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Abstract: To understand how the temporal non-locality («memory») properties of a process affect
its critical regimes, the power-law compound and time-fractional Poisson process is presented as a
universal hereditary model of criticality. Seismicity is considered as an application of the theory of
criticality. On the basis of the proposed hereditarian criticality model, the critical regimes of seismicity
are investigated. It is shown that the seismic process has the property of «memory» (non-locality
over time) and statistical time-dependence of events. With a decrease in the fractional exponent of
the Poisson process, the relaxation slows down, which can be associated with the hardening of the
medium and the accumulation of elastic energy. Delayed relaxation is accompanied by an abnormal
increase in fluctuations, which is caused by the non-local correlations of random events over time.
According to the found criticality indices, the seismic process is in subcritical regimes for the zero and
first moments and in supercritical regimes for the second statistical moment of events’ reoccurrence
frequencies distribution. The supercritical regimes indicate the instability of the deformation changes
that can go into a non-stationary regime of a seismic process.

Keywords: hereditary theory of criticality; critical phenomena; compound fractional Poisson process;
scaling of random event streams; critical indices; critical regimes; coherent effects; deformation theory

MSC: 33E12; 60G22; 60G55

1. Introduction

Critical phenomena may have different natures, but they are united by three common
properties: scaling of the stream of events and a power-law divergence of the process
characteristics near critical points, while in the dynamics of the process there is a slow-
down before explosive activation. It will be shown below that, if the compound Poisson
process is provided with such properties, then it will be a completely adequate model of a
critical phenomenon.

The scaling of the event stream is given by a power-law distribution, the non-integrability
of which on small or large scales leads to divergences in the statistical characteristics of the
process. A special case of logarithmic divergence simultaneously on small and large scales
occurs when the exponent is minus one (the distribution of (1/x) is not integrated at both
ends). This value can be considered the most important critical index.

One consolidation of scales according to the power-law is not enough for a complete
understanding of the nature of the critical phenomenon. No less important is the temporal
correlation of events, for which the «memory» of the process is responsible. It will be
shown below that scaling and hereditarity are implemented multiplicatively, and how the
behavior of the statistical characteristics of the process depends on it.

We consider the compound Poisson process [1,2] in its fractional generalization [3–5]
with a power-law distribution of events’ recurrence frequencies [6,7]. Due to scaling
and hereditarity, this process has all the necessary properties with which to describe
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critical phenomena, including seismic ones. Scaling generates the divergence of statistical
moments, and hereditarity generates the statistical dependence of random events, delayed
relaxations, and growth of fluctuations. Divergences of statistical moments cause instability
of deformation changes, which can unexpectedly switch to a non-stationary regime of the
seismic process activation, and hereditarity increases the determinacy of changes. The
slowdown in relaxation is related to the medium hardening and the energy accumulation,
and the growth of fluctuations indicates collective effects caused by the consolidation of
spatial and temporal scales.

We do not limit the applications of the hereditarian theory of criticality to seismology
only, but use it only as one of the examples. The results obtained here can be applied to
describe critical phenomena of any other nature.

In the next section, we will define the compound fractional Poisson process [3–5]
and provide it with a power-law of the distribution of the amplitudes of changes, i.e.,
scaling [6,7], and thus obtain the power-law compound fractional Poisson process. In
Section 3, we will define the critical indices and regimes of this process, which will allow
us to consider it as a fairly universal model of the hereditarian theory of criticality. In
Section 4, we will consider the application of the hereditarian criticality model to the study
of the critical indices and regimes of the seismic process using the example of seismic data
from the earthquake catalog of the Kamchatka Branch of the Geophysical Survey of the
Russian Academy of Sciences [8]. In Section 5, we will collect and discuss the results and,
in Section 6, we will present conclusions based on them.

2. Compound Fractional Poisson Process with Power-Law Distribution of Events
Recurrence Frequencies
2.1. Compound Fractional Poisson Process

The seismic process is diverse and can have different representations; we are con-
sidering one of its possible representations. The seismic process is heterogeneous and
non-stationary, which means that the event stream density depends on coordinates and
time. If we average the event stream density over the area of event coordinates and the
observation time, we can represent this process as quasi-homogeneous and quasi-stationary.
To describe this process, we use the compound fractional Poisson process (CFPP) of order k
with integer random state changes by r = 1, 2, . . . , k and positive rates λr as it is represented
in the papers [3,4]:

dν

dtν
pν(j, t) = −Λpν(j, t) +

min{j,k}

∑
r=1

λr pν(j− r, t), j ∈ N0, Λ =
k

∑
r=1

λr, (1)

with initial conditions

pν(j, 0) =

{
1, j = 0,
0, j ≥ 1,

where the time t ≥ 0, the pν(j, t) is probability of the process to be in one of the possible
states j, and the ν is the exponent of the Caputo fractional derivative, 0 < ν ≤ 1.

2.2. Distribution of Recurrence Frequencies of Events

The distribution of positive rates λr (1) in the case of a seismic process is defined by
the Gutenberg–Richter law for magnitudes 1 < M < 9 [6],

N(m ≥ M) = 10a−bM = Ntotal 10−bM, (2)

where Ntotal = 10a is the total number of events.
There are various definitions of magnitude. In our study, we will use the definition of

Kanamori [7],
M = (2/3)(lg M0 − C), (3)
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where M0 is the seismic moment and C is the normalization constant depending on the
seismic moment m0 of the calibration event

C = lg m0, (4)

the energy of which we will consider to be minimal. Using other definitions of magnitude
will require another renormalization of the event energy, but will not change the power-law
events distribution by the energy.

Given the dependencies M0 = µSu [7], S = L2 and u = εL for dislocation of size L
and for relative strain ε, the seismic moment M0 can be written with the following form:

M0 = µεL3, (5)

and the seismic moment of the calibration event, for which we introduce the dislocation
size Lmin, will be expressed as

m0 = µεL3
min. (6)

We will substitute the expressions (4), (5), and (6) into (3) and obtain

M =
2
3
(lg M0 − lg m0) =

2
3

lg
M0

m0
= 2 lg

L
Lmin

. (7)

Note that the obtained definition of magnitude (in Bells) in terms of the dislocation size
does not include the parameters of the medium and does not depend on the units of their
measurement of dislocation size. We have obtained a geometric definition of the magnitude.
Then, taking into account the expressions (2) and (7), the probability distribution function
of dislocation sizes takes the power-law form depending only on geometric characteristics,

P(L) = 1− N
Ntotal

= 1− 10−bM = 1−
(

L
Lmin

)−2b

. (8)

Differentiating expression (8) by the dislocation size L, we find the probability density

p(L) =
dP(L)

dL
=

2b
Lmin

(
L

Lmin

)−2b−1

=
2b

Lmin
· r−2b−1, (9)

then the increment of the function (8) can be represented as follows:

∆P(L) = p(L)∆L. (10)

The largest size of dislocations, denoted as Lmax, is limited by the size of the seismic
polygon and amounts to values of the order of 102 km. The corresponding maximum value
of the magnitude Mmax is assumed to be equal to 9 [6]. Then, using the ratio (7), we get the
value Lmin ∼ 1 meter.

If the dislocation size is Lmin, then the magnitude takes the value M = 0 (7). Then, the
considered range of dislocation sizes Lmin < L < Lmax corresponds to an extended range
of magnitudes 0 < M < 9 compared to the definition (2), where 1 < M < 9. Magnitudes
from the range 0 < M < 1 are registered in geoacoustics [9–12] and make a high-frequency
contribution to the energy of a seismic event; in this regard, we do not exclude them
from consideration.

The Gutenberg–Richter law in power-law form will be considered in the range of
magnitudes 0 < M < 9 as the average approximation (mean) of the energy spectrum of
seismoacoustic oscillations. Curvatures from the power-law in narrower spectral ranges
are considered as non-stationary [13,14]. The instability conditions of the power-law
distribution will be described in detail hereinafter.

The magnitude step in seismic catalogs is ∆M = 0.1, i.e., one deciBell. In this case,
the partition of the interval Lmin < L < Lmax of dislocation size will not be equidistant
(uniform). We will make a uniform partition of the interval Lmin < L < Lmax with the
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step ∆L = Lmin to form a generalized harmonic series of event recurrence frequencies. The
number k of partition intervals is equal to

k =
Lmax

Lmin
= 104.75 ≈ 105.

In each ∆Lr = Lmin, Lmin = 1 in r variable, we have the number ∆Nr of events, which is
obtained by taking into account the expressions (10) and (9),

∆Nr = Ntotal∆P(Lr) = Ntotal p(Lr)∆Lr = Ntotal p(rLmin)∆Lr = Ntotal · 2b · r−2b−1,

whence it follows that the event recurrence frequency ωr for the observation period T has a
power-law distribution,

ωr =
∆Nr

T
= 2bΩ · r−2b−1, r = 1, . . . , k, Ω =

Ntotal
T

, (11)

where Ω is the total frequency of events. Therefore, the sum of the sequence ωr (11) will be

k

∑
r=1

ωr = 2bΩ
k

∑
r=1

r−2b−1 = Ω. (12)

Note that, for large k in our model we can take k→ ∞.
We supplement Equation (1) with a power-law distribution (11). The dimensionless ex-

pressions λrdtν resulting from Equation (1), can be represented in the form
λrdtν = (ωr)νdtν = (ωrdt)ν in accordance with dimensional considerations for frac-
tional λr and non-fractional ωr frequencies. Then, the positive fractional rates λr will
be associated with the frequencies ωr (11) of the recurrence of random events by the ratio

λr = (ωr)
ν = (2bΩ · r−2b−1)ν, (13)

and the Λ-parameter, i.e., the fractional decay rate, will be represented by the sum of the
sequence (13):

Λ =
k

∑
r=1

λr = (2bΩ)ν
k

∑
r=1

r−(2b+1)ν. (14)

3. Critical Indices and Process Instability

In this section, we will consider the role of the CFPP temporal non-locality defined by
the fractional parameter ν.

Firstly, according to equations (1) with the distribution (13) and taking into account
the sum (14), the parameter

Λ1/ν = 2bΩ
( k

∑
r=1

r−(2b+1)ν
)1/ν

(15)

is the decay rate of the initial and all subsequent states, which depends on the hereditarity
parameter ν. The total frequency Ω (11) determines the dimension and value of the rate (15).

Secondly, the probability distributions of the first-passage times for each scale r [4],
taking into account the ratios (13), can be presented in the following form

P(t) = λrtνEν,ν+1(−λrtν) = (ωrt)νEν,ν+1
(
− (ωrt)ν

)
, t ≥ 0, r = 1, 2, . . . , k, (16)

where Eν,ν+1(x) is the Mittag–Leffler function, i.e., a fractional exponential function. The
distributions (16) define the non-local correlations of random events over time. Thus, the
CFPP has the property of «memory» manifested in the statistical dependence of events and
delayed relaxation, which occur as a result of medium hardening.



Fractal Fract. 2023, 7, 890 5 of 12

Thirdly, the statistical characteristics of the distribution (13), such as the zero, first, and
second moments will depend on the ν parameter. And the types of divergences of these
characteristics define three types of instability of the CFPP (1) with (13).

The zero moment of the distribution (13) is the Λ (14), i.e., the sum of the fractional
frequencies or fractional rates λr. The first type of the CFPP instability is associated with
the partial sum Sk divergence of the generalized harmonic series in distribution, (13)

Sk =
k

∑
r=1

r−(2b+1)ν. (17)

A significant range of L determines large values k, and we can put k→ ∞. Therefore, the
partial sums (17) satisfy the condition

S∞ = lim
k→∞

Sk = ζ
(
(2b + 1)ν

)
, (18)

where ζ(x) is the Riemann zeta function. The property of the Riemann zeta function
lim
x→1

ζ(x) = ∞ (divergence of the series) gives

(2b + 1)ν = 1.

Therefore, the value of the critical index will be

ν0 =
1

2b + 1
.

If ν > ν0, then the expression (18) converges and the CFPP is in a subcritical regime,
otherwise the series diverges and the CFPP goes into critical (ν = ν0) or supercritical
(ν < ν0) regimes.

Provided that the zero moment is finite, we can discuss two other types of the CFPP
instability, which are related to the first and second moments of the distribution (13), which
are determined up to a factor of (2bΩ)ν by partial sums:

Sk,p =
k

∑
r=1

r−(2b+1)ν+p, p = 1, 2. (19)

The mean E(t) of the CFPP (first moment), which is the mean sum of the CFPP changes
and defines the mean total deformation, is represented by the expression [4]

E(t) = Sk,1(2bΩ · t)ν/Γ(ν + 1), t ≥ 0, (20)

and the variance Var(t) of the CFPP (CFPP second centered moment), which is the measure
of fluctuations and defines the mean energy W(t) of the CFPP as W(t) = Var(t) + E2(t), is
expressed in the form [4]

Var(t) = Sk,2(2bΩ · t)ν/Γ(ν + 1) +
(
Sk,1(2bΩ · t)ν

)2Z(ν), t ≥ 0, (21)

where

Z(ν) :=
1
ν

(
1

Γ(2ν)
− 1

νΓ2(ν)

)
,

and Γ(x) is the gamma function. If ν = 1, then we get a simple Poisson process with
the variance Var(t) (21) proportional to the mathematical expectation (mean) E(t) (20).
If 0 < ν < 1, then the variance Var(t) includes a non-zero second term proportional to
the square of the mean, which can be considered a manifestation of the random events
coherence and as a result of the non-locality over time («memory») of the CFPP.

Note that the partial sums (19) (equal to moments of the distribution (13) without fac-
tor of (2bΩ)ν) determine the rates of growth of the CFPP moments E(t) (20) and Var(t) (21),
which define the mean deformations, variance, and mean energy of the seismic process, the
instabilities of which will arise depending on the divergence of the partial sums (19).
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The existence conditions of Sk,p (19) in k→ ∞ are derived similarly as for Sk (17)

S∞,p = lim
k→∞

Sk,p = ζ
(
(2b + 1)ν− p

)
, (22)

and, based on the Riemann zeta function property, we obtain critical ratio

(2b + 1)ν− p = 1,

from which we find critical indices

νp =
1 + p

(2b + 1)
, p = 1, 2. (23)

We will also use the expression (23) to calculate ν0, taking p = 0.
The condition for the hereditary parameter ν > νp of the power-law distribution (13) of

event frequencies allows us to find stable statistical moments that set finite rates describing
the process of seismic deformations. In the case ν < νp, the CFPP goes into a non-stationary
regime as a result of instability [13,14]. Further, we will apply theoretical conclusions to
study the characteristics of the deformation process based on the seismic catalog data.

4. Calculation of the Distribution Parameters of the Events Recurrence Frequency
Based on Seismic Data

It should be noted that, in practice, to calculate the characteristics of the deformation
process based on the hereditary model, it is possible to use the values of classes or magni-
tudes accepted in catalogs [8], instead of a geometric description in terms of dislocation
sizes L. To determine the state of the deformation process, the parameters b-value, ν, and
νp are calculated in the interval of classes, where a power-law distribution (11) of event
recurrence frequencies ωr is performed. A comparison of the parameter ν averaged over
the class interval used with critical indices νp allows us to conclude about the state of the
deformation process.

4.1. Calculation of b-Value

In Section 3, an analytical expression (11) for the frequencies ωr of events recurrence
was derived based on the Gutenberg–Richter law (2), from which it follows that the
distribution of the frequencies ωr is defined by the parameter b of the Gutenberg–Richter
law. To calculate the b-value, we will also use the law (2) in the logarithmic form

lg N = a− bM. (24)

We determined b-value for the earthquake catalog of the Kamchatka Branch of the Geo-
physical Survey of the Russian Academy of Sciences for the period from 1 January 1962 to
31 December 2002 for the Kuril–Kamchatka island arc subduction zone (area 46◦–62◦ N,
158◦–174◦ E) [8]. The catalog size is equal to n = 79,282 of earthquakes. The energy of a
seismic event in the catalog is defined by the energy class, which is determined to the
nearest tenths. The catalog contains events from 4.1 to 16.1 of energy classes [8].

Based on the obtained distribution of the earthquakes number depending on their
energy class (magnitude), we concluded that the sample of earthquakes is representative for
values of energy classes exceeding 8.3 (Figure 1a) (see file StatisticsGRlaw_n=79282.csv in
Supplementary Materials). The size of a representative sample of earthquakes is n = 46,917.
The interval of the energy classes included in this sample is equal to [8.3, 16.1]. The
logarithmic form of the empirical Gutenberg–Richter law is represented in Figure 1b by dot
graph. Based on the empirical dependence (Figure 1b), a rough estimate can be made that
the linear part is located on the interval of classes K ∈ [9, 13] (of magnitudes M ∈ [2.5, 5.5]).
There is a nonlinearity in the interval K < 9 and a break in the linear part in the vicinity of
the value K = 13.

We will find the best approximation of the linear part of the logarithmic Gutenberg–
Richter law using the LSM. The estimation of the intervals boundaries of the a and b
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parameter changes is made based on the empirical dependence for the logarithmic form of
the Gutenberg–Richter law (Figure 1b).

Figure 1. (a) Distribution of the earthquakes number depending on their energy class (magnitude)
and (b) its logarithmic form for classes K ∈ [8.3, 16.1]. The dot graphs (black dots) are the distribution
and its logarithmic form, where the approximation interval K ∈ [9.2, 12.9] is highlighted with red
dots; the blue graph is an approximation of the linear part of logarithmic form of the distribution.

The empirical Gutenberg–Richter law is approximated by the exponential function (2)
(nonlinear regression). The values of the a and b parameters were determined by it-
erating over the values in increments equal to h = 0.001 from the intervals selected
for them. For each pair of parameters values the approximation error ε, for which
constraints 1% < ε < 10% was accepted, and the correlation index R were calculated.
Then, the classes were sequentially excluded from the beginning and end of the inter-
val K ∈ [8.3, 16.1] (M ∈ [2.33, 7.53]) until the approximation error ε reaches a minimum
in the constraints accepted for it, provided that the value of the correlation index R is
the maximum.

Also, at each step of the above algorithm, the empirical logarithmic Gutenberg–Richter
law (Figure 1b) was approximated by a linear function (24) (linear regression) and its
statistical characteristics were calculated. For the approximation error ε of the logarithmic
law (24), the following limitations are accepted 1% ≤ ε ≤ 2%.

If an interval of classes is found upon which the accepted conditions for exponential
approximation are executed, and the approximation error of the Gutenberg–Richter loga-
rithmic law is minimal and satisfies the accepted constraints, then this interval of classes is
chosen as the approximation interval.

The calculation results are presented in Table 1. At the approximation interval, the
value of the correlation index R = 0.9857 of the nonlinear regression is close to one, which
indicates a practically functional relationship of empirical data. The statistical significance
of the regression equations as a whole is estimated using the Fischer criterion (F-test)
F(α, k1, k2) at the significance level α = 0.05 with degrees of freedom k1 = m− 1 = 1 and
k2 = k−m = k− 2, where k is the number of classes in the considered interval of approxi-
mation and m is the number of regression parameters (m = 2). The empirical values of the
statistics F are given in the Table 1 and exceed the critical value F̃ = F(0.05, 1, 42) = 4.08.
Therefore, at a given significance level α = 0.05, we recognize the statistical significance of
the regression equations as a whole, both nonlinear (Table 1, first row) and linear (Table 1,
second row). Thus, for further calculations, we can use the found values of the a and b
parameters of the Gutenberg–Richter law.
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Table 1. Parameters of the Gutenberg–Richter law and statistical characteristics of approximating
functions F(X).

F(X) [K1, K2] 1 k Ntotal a b R F F̃ ε, %

10a−bX
[9.2, 12.9] 38 22,230 6.3815 0.6897 0.9857 1233 4.08 1.658

a− bX 0.8567 99 1.687
1 Approximation interval (for magnitudes respectively equal to [M1, M2] = [2.93, 5.40]).

4.2. Distributions of the First-Passage Times

The distributions of the waiting times for the first movement or distribution of the
first-passage times are compiled for each energy class that belongs to the approximation
interval K ∈ [9.2, 12.9] (M ∈ [2.93, 5.40]), i.e., we consider the distribution of times between
pairs of neighboring events of the specified energy class.

The following calculation procedure was used. We selected the events of a fixed
class Kr, r = 1, . . . , k from the catalog (the value k is taken from the Table 1). For each pair of
neighboring events of the class Kr, we calculated the length lt [days] of the time intervals be-
tween them. We have denoted by Tmax the greatest length of the interval. Then, the lengths lt
of all intervals of time belong to the interval (0, Tmax]. We divided the interval (0, Tmax]
into intervals of one day length starting from zero. The number of intervals obtained is
equal to nr = [Tmax] + 1, where [Tmax] is the integer part of the value Tmax. We count the
number of time intervals whose length lt satisfies following condition ti < lt ≤ ti+1, where
i = (0, 1, . . . , nr − 1), t0 = 0 days, tnr = Tmax days, ti+1 − ti = 1 day. Thus, we obtain an
empirical distribution of the first-passage time for each energy class Kr under considera-
tion. For each such distribution, we form an empirical Cumulative Distribution Function
(eCDF)— a step function (Figure 2a). In this case, function (16) is, respectively, consid-
ered a cumulative distribution function, which will be discussed below. The files with
the calculation results for each class Kr from the approximation interval are given in the
Supplementary Materials. As an example, Figure 2a shows the eCDF of the first-passage
times for class K32 = 12.3.

Figure 2. (a) The step function eCDF of the first-passage times for class K32 = 12.3. (b) The eCDF
approximation by the function (16) for class K32 = 12.3, the dot graph (black dots in figure (b)) is
eCDF (the corresponding relative frequency is mapped to the middle of each interval), the blue graph
is one-parameter approximation, the red graph is two-parameter approximation.

4.3. Approximation of the First-Passage Times Distributions

We use probability function (16) to approximate the eCDF of the first-passage times.
To approximate the eCDF (Figure 2a) using the LSM, we consider the point definition
of the function (Figure 2b), where the corresponding relative frequency is mapped to
the middle of each interval. The approximation was carried out for both empirical and
calculated values of the frequency ωr [day−1] of events recurrence of the class Kr. In the
first case, the frequency ωr [day−1] was calculated based on the Gutenberg–Richter law.
The value of the parameter ν = νr of the approximation function (16) was found on a



Fractal Fract. 2023, 7, 890 9 of 12

given interval 0 < ν ≤ 1 (1) by iterating with increment of 0.001, based on the condition
of minimizing the approximation error ε (Table 2, columns 4–7). In the second case, we
used a two-parameter approximation by the parameters ωr [day−1] and ν = νr of the
function (16). The choice of change interval of the frequency ωr was determined by the
largest and smallest empirical values of frequencies (Table 2, column 5). The ωr and νr
parameter values were found iteratively in increments of 0.001 under the condition of a
minimum approximation error ε (Table 2, columns 8–11).

Table 2. Parameters of first-passage times distributions.

Approximation by a Function (16)
One-Parameter Two-Parameter

Kr Mr nr RSS ωr , day−1 νr ε, % RSS ωr , day−1 νr ε, %
1 2 3 4 5 6 7 8 9 10 11

9.2 2.93 57 0.102 0.135 0.961 4.71 0.025 0.182 0.891 2.33
9.3 3.0 57 0.067 0.125 0.974 3.93 0.031 0.152 0.925 2.59
9.4 3.07 57 0.085 0.119 0.962 4.36 0.034 0.149 0.905 2.76
9.5 3.13 58 0.099 0.109 0.958 4.71 0.039 0.139 0.897 2.97
9.6 3.2 62 0.105 0.101 0.959 4.71 0.033 0.129 0.895 2.64
9.7 3.27 67 0.109 0.09 0.962 4.62 0.036 0.114 0.901 2.65
9.8 3.33 67 0.102 0.084 0.954 4.55 0.032 0.105 0.895 2.53
9.9 3.4 77 0.095 0.075 0.961 4.08 0.043 0.09 0.914 2.76

10.0 3.47 71 0.108 0.071 0.955 4.65 0.063 0.083 0.907 3.54
10.1 3.53 83 0.077 0.056 0.960 3.70 0.036 0.064 0.92 2.51
10.2 3.6 84 0.074 0.057 0.968 3.57 0.029 0.065 0.928 2.24
10.3 3.67 91 0.112 0.048 0.960 4.29 0.035 0.056 0.91 2.38
10.4 3.73 93 0.245 0.045 0.932 6.31 0.045 0.06 0.849 2.7
10.5 3.8 95 0.133 0.041 0.969 4.64 0.043 0.049 0.918 2.64
10.6 3.87 103 0.214 0.034 0.942 5.79 0.051 0.042 0.88 2.83
10.7 3.93 103 0.163 0.033 0.959 5.12 0.081 0.039 0.91 3.61
10.8 4.0 107 0.257 0.027 0.922 6.53 0.089 0.034 0.858 3.83
10.9 4.07 109 0.28 0.025 0.947 6.75 0.041 0.031 0.888 2.6
11.0 4.13 113 0.331 0.025 0.922 7.19 0.041 0.033 0.865 3.76
11.1 4.2 115 0.395 0.021 0.880 8.01 0.079 0.028 0.817 3.59
11.2 4.27 112 0.357 0.018 0.907 7.97 0.059 0.023 0.852 3.25
11.3 4.33 113 0.301 0.019 0.926 7.17 0.103 0.024 0.873 4.19
11.4 4.4 112 0.144 0.016 0.898 5.38 0.044 0.018 0.886 4.05
11.5 4.47 104 0.405 0.015 0.845 9.15 0.101 0.019 0.797 4.57
11.6 4.53 100 0.225 0.012 0.936 7.27 0.141 0.013 0.91 5.75
11.7 4.6 95 0.505 0.011 0.825 11.18 0.023 0.021 0.784 4.07
11.8 4.67 89 0.451 0.01 0.861 10.74 0.112 0.014 0.822 5.35
11.9 4.73 79 0.353 0.009 0.835 10.21 0.036 0.012 0.85 5.4
12.0 4.8 76 0.529 0.008 0.803 13.1 0.055 0.012 0.818 4.22
12.1 4.87 73 0.576 0.007 0.772 14.03 0.08 0.01 0.775 5.21
12.2 4.93 61 0.21 0.006 0.915 9.31 0.113 0.007 0.886 6.83
12.3 5.0 68 0.133 0.006 0.920 7.06 0.089 0.007 0.909 5.76
12.4 5.07 65 0.666 0.006 0.751 15.45 0.04 0.01 0.766 5.95
12.5 5.13 55 0.644 0.006 0.755 16.42 0.033 0.011 0.749 4.92
12.6 5.2 49 0.273 0.005 0.787 12.2 0.043 0.007 0.791 6.04
12.7 5.27 51 0.217 0.004 0.896 10.55 0.075 0.005 0.882 6.21
12.8 5.33 47 0.108 0.004 0.880 7.92 0.051 0.005 0.858 5.46
12.9 5.4 50 0.428 0.004 0.868 14.85 0.032 0.006 0.883 5.32

It follows from the results of the approximation that the two-parameter approximation
is more accurate. The one-parameter approximation for some classes Kr ≥ 11.7 gives
errors ε exceeding 10%. Therefore, for further calculations of the model parameters, we
will use the values of frequency ωr and exponent νr of the fractional derivative obtained by
the two-parameter approximation method.

The values νr of the exponent ν of the fractional derivative obtained from the results of
both one- and two-parameter approximations of eCDF for event streams of the considered
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energy classes vary from 0.74 to 0.98. It is necessary to note the tendency to decrease the
values of the exponent ν with an increase in the values of energy class Kr. This indicates
the temporal non-locality of the seismic process, «memory» effects, statistical dependence
of events, and delayed relaxation that occur as a result of the hardening of the medium.

5. Results and Discussion

The results obtained in the previous Section 4 allow us to calculate at the approximation
interval the values characterizing the CFPP (1) with (13) of the order of k with integer
random state changes by a value r = 1, . . . , k [3,4]:

1. The hereditarity parameter or the average of the exponent ν of the fractional derivative
of the CFPP is calculated on the values in column 10 of the Table 2

1
k

k

∑
r=1

νr = ν = 0.8675.

According to the value of this parameter, we can conclude that the considered seis-
mic process has «memory», so random events of deformation changes cannot be
considered independent.
Since ν < 1, the distributions (16) define the delayed relaxation of strains, which are
associated with the hardening of the deformable medium and the accumulation of
elastic energy, which may be the reason for the activation of the process.

2. The fractional decay rate of CFPP states is determined by the parameter Λ [day−ν] (13),
(14), which is represented as follows:

Λ =
k

∑
r=1

λr =
k

∑
r=1

(ωr)
ν.

The Λ-value equal to the zero moment is calculated on the values in column 9 of
Table 2 and in item 1,

Λ = 2.6401 day−0.8675 = (3.0622/day)0.8675.

Then, the decay rate of the initial and all subsequent states of the CFPP (1) with (13)
is equal to

Λ1/ν = 3.0622 [day−1].

3. The stability parameter of the CFPP takes the value

(2b + 1)ν ≈ 2.0641,

where the b-value is taken from Table 1. This parameter defines the multiplicative
effect of the scaling and hereditarity on the critical indices.

4. The values of the critical indices (23) are equal to

ν0 = 0.4230, ν1 = 0.8406, ν2 = 1.2608.

A comparison of the ν-parameter (item 1) with the critical indices νp (p = 0, 1, 2) shows
that the seismic process is in a subcritical regime for the zero and first moments and
in a supercritical regime for the second moment of distribution (13), which indicates
the instability of deformation changes that can go into a non-stationary regime of the
seismic process. The reason for this activation is indicated in item 1.
This result means that the fractional decay rate Λ = (2bΩ)νS∞ of the seismic process,
described by the parameters of the CFPP (14) and (18), and the average deforma-
tions (20), proportional to Sk,1 at k = ∞, are finite, and the divergence in the dispersion
growth (21) caused by Sk,2 at k = ∞ leads to the instability of the process and its
transition to a non-stationary regime considered in papers [13,14].
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The anomalous growth of fluctuations caused by the hereditarity of the seismic process
is represented in Var(t) (21) by the second term, which is proportional to the square
of the mean E(t) (20), which is different to the first term and proportional to the
mean E(t). If the first term in Var(t) (21) describes an ordinary deformation, then
the second term describes an anomalous one caused by the consolidation of scales.
This is a collective or induced coherent effect, the analogue of which in quantum
optics is superluminescence, and in phase transition physics is explosive boiling.
In the absence of hereditarity, this effect disappears, because if we take ν = 1, then
the second term of Var(t) in (21) will be zero based on the property of the gamma
function Γ(z + 1) = zΓ(z).

6. Conclusions

The specificity of criticality is determined by scaling and hereditarity. The first property
of the seismic process is responsible for the consolidation of dislocation scales, and the
second one is for the correlation of events at time intervals. Since the critical indices (item 4)
depend on the product of the parameters b and ν, we can talk about the manifestations of
the multiplicative effect of scaling and hereditarity in critical phenomena.

The slowing down of relaxations and the accumulation of energy are the reason for
the catastrophic nature of critical phenomena. The delayed relaxations and the anomalous
growth of fluctuations can be considered as a precursor of a catastrophe, the scenario of
which is determined by the non-stationary regime of the Poisson process [13,14].

The seismic process is diverse and can have many representations. The analysis
of seismic data based on the hereditarian criticality model showed the instability of the
quasi-stationary and quasi-homogeneous regime of the seismic process. Further, the non-
stationary and spatially inhomogeneous regimes of the seismic process are investigated in
more detail than in [13], which are represented by foreshocks and aftershocks. Of particular
interest in terms of the study of anomalous diffusion are chains of seismic events [14–20]
with their random walk, fading, and Levy flights. It will be necessary to understand how
anomalous diffusion is affected by the criticality of the process. The variety of types of
fractional derivatives can be used to generalize the case of the Caputo derivative considered
here and to determine their influence on the criticality of the process. A more general case
than in Equation (1) is also interesting, when the hereditary parameter ν depends on
r = 1, 2, . . . , k, i.e., the event streams differ in terms of the «memory» properties. The
processing of seismic data showed exactly this dependence.
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