ, s) =
ϑ− ζ

s
+

∞

∑
n=0

gn(ϑ, ζ)

sn$+1 .
(45)

and k-th Elzaki residual function is

Ξτ Resk(ϑ, ζ, s) = Vk(ϑ, ζ, s)− s2ϑ + ζ + s$Ξτ{Ξ−1
τ [

∂2

∂ϑ2 Vk(ϑ, ζ, s)]} − s$Ξτ{Ξ−1
τ [

∂2

∂ζ2 Vk(ϑ, ζ, s)]}

+ s$Ξτ{Ξ−1
τ [Vk(ϑ, ζ, s)]Ξ−1

τ [
∂

∂ϑ
Vk(ϑ, ζ, s)]}+ s$Ξτ{Ξ−1

τ [Ψk(ϑ, ζ, s)]Ξ−1
τ [

∂

∂ζ
Vk(ϑ, ζ, s)]},

Ξτ Resk(ϑ, ζ, s) = Ψ(ϑ, ζ, s)− s2ϑ + ζ + s$Ξτ{Ξ−1
τ [

∂2

∂ϑ2 Ψk(ϑ, ζ, s)]} − s$Ξτ{Ξ−1
τ [

∂2

∂ζ2 Ψk(ϑ, ζ, s)]}

+ s$Ξτ{Ξ−1
τ [Vk(ϑ, ζ, s)]Ξ−1

τ [
∂

∂ϑ
Ψk(ϑ, ζ, s)]}+ s$Ξτ{Ξ−1

τ [Ψk(ϑ, ζ, s)]Ξ−1
τ [

∂

∂ζ
Ψk(ϑ, ζ, s)]},

(46)

Now, to determine fk(ϑ, ζ) and gk(ϑ, ζ),k = 1, 2, 3, · · · , we substitute the kth-truncated series (45)
into the kth-Elzaki residual function (46), multiply the resulting equation by sk$+1, and then solve
recursively the relation lims→∞[sk$+1Resk(ϑ, s)] = 0, k = 1, 2, 3, · · · for fk and gk. The first some
terms of the sequences fk(ϑ, ζ) and gk(ϑ, ζ)
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f1(ϑ, ζ) = −2ϑ,

g1(ϑ, ζ) = −2ζ.

f2(ϑ, ζ) = 4(ϑ + ζ),

g2(ϑ, ζ) = 4(ϑ− ζ).

f3(ϑ, ζ) = −16ϑ− 4ϑ
Γ(2$ + 1)
Γ($ + 1)2 ,

g3(ϑ, ζ) = −16ζ − 4ζ
Γ(2$ + 1)
Γ($ + 1)2 .

....

(47)

substituting the value of fn(ϑ, ζ) and gn(ϑ, ζ), for n ≥ 1 in Equation (45), we have

U(ϑ, ζ, s) = s2ϑ + ζ − 2s$+1ϑ + 4s2$+1(ϑ + ζ) + s$+1

(
−16ϑ− 4ϑ

Γ(2$ + 1)
Γ($ + 1)2

)
+ · · · ,

Ψ(ϑ, ζ, s) = s2ϑ− ζ − 2s$+1ζ + 4s$+1(ϑ + ζ) + s$+1

(
−16ζ − 4ζ

Γ(2$ + 1)
Γ($ + 1)2

)
+ · · · .

(48)

Applying inverse Elzaki transform to Equation (48), we have

ν(ϑ, ζ, τ) = ϑ + ζ +
−2ϑ

Γ($ + 1)
τ$ +

4(ϑ + ζ)

Γ(2$ + 1)
τ2$ +

−16ϑ− 4ϑ
Γ(2$+1)
Γ($+1)2

Γ(3$ + 1)
τ3$ + · · · ,

ψ(ϑ, ζ, τ) = ϑ− ζ +
−2ζ

Γ($ + 1)
τ$ +

4(ϑ + ζ)

Γ(2$ + 1)
τ2$ +

−16ζ − 4ζ
Γ(2$+1)
Γ($+1)2

Γ(3$ + 1)
τ3$ + · · · .

(49)

Putting $ = 1, we obtain the solution of Equation (42) in closed form

ν(ϑ, ζ, τ) = ϑ + ζ − 2ϑτ + 2(ϑ + ζ)τ2 − 4ϑτ3 + 4(ϑ + ζ)τ4 − 8ϑτ5 + · · · ,

ψ(ϑ, ζ, τ) = ϑ− ζ − 2ζτ + 2(ϑ + ζ)τ2 − 4ζτ3 + 4(ϑ− ζ)τ4 − 8ϑτ5 + · · · .

ν(ϑ, ζ, τ) =
ϑ + ζ − 2ϑτ

1− 2τ2 ,

ψ(ϑ, ζ, τ) =
ϑ− ζ − 2ζτ

1− 2τ2 .

(50)

Figure 13 shows the exact and analytical solution of ν(ϑ, ζ, z, τ) at $ = 1 and 0.8 of Example 4.
Figure 14 shows the analytical solutions of ν(ϑ, ζ, z, τ) at $ = 0.6 and 0.4. Figure 15 similarly
shows the different fractional-order of $ of ν(ϑ, ζ, z, τ) of Example 4, which show the close contact
with the exact solution. Figures 16–18 show the close relation with respect to ν(ϑ, ζ, z, τ) of
Example 4.
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Figure 13. Exact and analytical solution of ν(ϑ, ζ, z, τ) at $ = 1 and 0.8 of Example 4.

Figure 14. The analytical solutions of ν(ϑ, ζ, z, τ) at $ = 0.6 and 0.4 of Example 4.

Figure 15. The different fractional-order of $ of ν(ϑ, ζ, z, τ) of Example 4.

Figure 16. Exact and analytical solution of ν(ϑ, ζ, z, τ) at $ = 1 and 0.8 of Example 4.
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Figure 17. The analytical solutions of ν(ϑ, ζ, z, τ) at $ = 0.6 and 0.4 of Example 4.

Figure 18. The different fractional-order of $ of ν(ϑ, ζ, z, τ) of Example 4.

5. Conclusions

In this paper, the analytical solutions are constructed and analyzed for Burgers’ equa-
tions with suitable initial conditions utilizing the RPSTM under time-Caputo differentia-
bility. The fractional RPSTM is modified in the current method by tying it to the Yang
transform operator. The advantage of use the RPSTM is that it gives more accurate con-
vergence McLaurin series and needs only a small size of calculation without involving the
perturbation, discretization, or any other physical restrictive condition. Two well-known
physical applications are tested in order to show the viability and superiority of the pro-
posed technique. Graphics and numerical simulation are used to discuss the resulting
approximations. The resulting results are contrasted with those of other widely used, pub-
lished methodologies. In light of these findings, it is clear that the RPSTM is a simple and
practical method for handling the wide spectrum of non-linear fractional partial differential
equations that might emerge in engineering and scientific situations. Future research can
use the RPSTM to discover both precise and approximative answers to fractional partial
differential equations. As a result, physical models and dynamical models can be handled
by the RPSTM application.
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